RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion

Model-Based Reinforcement Learning with Fuzzy Approximation

Lucian Buşoniu¹, Damien Ernst², Bart De Schutter¹, Robert Babuška¹ i.l.busoniu@tudelft.nl

1. Delft Center for Systems and Control, TUDelft 2. FNRS, Liége, Belgium

> DCSC Colloquium 9 April 2008

0000000	0000	00	0000000000	00
Outline				

Reinforcement learning (problem, solution, an algorithm)

- 2 Fuzzy Q-iteration
- 3 Convergence & consistency
- Example: inverted pendulum swing-up

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion 00
The Prob	lem			

- Discrete-time dynamics $x_{k+1} = f(x_k, u_k), x \in X, u \in U$
- Reward function $r_{k+1} = \rho(x_k, u_k) \in \mathbb{R}$ evaluates each transition

Goal

 Find control policy u = h(x) to maximize discounted return: R^h(x₀) = ∑_{k=0}[∞] γ^kρ(x_k, h(x_k)) from any x₀; γ ∈ [0, 1) discount factor

Infinite-horizon (discounted) optimal control problem

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion 00
The Prob	lem			

- Discrete-time dynamics $x_{k+1} = f(x_k, u_k), x \in X, u \in U$
- Reward function $r_{k+1} = \rho(x_k, u_k) \in \mathbb{R}$ evaluates each transition

Goal

- Find control policy u = h(x) to maximize discounted return: R^h(x₀) = ∑_{k=0}[∞] γ^kρ(x_k, h(x_k))
 from any x₀; γ ∈ [0, 1) discount factor
- Infinite-horizon (discounted) optimal control problem

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion		
Solution using Q-functions						

- Define Q-function of h: $Q^{h}(x, u) = \rho(x, u) + \gamma R^{h}(f(x, u))$
- Optimal Q-function: $Q^* = \max_h Q^h$

 \Rightarrow optimal policy $h^*(x) = \arg \max_u Q^*(x, u)$

• *Q*^{*} satisfies Bellman equation:

 $Q^{*}(x, u) = \rho(x, u) + \gamma \max_{u'} Q^{*}(f(x, u), u')$

 \Rightarrow iterative algorithms to compute Q^*

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion		
Solution using Q-functions						

- Define Q-function of h: $Q^{h}(x, u) = \rho(x, u) + \gamma R^{h}(f(x, u))$
- Optimal Q-function: $Q^* = \max_h Q^h$

 \Rightarrow optimal policy $h^*(x) = \arg \max_u Q^*(x, u)$

• *Q*^{*} satisfies Bellman equation:

$$Q^*(x, u) = \rho(x, u) + \gamma \max_{u'} Q^*(f(x, u), u')$$

 \Rightarrow iterative algorithms to compute Q^*

Example:	discrete-t	ime integrator		
RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion

•
$$f(x, u) = x + K \cdot u$$

 $x \in [-5, 5], \quad u \in [-2, 2], \quad K = 2$

• Goal: quadratic stabilization. Reward function: $\rho(x, u) = -0.1x^2 - 0.05u^2$

Evampla	discrata_t	ime integrator		
RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion

•
$$f(x, u) = x + K \cdot u$$

 $x \in [-5, 5], \quad u \in [-2, 2], \quad K = 2$

• Goal: quadratic stabilization. Reward function: $\rho(x, u) = -0.1x^2 - 0.05u^2$

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion
Algorithm	າຣ			

Model-based:

- f, ρ given
- E.g., Q-iteration

Model-free:

- f, ρ unknown
- Estimate Q* from samples or trajectories (x_k, u_k, x_{k+1}, r_{k+1})

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion
Algorithm	าร			

Model-based:

- f, ρ given
- E.g., Q-iteration

Model-free:

- *f*, *ρ* unknown
- Estimate Q* from samples or trajectories (x_k, u_k, x_{k+1}, r_{k+1})

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion
Q-iteratio	n			

repeat at each iteration
$$\ell$$

for all x, u do
 $Q_{\ell+1}(x, u) = \rho(x, u) + \gamma \max_{u'} Q_{\ell}(f(x, u), u')$
end for
until convergence

