
Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Optimistic Planning for Continuous-Action
Deterministic Systems

L. Buşoniu, A. Daniels, R. Munos, R. Babuška
(lucian@busoniu.net)

JFPDA 2013, 1 July, Lille

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Optimal control problem (deterministic MDP)

System: dynamics xk+1 = f (xk , uk)

Performance: reward function rk+1 = ρ(xk , uk)

Objective: maximize discounted return
∑∞

k=0 γk rk+1

Motivation: very general f and ρ

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Applications

Robotics, multi-agent systems, medicine, AI, economics etc.

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Online planning

At each step k , solve local optimal control at state xk :
Infinite action sequences: u∞ = (uk , uk+1, . . .) ∈ U∞

Optimization problem: supu∞ v(u∞) (=
∑∞

i=0 γ i rk+1+i)

1. Explore sequences from xk , to find a near-optimal one u
2. Apply first action of u

Focus: Optimistic planning, deal with continuous actions

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

1 Background: Optimistic optimization

2 SOOP: Planning with continuous actions

3 Experiments & conclusions

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

DOO: Deterministic optimistic optimization

Maximize v : U → R, Lipschitz: |v(u)− v(u′)| ≤ `(u, u′)
Input: hierarchical partitioning of U
Always expand optimistic set, with largest upper bound:
b(Ui) = v(ui) + δ(Ui), diam. δ(Ui) = supu,u′∈Ui

`(u, u′)
Until n expansions exhausted

(Munos, 2011)

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

SOO: Simultaneous optimistic optimization

What if ` / δ unknown? (i.e., smoothness of v unknown)
Assume only: δ(Uj) ≥ δ(Ui) iff depth dj ≤ di (total order)
Expand all potentially optimistic sets Ui , for which:

v(ui) ≥ v(uj) for all j at smaller depths, dj ≤ di

(Munos, 2011)

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

1 Background: Optimistic optimization

2 SOOP: Planning with continuous actions

3 Experiments & conclusions

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Assumptions

Action space U = [0, 1]
(can be extended to compact multidimensional U)
Rewards r ∈ [0, 1]

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Partitioning

Partition U∞ using iterative trisection
(we no longer have a tree structure!)

Each box Ui represented by only initializing
trisected dimensions, k = 0, . . . , Ki − 1

v̂(Ui) =
∑Ki−1

k=0 γk rk+1, rewards of center sequence

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Challenges

Challenge 1: ` (diameters δ) unknown
⇒ Use SOO – expand all potentially optimistic boxes

Challenge 2: Total order on diameters unavailable

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Partial order

Definition
A box Uj is partially greater than Ui (Uj � Ui) if it was
trisected fewer (or as many) times along every dimension

Assumption

If Ui � Uj , then diameters δ(Ui) ≥ δ(Uj)

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Relaxed expansion criterion

Box Ui is potentially optimistic if v̂(Ui) ≥ v̂(Uj),∀Uj � Ui

Safe: if a box is potentially optimistic, it is expanded
Conservative: a box may be expanded even when not
potentially optimistic:

v̂(Ui) < v̂(Uj) for some δ(Uj) ≥ δ(Ui)
but we cannot tell because Uj � Ui

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

SOO for Planning: SOOP

Input: state x0, budget of model calls n
create a single box [0, 1]∞

loop until budget exhausted
select potentially optimistic boxes:
O = {Ui | ∀ j so that Uj � Ui , v̂(Ui) ≥ v̂(Uj)}

for each box in Ui ∈ O do
trisect dimension k , creating 3 new boxes
remove old box Ui

end for
end loop

Output: sequence at center of best box, maxi v̂(Ui)

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

SOOP details

Select dimension to trisect:
arg maxk (αk · size of box along dimension k)

– since early actions dominate performance
α ∈ (0, 1) is the only parameter of the algorithm

Expansions take a varying number of model calls

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Related work

Optimistic planning for deterministic systems (OPD):
discrete actions, DOO works

(Hren & Munos 2008)

HOLOP, HOOT: continuous actions, finite horizon
(Weinstein et al. 2012, Mansley et al. 2011)

Lipschitz planning (LP): continuous actions, f , ρ assumed
Lipschitz with known constants ⇒ DOO works

(Hren 2012)

Also, adaptive discretization in global methods
(Pazis & Lagoudakis, 2009)

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

1 Background: Optimistic optimization

2 SOOP: Planning with continuous actions

3 Experiments & conclusions

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Underactuated pendulum swingup

Requires continuous actions & long planning horizon
– SOOP dominates

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Swingup example

SOOP (left) versus OPD (right), n = 2500 model calls

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Robot arm (horizontal acrobot)

Discrete actions work well, so OPD cannot be outperformed
– SOOP holds its ground, still better than LP, HOLOP

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

Conclusions

SOOP algorithm:
Searches for infinite-horizon, continuous action sequences
No knowledge about system smoothness
Competitive in all tested problems

Next step: Near-optimality analysis

Thank you!

	Introduction
	Introduction

	Background: Optimistic optimization
	Background: Optimistic optimization

	SOOP: Planning with continuous actions
	SOOP: Planning with continuous actions

	Experiments & conclusions
	Experiments

