Reinforcement Learning
Part I: The Classical Setting

Lucian Buşoniu, Jelmer van Ast, Robert Babuška

Knowledge-Based Control Systems
2010-03-01

Reinforcement learning basics

Why learning?

Learning can find solutions that:

- cannot be found in advance
 - problem too complex
 - e.g., controlling highly nonlinear systems
 - problem not fully known beforehand
 - e.g., robotic exploration of extraterrestrial planets
- steadily improve
- adapt to time-varying environments

Essential for any intelligent system

Principle of RL

Interact with a system through states and actions
Receive rewards as performance feedback
Inspired by human and animal learning

Spectrum: Supervised learning

For each input sample \(x \), correct output \(y \) is known
Infer input-output relationship \(y \approx g(x) \)
Example: neural networks

Spectrum: Unsupervised learning

Only input samples \(x \) available – no outputs
Find patterns in the data
Example: clustering
Reinforcement learning basics

Introduction

- Reinforcement learning basics
 - Elements of RL
 - RL solution
 - Algorithms
 - Accelerating RL

Elements of RL

A simple cleaning robot example

- Cleaning robot in a 1-D world
- Either pick up trash (reward +5) or power pack (reward +1)
- After picking up item, episode terminates

Cleaning robot: State & action

- Robot in given state \(x \) (cell)
- and takes action \(u \) (e.g., move right)

Cleaning robot: Transition & reward

- Robot reaches next state \(x' \)
- and receives reward \(r = \text{quality of transition} \)
 (here, +5 for collecting trash)

Cleaning robot: Transition & reward functions

- Transition function (process behavior):
 \[
 x' = f(x, u) = \begin{cases}
 x & \text{if } x \text{ is terminal (0 or 5)} \\
 x + u & \text{otherwise}
 \end{cases}
 \]
- Reward function (immediate performance):
 \[
 r = p(x, u) = \begin{cases}
 1 & \text{if } x = 1 \text{ and } u = -1 \text{ (powerpack)} \\
 5 & \text{if } x = 4 \text{ and } u = 1 \text{ (trash)} \\
 0 & \text{otherwise}
 \end{cases}
 \]

Markov decision process

- State space \(X = \{0, 1, 2, 3, 4, 5\} \)
- Action space \(U = \{-1, 1\} = \{\text{left, right}\} \)
- Policy \(h: \text{mapping from } x \text{ to } u \) (state feedback)
- Determines controller behavior

Policy

- Example: \(h(0) = + \) (terminal state, action is irrelevant), \(h(1) = -1, h(2) = 1, h(3) = 1, h(4) = 1, h(5) = + \)

- Correct outputs not available, only rewards
- Find optimal control behavior

Reinforcement learning is about **control**:
- optimal, adaptive, and model-free

This presentation: classical RL – discrete states and actions

- Reinforcement learning basics
 - Introduction
 - Elements of RL
 - RL solution
 - Algorithms
 - Accelerating RL

- Reinforcement learning = Control

- Spectrum: Reinforcement learning
- Reinforcement learning basics
 - Algorithms
 - Accelerating RL

- Elements of RL
 - A simple cleaning robot example
 - Cleaning robot: State & action
 - Cleaning robot: Transition & reward
 - Cleaning robot: Transition & reward functions
 - Markov decision process
 - Policy

- TUDelft
Reinforcement learning basics

- Introduction
- Elements of RL
- RL solution

Algorithms

- Taxonomy
- Q-learning
- SARSA

Cleaning robot: Return

Assume h always goes right

$$R^h(x_0) = 0 + 1r_1 + 2r_2 + 30 + 40 + \cdots$$

Because x_3 is terminal, all remaining rewards are 0

Q-function

- Q-function of policy h: $Q^h(x_0, u_0) = \rho(x_0, u_0) + \gamma R^h(x_1)$ (return after taking u_0 in x_0 and then following h)
- Simply fix the first action in the sequence, independently of policy

Bellman equation

- Develop Q-function one step ahead:
 $$Q^h(x_0, u_0) = \rho(x_0, u_0) + \gamma R^h(x_1) = \rho(x_0, u_0) + \gamma [\rho(x_1, h(x_1)) + \gamma R^h(x_2)] = \rho(x_0, u_0) + \gamma Q^h(x_1, h(x_1))$$
 Also, $x_1 = f(x_0, u_0)$

