Introduction 000 Optimistic optimization

SOOP: Planning with continuous actions

Experiments & conclusions

Optimistic Planning for Continuous-Action Deterministic Systems

L. Buşoniu, A. Daniels, R. Munos, R. Babuška (lucian@busoniu.net)

JFPDA 2013, 1 July, Lille

Optimal control problem (deterministic MDP)

- System: dynamics $x_{k+1} = f(x_k, u_k)$
- Performance: reward function $r_{k+1} = \rho(x_k, u_k)$
- **Objective**: maximize discounted return $\sum_{k=0}^{\infty} \gamma^k r_{k+1}$
- Motivation: very general f and ρ

000	00	0000000	0000	
Applications				

Robotics, multi-agent systems, medicine, AI, economics etc.

Introduction	Optimistic optimization	SOOP: Planning with continuous actions	Experiments & conclusions
Online r	planning		

At each step k, solve local optimal control at state x_k :

- Infinite action sequences: $\boldsymbol{u}_{\infty} = (u_k, u_{k+1}, \dots) \in U^{\infty}$
- Optimization problem: $\sup_{\boldsymbol{u}_{\infty}} \boldsymbol{v}(\boldsymbol{u}_{\infty}) (= \sum_{i=0}^{\infty} \gamma^{i} r_{k+1+i})$
- 1. Explore sequences from x_k , to find a near-optimal one u
- 2. Apply first action of *u*

Focus: Optimistic planning, deal with continuous actions

Background: Optimistic optimization

2 SOOP: Planning with continuous actions

Introduction	Optimistic optimization ●○	SOOP: Planning with continuous actions	Experiments & conclusions

DOO: Deterministic optimistic optimization

- Maximize $v: U \to \mathbb{R}$, Lipschitz: $|v(u) v(u')| \le \ell(u, u')$
- Input: hierarchical partitioning of U
- Always expand **optimistic** set, with largest upper bound: $b(U_i) = v(u_i) + \delta(U_i)$, diam. $\delta(U_i) = \sup_{u,u' \in U_i} \ell(u, u')$
- Until *n* expansions exhausted

SOO: Simultaneous optimistic optimization

- What if ℓ / δ unknown? (i.e., smoothness of v unknown)
- Assume only: $\delta(U_j) \ge \delta(U_i)$ iff depth $d_j \le d_i$ (total order)
- Expand all potentially optimistic sets U_i , for which: $v(u_i) \ge v(u_j)$ for all j at smaller depths, $d_j \le d_i$

```
(Munos, 2011)
```


Experiments & conclusions

2 SOOP: Planning with continuous actions

Experiments & conclusions

Introdu	uction	
000		

SOOP: Planning with continuous actions

Experiments & conclusions

Assumptions

- Action space U = [0, 1]
 (can be extended to compact multidimensional U)
- Rewards *r* ∈ [0, 1]

Introduction	Optimistic optimization	SOOP: Planning with continuous actions	Experiments & conclusions
Partitio	nina		

 Partition U[∞] using iterative trisection (we no longer have a tree structure!)

- Each box U_i represented by only initializing trisected dimensions, $k = 0, ..., K_i 1$
- $\hat{v}(U_i) = \sum_{k=0}^{K_i-1} \gamma^k r_{k+1}$, rewards of center sequence

Introduction	Optimistic optimization	SOOP: Planning with continuous actions	Experiments & conclusions
Challeng	jes		

- Challenge 1: ℓ (diameters δ) unknown
 - \Rightarrow Use SOO expand all potentially optimistic boxes

• Challenge 2: Total order on diameters unavailable

Introduction	Optimistic optimization	SOOP: Planning with continuous actions	Experiments & conclusions
Partial o	rder		

Definition

 A box U_j is partially greater than U_i (U_j ≥ U_i) if it was trisected fewer (or as many) times along every dimension

Assumption

• If $U_i \succeq U_j$, then diameters $\delta(U_i) \ge \delta(U_j)$

Experiments & conclusions

Relaxed expansion criterion

Box U_i is potentially optimistic if $\hat{v}(U_i) \geq \hat{v}(U_j), \forall U_j \succeq U_i$

- Safe: if a box is potentially optimistic, it is expanded
- Conservative: a box may be expanded even when not potentially optimistic:

 $\widehat{v}(U_i) < \widehat{v}(U_j)$ for some $\delta(U_j) \ge \delta(U_i)$ but we cannot tell because $U_j \nsucceq U_i$

SOOP: Planning with continuous actions

Experiments & conclusions

SOO for Planning: SOOP

Input: state x₀, budget of model calls n create a single box $[0, 1]^{\infty}$ loop until budget exhausted select potentially optimistic boxes: $\mathcal{O} = \{ U_i \mid \forall j \text{ so that } U_i \succeq U_i, \widehat{v}(U_i) \ge \widehat{v}(U_i) \}$ for each box in $U_i \in \mathcal{O}$ do trisect dimension k, creating 3 new boxes remove old box U_i end for end loop **Output:** sequence at center of best box, $\max_i \hat{v}(U_i)$

Introdu	ction

SOOP details

- Select dimension to trisect:
 - arg max_k($\alpha^k \cdot$ size of box along dimension k)
 - since early actions dominate performance
- $\alpha \in (0, 1)$ is the only parameter of the algorithm
- Expansions take a varying number of model calls

ntroduction	Optimistic optimization	SOOP: Planning with continuous actions	Experiments & conclusions
Related	d work		

 Optimistic planning for deterministic systems (OPD): discrete actions, DOO works

(Hren & Munos 2008)

• HOLOP, HOOT: continuous actions, finite horizon

(Weinstein et al. 2012, Mansley et al. 2011)

 Lipschitz planning (LP): continuous actions, *f*, *ρ* assumed Lipschitz with known constants ⇒ DOO works

(Hren 2012)

• Also, adaptive discretization in global methods

(Pazis & Lagoudakis, 2009)

Introduction

2 SOOP: Planning with continuous actions

Introduction Optimistic optimization

SOOP: Planning with continuous actions

Experiments & conclusions •000

Underactuated pendulum swingup

Requires **continuous** actions & **long planning horizon** – SOOP dominates

Introduction Optimistic optimization SOOP: Planning with continuous actions

Experiments & conclusions

Swingup example

SOOP (left) versus **OPD** (right), n = 2500 model calls

 Introduction
 Optimistic optimization
 SOOP: Planning with continuous actions

 000
 00
 00000000
 000000000

Experiments & conclusions

Robot arm (horizontal acrobot)

Discrete actions work well, so OPD cannot be outperformed – SOOP holds its ground, still better than LP, HOLOP

Introduction 000	Optimistic optimization	SOOP: Planning with continuous actions	Experiments & conclusions	
Conclusions				

SOOP algorithm:

- Searches for infinite-horizon, continuous action sequences
- No knowledge about system smoothness
- Competitive in all tested problems

Next step: Near-optimality analysis

Thank you!

