Reinforcement learning	Challenge & contribution	Examples	Conclusions
			000

Reinforcement Learning in Continuous State and Action Spaces

Lucian Buşoniu Advisers: Robert Babuška, Bart De Schutter

Delft University of Technology Center for Systems and Control Project: Interactive Collaborative Information Systems

13 January 2009

Reinforcement learning	Challenge & contribution	Examples oo	Conclusions
Motivation and fo	cus		

Learning can find solutions that:

- are hard to determine a priori
- improve over time

Reinforcement learning:

- uses reward signal as performance feedback
- can work without prior knowledge

Exact RL solutions only in discrete cases:

- this thesis: continuous spaces
- using approximate solutions

Reinforcement learning	Challenge & contribution	Examples oo	Conclusions
Motivation and fo	cus		

Learning can find solutions that:

- are hard to determine a priori
- improve over time

Reinforcement learning:

- uses reward signal as performance feedback
- can work without prior knowledge

Exact RL solutions only in discrete cases:

- this thesis: continuous spaces
- using approximate solutions

Reinforcement learning	Challenge & contribution	Examples oo	Conclusions
Motivation and fo	cus		

Learning can find solutions that:

- are hard to determine a priori
- improve over time

Reinforcement learning:

- uses reward signal as performance feedback
- can work without prior knowledge

Exact RL solutions only in discrete cases:

- this thesis: continuous spaces
- using approximate solutions

Reinforcement learning	Challenge & contribution	Examples oo	Conclusions
Outline			

Reinforcement learning ●00000	Challenge & contribution	Examples oo	Conclusions
RL problem			

- Optimal control problem
- Example: robot should move to goal in shortest time

Reinforcement learning o●oooo	Challenge & contribution	Examples oo	Conclusions
Elements of BI			

- Robot in given state (position X, Y)
- Robot takes action (e.g., move forward) and reaches new state
- Receives reward = quality of state transition

Reinforcement learning	Challenge & contribution	Examples	Conclusions
Elements of BI			

- Robot in given state (position X, Y)
- Robot takes action (e.g., move forward) and reaches new state

Receives reward = quality of state transition

Reinforcement learning o●oooo	Challenge & contribution	Examples oo	Conclusions
Elements of RL			

- Robot in given state (position X, Y)
- Robot takes action (e.g., move forward) and reaches new state
- Receives reward = quality of state transition

Reinforcement learning o●oooo	Challenge & contribution	Examples oo	Conclusions
Elements of BI			

・ロト ・ 日 ・ ・ 回 ・ ・

- Robot in given state (position X, Y)
- Robot takes action (e.g., move forward) and reaches new state
- Receives reward = quality of state transition

Reinforcement learning	Challenge & contribution	Examples oo	Conclusions
Policy			

Control policy: what action to take in every state

u = h(x)

• E.g., in state [9, 1], move forward in state [2, 10], move right

Reinforcement learning	Challenge & contribution	Examples oo	Conclusions
Policy			

Control policy: what action to take in every state

u = h(x)

・ロト ・ 日 ・ ・ 回 ・ ・

 E.g., in state [9, 1], move forward in state [2, 10], move right

Reinforcement learning	Challenge & contribution	Examples oo	Conclusions
Performance crite	erion		

Reward = one-step performance

• Return = long-term performance, along trajectory

$$R(x, u) = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \dots$$

• $0 < \gamma < 1$ discount factor

Reinforcement learning 000●00	Challenge & contribution	Examples 00	Conclusions
Dorformonoo ori	arian		

Performance criterion

- Reward = one-step performance
- Return = long-term performance, along trajectory

$$R(x, u) = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \dots$$

• $0 < \gamma < 1$ discount factor

Reinforcement learning 0000●0	Challenge & contribution	Examples oo	Conclusions
Ontimality			

 Goal: obtain maximal return:
 R*(x, u) = r₁ + discounted rewards along best trajectory starting in x₁