 \Rightarrow Bellman equation for Q^h
 $$Q^h(x, u) = \rho(x, u) + \gamma Q^h(f(x, u), h(f(x, u)))$$

Optimal solution

- Optimal Q-function:
 $$Q^* = \max_h Q^h$$

 \Rightarrow Greedy policy in Q^*:
 $$h^*(x) = \arg\max_u Q^*(x, u)$$
 is optimal (achieves maximal returns)

 Bellman optimality equation (for Q^*)
 $$Q^*(x, u) = \rho(x, u) + \gamma \max_{u'} Q^*(f(x, u), u')$$

Types of algorithms

- Reinforcement learning basics
- Algorithms
 - Taxonomy
 - Q-learning
 - SARSA
- Accelerating RL

By model knowledge

- Model-based – dynamic programming f, ρ known
- Model-free – proper reinforcement learning f, ρ unknown, only transition data (x, u, x', r) available
- Model-learning RL estimate f and ρ from transition data
Off-policy online RL: Q-learning

Recall off-policy: find \(Q^* \), use it to compute \(h^* \)

- Take Bellman optimality equation at some \((x, u)\):
 \[
 Q^*(x, u) = r(x, u) + \gamma \max_u Q^*(f(x, u), u')
 \]

- Turn into iterative update:
 \[
 Q(x, u) \leftarrow r(x, u) + \gamma \max_u Q(f(x, u), u')
 \]

- Instead of model \(f, \rho \), use transition sample
 \((x_k, u_k, x_{k+1}, f_{k+1})\) at each step \(k \):

 \[
 Q(x_k, u_k) \leftarrow f_{k+1} + \gamma \max_u Q(x_{k+1}, u')
 \]

- Note: \(x_{k+1} = f(x_k, u_k), f_{k+1} = \rho(x_k, u_k) \)

Q-learning (cont'd)

- Instead of model, use transition sample
 \((x, u, x_{k+1}, f_{k+1})\) at each step \(k \):

 \[
 Q(x, u) \leftarrow f_{k+1} + \gamma \max_u Q(x_{k+1}, u')
 \]

- Note: \(x_{k+1} = f(x, u), f_{k+1} = \rho(x, u) \)

- Finally, make update incremental:

 \[
 Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k \]

 \[
 [f_{k+1} + \gamma \max_u Q(x_{k+1}, u') - Q(x_k, u_k)]
 \]

 \(\alpha_k \in (0, 1) \) learning rate

Complete Q-learning algorithm

Q-learning

- for every trial do
 - initialize \(x_0 \)
 - repeat for each step \(k \)
 - take action \(u_k \)
 - measure \(x_{k+1}, \) receive \(r_{k+1} \)
 - \(Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k \]
 \[
 [f_{k+1} + \gamma \max_u Q(x_{k+1}, u') - Q(x_k, u_k)]
 \]
 - until terminal state
 - end for

Exploration-exploitation tradeoff

- Essential condition for convergence to \(Q^* \):
 - all \((x, u)\) pairs must be visited infinitely often

- Exploration necessary:
 - sometimes, choose actions randomly

- Exploration of current knowledge is also necessary:
 - sometimes, choose actions greedily:
 \(u_k = \arg \max_x Q(x_k, u) \)

- Exploration-exploitation tradeoff crucial for performance of online RL

Exploration-exploitation: \(\varepsilon \)-greedy strategy

- Simple solution: \(\varepsilon \)-greedy

 \[
 u_k = \begin{cases}
 \arg \max_u Q(x_k, u) & \text{with probability } (1 - \varepsilon_k) \\
 \text{a random action} & \text{with probability } \varepsilon_k
 \end{cases}
 \]

- Exploration probability \(\varepsilon_k \in (0, 1) \)
 - is usually decreased over time

Cleaning robot: Q-learning demo

Parameters: \(\alpha = 0.2, \varepsilon = 0.3 \) (constant)

\(x_0 = 2 \) or 3 (randomly)
Accelerating RL

On-policy online RL: SARSA

Recall on-policy: find Q^*, improve h, repeat

Similar to Q-learning:

- Take Bellman equation for Q^*, at some (x, u):
 \[
 Q^*(x, u) = \rho(x, u) + \gamma Q^*(f(x, u), h(f(x, u)))
 \]

