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Optimal control problem (deterministic MDP)

System: dynamics xk+1 = f (xk , uk )

Performance: reward function rk+1 = ρ(xk , uk )

Objective: maximize discounted return
∑∞

k=0 γk rk+1

Motivation: very general f and ρ
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Applications

Robotics, multi-agent systems, medicine, AI, economics etc.
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Online planning

At each step k , solve local optimal control at state xk :
Infinite action sequences: u∞ = (uk , uk+1, . . . ) ∈ U∞

Optimization problem: supu∞ v(u∞) (=
∑∞

i=0 γ i rk+1+i)

1. Explore sequences from xk , to find a near-optimal one u
2. Apply first action of u

Focus: Optimistic planning, deal with continuous actions
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DOO: Deterministic optimistic optimization

Maximize v : U → R, Lipschitz: |v(u)− v(u′)| ≤ `(u, u′)
Input: hierarchical partitioning of U
Always expand optimistic set, with largest upper bound:
b(Ui) = v(ui) + δ(Ui), diam. δ(Ui) = supu,u′∈Ui

`(u, u′)
Until n expansions exhausted

(Munos, 2011)



Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions

SOO: Simultaneous optimistic optimization

What if ` / δ unknown? (i.e., smoothness of v unknown)
Assume only: δ(Uj) ≥ δ(Ui) iff depth dj ≤ di (total order)
Expand all potentially optimistic sets Ui , for which:

v(ui) ≥ v(uj) for all j at smaller depths, dj ≤ di

(Munos, 2011)
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Assumptions

Action space U = [0, 1]
(can be extended to compact multidimensional U)
Rewards r ∈ [0, 1]
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Partitioning

Partition U∞ using iterative trisection
(we no longer have a tree structure!)

Each box Ui represented by only initializing
trisected dimensions, k = 0, . . . , Ki − 1

v̂(Ui) =
∑Ki−1

k=0 γk rk+1, rewards of center sequence
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Challenges

Challenge 1: ` (diameters δ) unknown
⇒ Use SOO – expand all potentially optimistic boxes

Challenge 2: Total order on diameters unavailable
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Partial order

Definition
A box Uj is partially greater than Ui (Uj � Ui ) if it was
trisected fewer (or as many) times along every dimension

Assumption

If Ui � Uj , then diameters δ(Ui) ≥ δ(Uj)
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Relaxed expansion criterion

Box Ui is potentially optimistic if v̂(Ui) ≥ v̂(Uj),∀Uj � Ui

Safe: if a box is potentially optimistic, it is expanded
Conservative: a box may be expanded even when not
potentially optimistic:

v̂(Ui) < v̂(Uj) for some δ(Uj) ≥ δ(Ui)
but we cannot tell because Uj � Ui
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SOO for Planning: SOOP

Input: state x0, budget of model calls n
create a single box [0, 1]∞

loop until budget exhausted
select potentially optimistic boxes:
O = {Ui | ∀ j so that Uj � Ui , v̂(Ui) ≥ v̂(Uj)}

for each box in Ui ∈ O do
trisect dimension k , creating 3 new boxes
remove old box Ui

end for
end loop

Output: sequence at center of best box, maxi v̂(Ui)
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SOOP details

Select dimension to trisect:
arg maxk (αk · size of box along dimension k )

– since early actions dominate performance
α ∈ (0, 1) is the only parameter of the algorithm

Expansions take a varying number of model calls
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Related work

Optimistic planning for deterministic systems (OPD):
discrete actions, DOO works

(Hren & Munos 2008)

HOLOP, HOOT: continuous actions, finite horizon
(Weinstein et al. 2012, Mansley et al. 2011)

Lipschitz planning (LP): continuous actions, f , ρ assumed
Lipschitz with known constants ⇒ DOO works

(Hren 2012)

Also, adaptive discretization in global methods
(Pazis & Lagoudakis, 2009)
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Underactuated pendulum swingup

Requires continuous actions & long planning horizon
– SOOP dominates
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Swingup example

SOOP (left) versus OPD (right), n = 2500 model calls
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Robot arm (horizontal acrobot)

Discrete actions work well, so OPD cannot be outperformed
– SOOP holds its ground, still better than LP, HOLOP
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Conclusions

SOOP algorithm:
Searches for infinite-horizon, continuous action sequences
No knowledge about system smoothness
Competitive in all tested problems

Next step: Near-optimality analysis

Thank you!
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