Optimal policy h^{*} can be computed from R^{*}

Reinforcement learning 0000●0	Challenge & contribution	Examples oo	Conclusions
Optimality			

• • • • • • • • • • • • •

- Goal: obtain maximal return: $R^*(x, u) = r_1$ + discounted rewards along best trajectory starting in x_1
- Optimal policy *h*^{*} can be computed from *R*^{*}

Reinforcement learning	Challenge & contribution	Examples oo	Conclusions
Algorithms			

- Many algorithms available to find optimal *R**, *h**
- Some require prior knowledge about problem, or data:

• Others work with no prior knowledge, and collect data by online interaction:

Reinforcement learning	Challenge & contribution	Examples 00	Conclusions
Algorithms			

- Many algorithms available to find optimal R*, h*
- Some require prior knowledge about problem, or data:

• Others work with no prior knowledge, and collect data by online interaction:

Reinforcement learning ○○○○○●	Challenge & contribution	Examples oo	Conclusions
Algorithms			

- Many algorithms available to find optimal R*, h*
- Some require prior knowledge about problem, or data:

• Others work with no prior knowledge, and collect data by online interaction:

Reinforcement learning	Challenge & contribution	Examples	Conclusions
			000

Reinforcement learning	Challenge & contribution ●○	Examples oo	Conclusions
Challenge			

・ロト ・ 日 ・ ・ 回 ・ ・

- Only possible for when number of combinations is small
- However, x and u often continuous \Rightarrow infinitely many combinations!
- E.g., for robot, x = [X, Y] continuous

Reinforcement learning	Challenge & contribution ●○	Examples oo	Conclusions
Challenge			

- Only possible for when number of combinations is small
- However, x and u often continuous \Rightarrow infinitely many combinations!
- E.g., for robot, x = [X, Y] continuous

Reinforcement learning	Challenge & contribution ●○	Examples oo	Conclusions
Challenge			

- Only possible for when number of combinations is small
- However, x and u often continuous \Rightarrow infinitely many combinations!
- E.g., for robot, x = [X, Y] continuous

Reinforcement learning	Challenge & contribution ●○	Examples oo	Conclusions
Challenge			

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

- Only possible for when number of combinations is small
- However, x and u often continuous \Rightarrow infinitely many combinations!
- E.g., for robot, x = [X, Y] continuous

Reinforcement learning	Challenge & contribution ○●	Examples oo	Conclusions
Contribution			

- Algorithms for reinforcement learning in problems with continuous states and actions
- Using approximate representations of returns

Reinforcement learning	Challenge & contribution	Examples ●o	Conclusions
Example: RL for	inverted pendul	um	

- Goal: point up and stay there
- Difficulty: insufficient power, need to swing back & forth
- Reward: the closer to vertical, the larger

Reinforcement learning	Challenge & contribution	Examples ○●	Conclusions
Example: RL for	robot goalkeeper		

• Catch ball using only video camera image

Reinforcement learning	Challenge & contribution	Examples	Conclusions
			000

2 Challenge & contribution

Reinforcement learning	Challenge & contribution	Examples oo	Conclusions •oo
Summary			

- Reinforcement learning: very general framework
- Can learn from interaction, without prior knowledge

However:

- Classical RL algorithms do not work when states, actions continuous
- Need to use approximate representations (this thesis)

Reinforcement learning	Challenge & contribution	Examples oo	Conclusions •oo
Summary			

- Reinforcement learning: very general framework
- Can learn from interaction, without prior knowledge

However:

- Classical RL algorithms do not work when states, actions continuous
- Need to use approximate representations (this thesis)

Reinforcement learning	Challenge & contribution	Examples oo	Conclusions
Application areas	;		

- Control engineering: optimal & learning control (e.g., robot control)
- Omputer science: intelligent agents
- Economics
- etc.

Reinforcement learning	Challenge & contribution	Examples oo	Conclusions ○○●
Thank you			

Thank you! Questions?