- Turn into iterative update:
 \[
 Q(x, u) \leftarrow \rho(x, u) + \gamma Q(f(x, u), h(f(x, u)))
 \]

- Use sample $(x_k, u_k, r_{k+1}, x_{k+1}, u_{k+1})$ at each step k:
 \[
 Q(x_k, u_k) \leftarrow r_{k+1} + \gamma Q(x_{k+1}, u_{k+1})
 \]

- Note: $u_{k+1} = h(f(x_k, u_k))$, h = policy being followed

Exploration-exploitation in SARSA

- For convergence—besides infinite exploration—SARSA requires policy to eventually become greedy

 - E.g., ϵ-greedy
 \[
 u_k = \begin{cases}
 \arg \max_u Q(x_k, u) & \text{with probability } (1 - \epsilon_k) \\
 \text{a random action} & \text{with probability } \epsilon_k
 \end{cases}
 \]

 with $\lim_{k \to \infty} \epsilon_k = 0$

- Greedy actions \Rightarrow policy implicitly improved!
 (Recall on-policy: find Q^*, improve h, repeat)

SARSA (cont’d)

- Use sample $(x_k, u_k, r_{k+1}, x_{k+1}, u_{k+1})$ at each step k:
 \[
 Q(x_k, u_k) \leftarrow r_{k+1} + \gamma Q(x_{k+1}, u_{k+1})
 \]

- Make update incremental:
 \[
 Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k \left[r_{k+1} + \gamma Q(x_{k+1}, u_{k+1}) - Q(x_k, u_k) \right]
 \]

(Cleaning robot: SARSA demo)

Parameters like Q-learning: $\alpha = 0.2$, $\epsilon = 0.3$ (constant)

$x_0 = 2$ or 3 (randomly)

Eligibility traces

- Leave decaying trace along state-action trajectory:
 \[
 e(x_k, u_k) \leftarrow 0 \text{ for all } x, u \\
 \text{for each step } k \text{ do } \\
 e(x_k, u_k) \leftarrow \gamma e(x_k, u_k) \text{ for all } x, u \\
 e(x_k, u_k) \leftarrow 1
 \]

- $\lambda \in [0, 1]$ decay rate, γ discount factor

- Implementation:

Complete SARSA algorithm

for every trial do
 initialize x_0, choose initial action u_0
 repeat for each step k
 apply u_k, measure x_{k+1}, receive r_{k+1}
 choose next action u_{k+1}
 \[
 Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k \left[r_{k+1} + \gamma Q(x_{k+1}, u_{k+1}) - Q(x_k, u_k) \right]
 \]
 until terminal state
 end for

- In practice, transition data costs:
 - time
 - profits (suboptimal performance due to exploration)
 - process wear & tear

- Fast RL = use data efficiently

 (computational demands are secondary)
Q(\(\lambda\))-learning

- Recall basic Q-learning only updates \(Q(x_k, u_k)\):
 \[
 Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k \cdot e(x, u) \cdot [r_{k+1} + \gamma \max_{u'} Q(x_{k+1}, u') - Q(x_k, u_k)]
 \]

- \(Q(\lambda)\)-learning updates all eligible pairs:
 \[
 Q(x, u) \leftarrow Q(x, u) + \alpha_k \cdot e(x, u) \cdot [r_{k+1} + \gamma \max_{u'} Q(x_{k+1}, u') - Q(x_k, u_k)]
 \]
 for all \(x, u\)

- Note: exploratory actions break causality
 \[\Rightarrow \text{reset eligibility trace to 0} \]

SARSA(\(\lambda\))

- Similar to Q-learning:
 - Basic SARSA:
 \[
 Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k \cdot e(x, u) \cdot [r_{k+1} + \gamma Q(x_{k+1}, u_{k+1}) - Q(x_k, u_k)]
 \]
 - SARSA(\(\lambda\))-learning:
 \[
 Q(x, u) \leftarrow Q(x, u) + \alpha_k \cdot e(x, u) \cdot [r_{k+1} + \gamma Q(x_{k+1}, u_{k+1}) - Q(x_k, u_k)]
 \]
 for all \(x, u\)
 - SARSA on-policy, including exploration
 \[\Rightarrow \text{exploratory actions not a problem} \]

