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Motivation and focus

Learning can find solutions that:
@ are hard to determine a priori
@ improve over time
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Motivation and focus

Learning can find solutions that:
@ are hard to determine a priori
@ improve over time

Reinforcement learning:
@ uses reward signal as performance feedback
@ can work without prior knowledge

Exact RL solutions only in discrete cases:
@ this thesis: continuous spaces
@ using approximate solutions
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Reinforcement learning
000000

RL problem

@ Optimal control problem
@ Example: robot should move to goal in shortest time
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Reinforcement learning
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Elements of RL

X = [X, Y], state

@ Robot in given state (position X, Y)
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X = [X, Y], state

@ Robot in given state (position X, Y)

@ Robot takes action (e.g., move forward)
and reaches new state
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@ Robot in given state (position X, Y)

@ Robot takes action (e.g., move forward)
and reaches new state

@ Receives reward = quality of state transition
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@ Robot in given state (position X, Y)

@ Robot takes action (e.g., move forward)
and reaches new state

@ Receives reward = quality of state transition
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Reinforcement learning
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Policy

@ Control policy: what action to take in every state
u = h(x)
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Reinforcement learning
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Policy

@ Control policy: what action to take in every state
u = h(x)

@ E.g., in state [9, 1], move forward
in state [2, 10], move right Fonain I‘EB



Reinforcement learning
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Performance criterion
r, reward//cg/
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@ Reward = one-step performance
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Reinforcement learning
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Performance criterion
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@ Reward = one-step performance
@ Return = long-term performance, along trajectory

R(x,u) =ry +~vn +~2r3 +3n + ...

@ 0 < v < 1 discount factor Fover P



Reinforcement learning
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Optimality

@ Goal: obtain maximal return:
R*(x,u) = r; + discounted rewards
along best trajectory starting in xq
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Reinforcement learning
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Optimality

@ Goal: obtain maximal return:
R*(x,u) = r; + discounted rewards
along best trajectory starting in xq

@ Optimal policy h* can be computed from R*
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Reinforcement learning
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Algorithms

@ Many algorithms available to find optimal R*, h*
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Algorithms
@ Many algorithms available to find optimal R*, h*

@ Some require prior knowledge about problem, or data:

data
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Reinforcement learning
00000e

Algorithms

@ Many algorithms available to find optimal R*, h*

@ Some require prior knowledge about problem, or data:

@ Others work with no prior knowledge,
and collect data by online interaction:

a states,rewards)
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Challenge & contribution
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Challenge

@ Classical algorithms have to store R(x, u)
for every combination of state x and action u
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Challenge & contribution
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Challenge

@ Classical algorithms have to store R(x, u)
for every combination of state x and action u

R(% fwd)

R(x,left)

S

@ Only possible for when number of combinations is small
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Challenge & contribution
o0

Challenge

@ Classical algorithms have to store R(x, u)
for every combination of state x and action u

K fwd
R(x. IP._!'[J & )

@ Only possible for when number of combinations is small

@ However, x and u often continuous
= infinitely many combinations!

s ﬁ[m
TUDelft



Challenge & contribution
o0

Challenge

@ Classical algorithms have to store R(x, u)
for every combination of state x and action u

K fwd
R(xleft) & )

@ Only possible for when number of combinations is small

@ However, x and u often continuous
= infinitely many combinations!

@ E.g., for robot, x = [X, Y] continuous
FuDelft I‘EB



Challenge & contribution
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Contribution

@ Algorithms for reinforcement learning
in problems with continuous states and actions

@ Using approximate representations of returns
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Example: RL for inverted pendulum

@ Goal: point up and stay there
@ Difficulty: insufficient power, need to swing back & forth
@ Reward: the closer to vertical, the larger
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Examples
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Example: RL for robot goalkeeper

@ Catch ball using only video camera image
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Conclusions
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Summary

@ Reinforcement learning: very general framework

@ Can learn from interaction, without prior knowledge
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Conclusions
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Summary

@ Reinforcement learning: very general framework

@ Can learn from interaction, without prior knowledge

However:

@ Classical RL algorithms do not work
when states, actions continuous

@ Need to use approximate representations (this thesis)
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Conclusions
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Application areas

@ Control engineering: optimal & learning control
(e.g., robot control)

© Computer science: intelligent agents
© Economics

Q etc.
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Thank you

Thank you!
Questions?
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