- Compare Bellman equation: $Q^*(x, u) = \rho(x, u) + \gamma \max_{u'} Q^*(f(x, u), u')$
- Write each iteration as $Q_{\ell+1} = TQ_{\ell}$
- *T* contraction: $\|T(Q) T(Q')\|_{\infty} \leq \gamma \|Q Q'\|_{\infty}$

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion
Q-iteratio	n			

repeat at each iteration
$$\ell$$
for all x, u do \triangleright $Q_{\ell+1}(x, u) = \rho(x, u) + \gamma \max_{u'} Q_{\ell}(f(x, u), u')$ \triangleright end for \triangleright until convergence

- Compare Bellman equation: $Q^*(x, u) = \rho(x, u) + \gamma \max_{u'} Q^*(f(x, u), u')$
- Write each iteration as $Q_{\ell+1} = TQ_{\ell}$
- *T* contraction: $\|T(Q) T(Q')\|_{\infty} \le \gamma \|Q Q'\|_{\infty}$

RL Introduction ○○○○○●○	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion
Why Q-ite	eration?			

- Just one parameter: γ
- Monotonous convergence to Q^{*}
- Deterministic ⇒ predictable; easy to get insight

	wimetion?			
RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion

- Q-iteration requires tabular storage of Q-functions
- If X and / or U continuous tabular storage impossible (if X, U finite but large – tabular storage impractical)
- \Rightarrow need to approximate the Q-function

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion

Reinforcement learning (problem, solution, an algorithm)

Puzzy Q-iteration

- 3 Convergence & consistency
- Example: inverted pendulum swing-up
- 5 Conclusion & future work

RL Introduction	Fuzzy Q-iteration ●ooo	Convergence & consistency	Pendulum Swing-up	Conclusion	
Fuzzy approximation					

Given:

- Membership functions $\varphi_1, \ldots, \varphi_N : X \to [0, 1]$
- Discrete actions $u_1, \ldots, u_M \in U$
- Parameter matrix θ of size $N \times M$

Approximate Q-function:

 $\widehat{Q}^{\theta}(x, u) = \sum_{i=1}^{N} \varphi_i(x) \theta_{i,j} = [\varphi_1(x) \dots \varphi_N(x)] \left[\dots \begin{bmatrix} \theta_{1,j} \\ \vdots \\ \theta_{N,j} \end{bmatrix} \dots \right]$ $j = \underset{j'}{\operatorname{arg\,min}} \| u - u_{j'} \| \quad \text{(nearest neighbor)}$

RL Introduction	Fuzzy Q-iteration ●000	Convergence & consistency	Pendulum Swing-up	Conclusion	
Fuzzy approximation					

Given:

- Membership functions $\varphi_1, \ldots, \varphi_N : X \to [0, 1]$
- Discrete actions $u_1, \ldots, u_M \in U$
- Parameter matrix θ of size $N \times M$

Approximate Q-function:

$$\widehat{Q}^{\theta}(x, u) = \sum_{i=1}^{N} \varphi_i(x) \theta_{i,j} = [\varphi_1(x) \dots \varphi_N(x)] \left[\dots \begin{bmatrix} \theta_{1,j} \\ \vdots \\ \theta_{N,j} \end{bmatrix} \dots \right]$$
$$j = \underset{j'}{\operatorname{arg\,min}} \| u - u_{j'} \| \quad \text{(nearest neighbor)}$$

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion	
State approximation					

- Membership functions (MFs) $\varphi_1, \ldots, \varphi_N$
- Normalized MFs: $\sum_i \varphi_i(x) = 1 \quad \forall x$
- Requirements:
 - $\varphi_i(x_i) = 1$ for a unique core x_i
 - all other MFs are 0 at x_i
- Example: triangular MFs, scalar $x \in [-1, 1]$

RL Introduction	Fuzzy Q-iteration ○●○○	Convergence & consistency	Pendulum Swing-up	Conclusion	
State approximation					