Complete Q(\(\lambda\))-learning algorithm

- for every trial
 - \(e(x, u) \leftarrow 0\) for all \(x, u\)
 - initialize \(x_0\)
 - repeat for each step \(k\)
 - take action \(u_k\)
 - measure \(x_{k+1}\), receive \(r_{k+1}\)
 - if \(u_k\) exploratory then \(e(x, u) \leftarrow 0\) for all \(x, u\)
 - else \(e(x, u) \leftarrow \lambda \cdot e(x, u)\) for all \(x, u\)
 - \(e(x, u_k) \leftarrow 1\)
 - \(Q(x, u) \leftarrow Q(x, u) + \alpha_k \cdot e(x, u) \cdot [r_{k+1} + \gamma \max_{u'} Q(x_{k+1}, u') - Q(x_k, u_k)]\)
 - for all \(x, u\)
 - until terminal state

Complete SARSA(\(\lambda\)) algorithm

- for every trial
 - \(e(x, u) \leftarrow 0\) for all \(x, u\)
 - initialize \(x_0\), choose initial action \(u_0\)
 - repeat for each step \(k\)
 - apply \(u_k\), measure \(x_{k+1}\), receive \(r_{k+1}\)
 - choose next action \(u_{k+1}\)
 - \(e(x, u) \leftarrow \lambda \cdot e(x, u)\) for all \(x, u\)
 - \(e(x, u_k) \leftarrow 1\)
 - \(Q(x, u) \leftarrow Q(x, u) + \alpha_k \cdot e(x, u) \cdot [r_{k+1} + \gamma \max_{u'} Q(x_{k+1}, u') - Q(x_k, u_k)]\)
 - for all \(x, u\)
 - until terminal state

Experience replay (ER)

- Store each transition sample \((x_k, u_k, x_{k+1}, r_{k+1})\) into a database
- At every step, replay \(N\) transitions from the database
- Improvement: replay most informative samples first: prioritized sweeping
Q-learning with experience replay

for every trial do
 initialize \(x_0 \)
 repeat for each step \(k \)
 take action \(u_k \)
 measure \(x_{k+1} \), receive \(r_{k+1} \)
 \[
 Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k \left[r_{k+1} + \gamma \max_{u'} Q(x_{k+1}, u') - Q(x_k, u_k) \right]
 \]
 add \((x_k, u_k, x_{k+1}, r_{k+1}) \) to database ReplayExperience
 until terminal state
end for

Reinforcement learning basics

Algorithms

- **Experience replay**
 - **ER Q-learning**
 - for every trial do
 - initialize \(x_0 \)
 - repeat for each step \(k \)
 - take action \(u_k \)
 - measure \(x_{k+1} \), receive \(r_{k+1} \)
 - \[
 Q(x_k, u_k) \leftarrow Q(x_k, u_k) + \alpha_k \left[r_{k+1} + \gamma \max_{u'} Q(x_{k+1}, u') - Q(x_k, u_k) \right]
 \]
 - add \((x_k, u_k, x_{k+1}, r_{k+1}) \) to database ReplayExperience
 - until terminal state
 - end for

Summary and outlook

- **Reinforcement learning** = optimal, adaptive, model-free control
- Principle: reward signal as performance feedback
- Inspired from human and animal learning, but solid mathematical foundation
- Classical RL: small, discrete \(X \) and \(U \) (this presentation)

Outlook

- Other algorithms: actor-critic, model-learning, policy search, etc.
- Continuous \(X, U \):
 - Part II – RL using function approximation
- State not fully measurable:
 - "partially observable Markov decision process"
- RL for distributed (multi-agent) control
Reinforcement Learning
Part II: Approximate RL for Continuous-Space Control

Lucian Bușoniu, Jelmer van Ast, Robert Babuška
Knowledge-Based Control Systems
2010-03-03

Introduction
Classical offline algorithms

Approximate algorithms for continuous spaces

Principle of RL

- Interact with a system through states and actions
- Receive rewards as performance feedback

This presentation: approximate RL
– continuous states & actions

Recall: Solution of the RL problem

- Q-function Q^h of policy h
- Optimal Q-function $Q^* = \max_h Q^h$
 Satisfies Bellman optimality equation:
 $Q^*(x,u) = \rho(x,u) + \gamma \max_u Q^*(f(x,u),u')$
- Optimal policy $h^* \text{ greedy in } Q^*$:
 $h^*(x) = \arg \max_u Q^*(x,u)$

