Optimistic Planning for Continuous-Action
Deterministic Systems

L. Busoniu, A. Daniels, R. Munos, R. Babuska
(lucian@busoniu.net)

JFPDA 2013, 1 July, Lille

wo e

Introduction
@00

Optimal control problem (deterministic MDP)

Reward function p

action u

@ System: dynamics xy 1 = (X, Uk)
@ Performance: reward function re1 = p(Xk, Uk)
@ Objective: maximize discounted return >3 o 77 4

@ Motivation: very general f and p

wo e

Introduction
oeo

Applications

Robotics, multi-agent systems, medicine, Al, economics etc.

wo e

Introduction
ooe

Online planning

At each step k, solve local optimal control at state x:
@ Infinite action sequences: U, = (Uk, Uxy1,...) € U®
@ Optimization problem: sup,_ v(Uss) (= > 70V ki 14i)
1. Explore sequences from x, to find a near-optimal one u
2. Apply first action of u

Focus: Optimistic planning, deal with continuous actions

wo e

Optimistic optimization

0 Background: Optimistic optimization
9 SOOP: Planning with continuous actions

e Experiments & conclusions

wo e

Optimistic optimization
[Je]

DOO: Deterministic optimistic optimization

@ Maximize v : U — R, Lipschitz: |v(u) — v(U')| < ¢(u,U’)

@ Input: hierarchical partitioning of U

@ Always expand optimistic set, with largest upper bound:
b(U;) = v(u;) + (U;), diam. 6(U;) = supy ey, ¢(u, U')

@ Until n expansions exhausted

(Munos, 2011)

subset U,

Optimistic optimization
oce

SOOQO: Simultaneous optimistic optimization

@ Whatif /6 unknown? (i.e., smoothness of v unknown)

@ Assume only: §(U;) > 6(U;) iff depth d; < d} (total order)

@ Expand all potentially optimistic sets U;, for which:
v(u;) > v(uy) for all j at smaller depths, d; < d|

(Munos, 2011)

Av(u)

SOOP: Planning with continuous actions

9 SOOP: Planning with continuous actions

wo e

SOOP: Planning with continuous actions
90000000

Assumptions

@ Action space U = [0, 1]
(can be extended to compact multidimensional U)

@ Rewards r € [0,1]

wo e

SOOP: Planning with continuous actions
[e] lelelele]ele)

Partitioning

@ Partition U>° using iterative trisection
(we no longer have a tree structure!)

@ Each box U; represented by only initializing
trisected dimensions, k =0,...,K; — 1

o V(U) = Zf’;& ykrk+1, rewards of center sequence

wo e

SOOP: Planning with continuous actions
[e]e] lelele]ele)

Challenges

@ Challenge 1: ¢ (diameters ¢) unknown
= Use SOO - expand all potentially optimistic boxes

@ Challenge 2: Total order on diameters unavailable

wo e

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions
00080000 0000

Partial order
Definition

@ Abox U; is partially greater than U; (U; = U)) if it was
trisected fewer (or as many) times along every dimension

[]

O

V

} no relation -
I:I 7(not a total order!

Assumption
o If U; = U;, then diameters 6(U;) > 6(U;)

7 20

SOOP: Planning with continuous actions
[e]e]e]e] lelele)

Relaxed expansion criterion

Box U; is potentially optimistic if V(U;) > V(U;),VU; = U;)

@ Safe: if a box is potentially optimistic, it is expanded
@ Conservative: a box may be expanded even when not
potentially optimistic:
V(U;) < V(U;) for some 6(U;) > 6(U))
but we cannot tell because U; - U;

wo e

Introduction Optimistic optimization SOOP: Planning with continuous actions Experiments & conclusions
00000000 0000

SOO for Planning: SOOP

Input: state xp, budget of model calls n
create a single box [0, 1]°°
loop until budget exhausted
select potentially optimistic boxes:
O ={U;|Vjsothat U = U, v(U) > v(U)}
for each box in U; € O do
trisect dimension k, creating 3 new boxes
remove old box U;
end for
end loop
Output: sequence at center of best box, max; v(U;)

wo e

SOOP: Planning with continuous actions
00000080

SOOQP details

@ Select dimension to trisect:
argmaxy(aX - size of box along dimension k)
— since early actions dominate performance

@ a € (0,1) is the only parameter of the algorithm

@ Expansions take a varying number of model calls

wo e

SOOP: Planning with continuous actions
0000000e

Related work

@ Optimistic planning for deterministic systems (OPD):
discrete actions, DOO works
(Hren & Munos 2008)

@ HOLOP, HOQOT: continuous actions, finite horizon
(Weinstein et al. 2012, Mansley et al. 2011)

@ Lipschitz planning (LP): continuous actions, f, p assumed
Lipschitz with known constants = DOO works
(Hren 2012)

@ Also, adaptive discretization in global methods
(Pazis & Lagoudakis, 2009)

wo e

Experiments & conclusions

Q Experiments & conclusions

wo e

Experiments & conclusions
[Jelele)

Underactuated pendulum swingup

return

=
rmmme T
a

: 125 —a— SO0P, return
i - —&— COPD, return
12 === P return

—— HOLOP, mean return
115 - -
0 5000 10000 15000

n

Requires continuous actions & long planning horizon
— SOOP dominates

wo e

Swingup example

SOOP (left) versus OPD (right), n = 2500 model calls

Online planning, trial 1, time=1.5s

Online planning, trial 1, time=1.5s
e ™ et) N
A L A
\ \ / \ /
/ \ / \
o~ ~ 0\ /o~)
{ \ [\
[\ [\
‘ | ‘ |
/ [
\ /
\ / \
- ~ \
\ \ /
/
/ N\ / \
\ AN N
N pd U e
- . P

wo e

Experiments & conclusions
[e]e] o)

Robot arm (horizontal acrobot)

s —&— SOOP, return
- —&— OPD, retum
=d=-|P, rotum

—— HOLOP, mean return

1000 2000 3000 4000 5000
n

Discrete actions work well, so OPD cannot be outperformed
— SOOP holds its ground, still better than LP, HOLOP

wo e

Experiments & conclusions
[e]e]e])

Conclusions

SOOP algorithm:
@ Searches for infinite-horizon, continuous action sequences
@ No knowledge about system smoothness
@ Competitive in all tested problems

Next step: Near-optimality analysis

Thank you!

wo e

	Introduction
	Introduction

	Background: Optimistic optimization
	Background: Optimistic optimization

	SOOP: Planning with continuous actions
	SOOP: Planning with continuous actions

	Experiments & conclusions
	Experiments

