Optimistic Optimization

Lucian Bușoniu

20 May 2013
1. Problem & motivation
2. DOO: Deterministic optimistic optimization
3. SOO: Simultaneous optimistic optimization
4. Application: Multiagent consensus
These methods were published in:

1 is original reference, 2 is an extensive survey including applications to control
Optimization problem

\[
\max_{x \in X} f(x)
\]

Assumption 1

Function \(f : X \rightarrow \mathbb{R} \) is Lipschitz-continuous with respect to a semimetric \(\ell : X \times X \rightarrow \mathbb{R} \):

\[
|f(x) - f(x')| \leq \ell(x, x')
\]

Definition (Semimetric)

A function \(\ell : X \times X \rightarrow \mathbb{R} \) satisfying:

- \(\ell(x, x') \geq 0 \)
- \(\ell(x, x') = \ell(x', x) \)
- \(\ell(x, x') = 0 \) if and only if \(x = x' \)

Intuitively: a notion of distance
Motivation

No method with guaranteed performance for any function

Especially when the metric ℓ is unknown
DOO idea

- Explore the space X iteratively
- Always expand **optimistic** set, with largest upper bound:
 \[b(X_i) = f(x_i) + \delta(X_i), \quad \text{diam.} \quad \delta(X_i) = \sup_{x, x' \in X_i} \ell(x, x') \]
- Until n expansions exhausted
Partitioning

- In general, a hierarchical partitioning rule must be defined
- Set $X_{0,1} = X$ at depth 0 split into $X_{1,1}, \ldots, X_{1,K}$ at depth 1
- Each set $X_{d,i}$ at depth d split into K subsets at depth $d + 1$
Assumption 2

The sets $X_{d,i}$ in the hierarchical partitioning must:

a) Shrink with the depth:
 \[\delta(X_{d,i}) \leq \delta_d \] for any set i at d; δ_d decreases with d

b) Be well-shaped:
 each $\delta(X_{d,i})$ contains a ball in the semimetric ℓ having radius proportional to δ_d, $B(x_{d,i}, \nu \delta_d)$
DOO algorithm

initialize tree with root $X_{0,1} = X$
for $t = 1$ to n do
 $X_{d,i}^\dagger \leftarrow \arg\max_{X_{d,i} \in \text{leaves}} b(X_{d,i})$
 expand $X_{d,i}^\dagger$ (partition the set), adding children to tree
end for
output best sample $\hat{x}^* = \arg\max_{x_{d,i} \in \text{tree}} f(x_{d,i})$

(Munos, 2011)
Examples

- Quadratic function
- Rosenbrock banana function
An easy near-optimality guarantee

Denote the expanded set at iteration t by X_t^+

- $b(X_t^+) \geq f^*$, otherwise it wouldn’t have been selected
- $f(x_t^+) \leq f^*$ by definition
- $f(\hat{x}^*) \geq f(x_t^+)$ because \hat{x}^* maximizes f on the tree
- So $f^* - f(\hat{x}^*) \leq \delta(X_t^+)$ at any t, and therefore $\leq \delta d^*$, where d^* the deepest expanded depth
Near-optimality dimension

Definition (Near-optimality dimension)

Smallest β so that the near-optimal sets:

$$X_\varepsilon = \{ x \in X \mid f^* - f(x) \leq \varepsilon \}$$

can be covered by (on the order of) $\varepsilon^{-\beta}$ balls of radius ε in the semimetric ℓ

β measures how closely ℓ captures the smoothness of f
Consider a partition with exponentially decreasing sets, $\delta_d = \gamma^d$, $\gamma < 1$. Then the solution returned by DOO satisfies:

$$f^* - f(\hat{x}^*) \approx \begin{cases}
 n^{-1/\beta} & \text{if } \beta > 0 \\
 \gamma^{cn} & \text{if } \beta = 0
\end{cases}$$
Example: zero dimension

- Take $f(x^*) - f(x) \approx |x^* - x|$ and $\ell(x, x') = |x - x'|$
- X_ε = an interval of length ε, which is also an ℓ-ball of size ε
- So it takes a constant = ε^0 number of balls to cover X_ε, and $\beta = 0$

(taken from Munos)
Example: positive dimension

- If $f(x^*) - f(x) \approx |x^* - x|^2$, X_ε is an interval of length $\sqrt{\varepsilon}$.
- When $\ell(x, x') = |x - x'|^2$, a ℓ-ball of size ε is also an interval of length $\sqrt{\varepsilon}$, and $\beta = 0$.
- When $\ell(x, x') = |x - x'|$, a ℓ-ball of size ε is an interval of length ε, so it takes $\varepsilon / \sqrt{\varepsilon} = \varepsilon^{-1/2}$ balls to cover X_ε, and $\beta = 1/2$.

(taken from Munos)
Example: semimetric mismatch

Influence of semimetric (mis)match for a quadratic function
1. Problem & motivation

2. DOO: Deterministic optimistic optimization

3. SOO: Simultaneous optimistic optimization

4. Application: Multiagent consensus
What if ℓ / δ unknown? (i.e., smoothness of f unknown)

Expand **all potentially optimistic sets** $X_{d,i}$, for which:

$$f(x_{d,i}) \geq f(x_{d',j})$$

for all leaves j at smaller depths $d' \leq d$
SOO algorithm

initialize tree with root $X_{0,1} = X$

repeat at each iteration $t = 1, 2, \ldots$

for $d = 0, \ldots, \min\{\text{current tree depth}, d_{\text{max}}(t)\}$ **do**

- $X_{d,i}^{\dagger} \leftarrow \arg \max_{X_{d,i} \in \text{leaves at } d} f(x_{d,i})$

- **if** $f(x_{d,i}^{\dagger}) \geq f(x_{d',j})$ \forall leaves j at $d' \leq d$ **then**
 - expand $X_{d,i}^{\dagger}$

end if

end for

until n expansions performed

output best sample $\hat{x}^* = \arg \max_{x_{d,i} \in \text{tree}} f(x_{d,i})$

(Munos, 2011)
Examples

- Quadratic function
- Rosenbrock banana function
Theorem

Consider a partition with exponentially decreasing sets, \(\delta_d = \gamma^d, \gamma < 1 \). Take \(d_{\text{max}}(t) = \sqrt{t} \), then the solution returned by SOO satisfies:

\[
 f^* - f(\hat{x}^*) \approx \begin{cases}
 n^{-\frac{1}{2\beta}} & \text{if } \beta > 0 \\
 \gamma c' n & \text{if } \beta = 0
\end{cases}
\]
1. Problem & motivation

2. DOO: Deterministic optimistic optimization

3. SOO: Simultaneous optimistic optimization

4. Application: Multiagent consensus
Consensus in nonlinear multiagent systems

- Agents with nonlinear dynamics $x_{i,k+1} = f_i(x_{i,k}, u_{i,k})$
- **Consensus problem**: agents must reach agreement on (some) state variables
- Communication on an incomplete graph
- **Challenge**: No solution for general f
OO for consensus

1. Design target states with a classical consensus method
2. Use DOO or SOO to optimize action sequences in order to reach within ε of target states

- **Consensus guaranteed** under conditions on f
- Tradeoff: length of action sequence must be known and small
Consensus of multiple robot arms