Recall: Types of algorithms

By model knowledge
- Model-based – f and ρ known (dynamic programming)
- Model-free – no f and ρ, only transition data (RL)
- Model-learning – estimate f and ρ from transition data

By level of interaction
- Offline – data collected in advance
- Online – learn by interacting with the process

By path to optimal solution
- Off-policy – find Q^*, use it to compute h^*
- On-policy – find Q^h, improve h, repeat

Algorithms considered

<table>
<thead>
<tr>
<th>Off-policy</th>
<th>On-policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(previous lecture) Q-learning</td>
<td>SARSA</td>
</tr>
<tr>
<td>(this lecture) Q-iteration</td>
<td>Policy iteration</td>
</tr>
<tr>
<td>Approximate offline fuzzy Q-iteration</td>
<td>approximate policy iteration</td>
</tr>
<tr>
<td>Approximate online approximate Q-learning</td>
<td>online approximate policy iteration</td>
</tr>
</tbody>
</table>

Technical focus: Q-iteration & fuzzy Q-iteration
Introduction

Classical offline algorithms

Approximate algorithms for continuous spaces

Offline, off-policy: Q-iteration

- Turn Bellman optimality equation:
 \[Q^*(x, u) = r(x, u) + \gamma \max_{u'} Q^*(f(x, u), u') \]

 into an iterative update:

 Q-iteration

 \[
 \begin{align*}
 \text{repeat at each iteration } & \ell \\
 \text{for all } & x, u \text{ do} \\
 Q_{\ell+1}(x, u) & \leftarrow r(x, u) + \gamma \max_{u'} Q_\ell(f(x, u), u') \\
 \text{end for} \\
 \text{until convergence to } & Q^* \\
 \end{align*}
 \]

- Once \(Q^* \) available: \(h^*(x) = \arg \max_u Q^*(x, u) \)

Offline, on-policy: Policy iteration

- Recall on-policy: find \(Q^\pi \), improve \(\pi \), repeat

 Policy iteration

 starting from an initial policy

 \[
 \begin{align*}
 \text{repeat at each iteration } & \ell \\
 \text{policy evaluation: } & Q^\pi \\
 \text{policy improvement: } & h_{\ell+1}(x) \leftarrow \arg \max_u Q^\pi(x, u) \\
 \text{until convergence to } & h^\pi \\
 \end{align*}
 \]

 - Policy evaluation: iterative, from Bellman equation for \(Q^\pi \)
 (like Q-iteration)

Approximate algorithms for continuous spaces

<table>
<thead>
<tr>
<th>Off-policy</th>
<th>On-policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical offline DP:</td>
<td>Q-iteration</td>
</tr>
<tr>
<td>Approximate offline:</td>
<td>fuzzy</td>
</tr>
<tr>
<td>Approximate online:</td>
<td>approximate Q-learning</td>
</tr>
</tbody>
</table>

Discount robot: Q-iteration demo

Discount factor: \(\gamma = 0.5 \)

- Each update is a contraction with factor \(\gamma \):
 \[\| Q_{\ell+1} - Q^* \|_\infty \leq \gamma \| Q_\ell - Q^* \|_\infty \]

 \(\Rightarrow \) Q-iteration monotonically converges to \(Q^* \)

Cleaning robot: Policy iteration demo

Initial policy: always go left

Policy evaluation: find \(Q^\pi \)

Policy improvement:

\[
 Q_{\ell+1}(x, u) \leftarrow r(x, u) + \gamma \max_{u'} Q_\ell(f(x, u), u')
\]

Approximate Q-function approximation

- In real-life control, \(X, U \) continuous
 \(\Rightarrow \) approximate Q-function \(\tilde{Q} \) must be used

- Usually, policy not approximated
 Greedy in \(\tilde{Q} \), computed on demand for given \(x \):
 \[
 h(x) = \arg \max_u \tilde{Q}(x, u)
 \]

- Approximator must ensure efficient \(\arg \max_u \) solution
Approximating over the action space

- Approximator must ensure efficient "arg max" solution
 - Typically: action discretization
- Choose M discrete actions $u_1, \ldots, u_M \in U$
 - Solve "arg max" by explicit enumeration
- Example: grid discretization

Typically: basis functions

$$\phi_1, \ldots, \phi_N : X \rightarrow [0, \infty)$$

- Usually normalized: $\sum \phi(x) = 1$
- E.g., fuzzy approximation, RBF network approximation

Approximate algorithms for continuous spaces

Action discretization

Typically: approximate algorithms for continuous spaces

Approximate Q-iteration

Store:

- $N \times M$ matrix of parameters θ
- (one for each pair basis function–discrete action)

$$\hat{Q}^f(x, u_j) = \sum_{i=1}^{N} \phi_i(x) \theta_{ij}$$

Offline, off-policy: Fuzzy Q-iteration

Fuzzy Q-iteration policy

- Recall optimal policy:
 $$h^*(x) = \arg \max_u Q^*(x, u)$$
- Fuzzy Q-iteration policy:
 $$\hat{h}^*(x) = \arg \max_{u_j} Q^f(x, u_j)$$
 ($\hat{\theta}^*$ = converged parameter matrix)

Example: Inverted pendulum swing-up

- $x = [\text{angle } \alpha, \text{ velocity } \dot{\alpha}]^T$
- u: voltage
- $\rho(x, u) = -x^T \begin{bmatrix} 5 & 0 \\ 0 & 0.1 \end{bmatrix} x - u^T 1 u$
- Discount factor $\gamma = 0.98$

- Goal: stabilize pointing up
- Insufficient actuation \Rightarrow need to swing back & forth

Inverted pendulum: Near-optimal solution

Left: Q-function for $u = 0$

Right: policy

Fuzzy Q-iteration

Recall classical Q-iteration:

repeat at each iteration t
 for all x, u do
 $$Q_{t+1}(x, u) = \rho(x, u) + \gamma \max_{u'} Q_{t}(f(x, u), u')$$
 end for
 until convergence

Fuzzy Q-iteration

repeat at each iteration t
 for all cores x_i, discrete actions u_j do
 $$\hat{\theta}_{t+1, ij} = \rho(x, u_j) + \gamma \max_{u'_{t+1}} \hat{Q}^f(f(x, u_j), u_{t+1})$$
 end for
 until convergence
Fuzzy Q-iteration convergence

Like classical Q-iteration:
- Each update is a contraction with factor γ:
 $$\|\theta_{t+1} - \theta^*\|_\infty \leq \gamma \|\theta_t - \theta^*\|_\infty$$
- Monotonic convergence to θ^*

θ^* leads to near-optimal Q^*, h^*

Approximate policy iteration

Recall classical policy iteration:
- starting from an initial policy
- repeat at each iteration ℓ
 - policy evaluation: find Q^ℓ policy improvement: $h_{t+1}(x) \leftarrow \arg\max_u Q^\ell(x, u)$
- until convergence

Approximate policy iteration (API)
- starting from an initial policy
- repeat at each iteration ℓ
 - approximate policy evaluation: find \hat{Q}^ℓ so that $\hat{Q}^\ell \approx Q^\ell$
 - policy improvement: $h_{t+1}(x) \leftarrow \arg\max_u \hat{Q}^\ell(x, u)$
- until convergence

Online approximate policy iteration

Real-time learning control
- Approximator: similar to offline API (except 11×11 RBFs)
Classical offline algorithms

- Q-iteration
- Policy iteration

Approximate offline algorithms

- Fuzzy Q-iteration
- Online approximate policy iteration

Approximate online algorithms

- Approximate Q-learning (RL)

Off-policy

<table>
<thead>
<tr>
<th>Classical offline</th>
<th>Approximate offline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-iteration</td>
<td>Policy iteration</td>
</tr>
<tr>
<td>Fuzzy Q-iteration</td>
<td>Approximate policy iteration</td>
</tr>
</tbody>
</table>

On-policy

<table>
<thead>
<tr>
<th>Classical offline</th>
<th>Approximate offline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-iteration</td>
<td>Policy iteration</td>
</tr>
</tbody>
</table>

Demo: Q-learning for walking robot (Erik Schuitema)

Real-time learning control
Employs experience replay

Recall: Experience replay

- Store each transition sample \((x_k, u_k, x_{k+1}, r_{k+1})\) into a database
- At every step, replay several transitions from the database

Demo: Q-learning for goalkeeper robot (Sander Adam)

Real-time learning control
Employs experience replay

Conclusion

- Approximate reinforcement learning = Learn how to optimally control complex systems from scratch

- Take-home message