- Membership functions (MFs) $\varphi_1, \ldots, \varphi_N$
- Normalized MFs: $\sum_i \varphi_i(x) = 1 \quad \forall x$
- Requirements:
 - $\varphi_i(x_i) = 1$ for a unique core x_i
 - all other MFs are 0 at x_i
- Example: triangular MFs, scalar $x \in [-1, 1]$

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion
Fuzzy Q-	iteration			

repeat at each iteration ℓ **for all** cores x_i , discrete actions u_j **do** $\theta_{\ell+1,i,j} = \rho(x_i, u_j) + \gamma \max_{j'} \widehat{Q}^{\theta_\ell}(f(x_i, u_j), u_{j'})$ **end for until** convergence

Compare: Exact Q-iteration repeat at each iteration ℓ for all x, u do $Q_{\ell+1}(x, u) = \rho(x, u) + \gamma \max_{u'} Q_{\ell}(f(x, u), u')$ end for until convergence

TUDelft

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion
Fuzzy Q-	iteration			

repeat at each iteration ℓ **for all** cores x_i , discrete actions u_j **do** $\theta_{\ell+1,i,j} = \rho(x_i, u_j) + \gamma \max_{j'} \widehat{Q}^{\theta_\ell}(f(x_i, u_j), u_{j'}) \qquad \triangleright T \widehat{Q}$ **end for until** convergence

Compare: Exact Q-iteration repeat at each iteration ℓ for all x, u do $Q_{\ell+1}(x, u) = \rho(x, u) + \gamma \max_{u'} Q_{\ell}(f(x, u), u') > T$ end for until convergence

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

RL Introduction	Fuzzy Q-iteration 000●	Convergence & consistency	Pendulum Swing-up	Conclusion 00		
Fuzzy Q-iteration: policy						

repeat at each iteration ℓ **for all** cores x_i , discrete actions u_j **do** $\theta_{\ell+1,i,j} = \rho(x_i, u_j) + \gamma \max_{j'} \widehat{Q}^{\theta_\ell}(f(x_i, u_j), u_{j'})$ **end for until** convergence

 $\Rightarrow \widehat{\theta}^*,$ and policy:

$$\widehat{h}^*(x) = u_j, j = rg\max_{j'} \widehat{Q}^{\widehat{\theta}^*}(x, u_{j'})$$

(Compare optimal policy: $h^*(x) = \arg \max_u Q^*(x, u)$)

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion

Reinforcement learning (problem, solution, an algorithm)

2 Fuzzy Q-iteration

- 3 Convergence & consistency
- 4 Example: inverted pendulum swing-up
- 5 Conclusion & future work

RL Introduction	Fuzzy Q-iteration	Convergence & consistency ●○	Pendulum Swing-up	Conclusion 00	
Convergence					

- \widehat{Q} non-expansion: $\|\widehat{Q}^{\theta} \widehat{Q}^{\theta'}\|_{\infty} \le \|\theta \theta'\|_{\infty}$
- *T* contraction: $\|T(Q) T(Q')\|_{\infty} \leq \gamma \|Q Q'\|_{\infty}$

 \Rightarrow fuzzy Q-iteration converges monotonically to θ^*

RL Introduction	Fuzzy Q-iteration	Convergence & consistency ●○	Pendulum Swing-up	Conclusion	
Convergence					

- \widehat{Q} non-expansion: $\|\widehat{Q}^{\theta} \widehat{Q}^{\theta'}\|_{\infty} \le \|\theta \theta'\|_{\infty}$
- *T* contraction: $\|T(Q) T(Q')\|_{\infty} \le \gamma \|Q Q'\|_{\infty}$

 \Rightarrow fuzzy Q-iteration converges monotonically to θ^*

RL Introduction	Fuzzy Q-iteration	Convergence & consistency ○●	Pendulum Swing-up	Conclusion
Consiste	ency			

• Consistency: $\widehat{Q}^{ heta^*}
ightarrow Q^*$ as accuracy increases

• Accuracy:
$$\begin{cases} \delta_x = \max_{x \in X} \min_i \|x - x_i\|_2\\ \delta_u = \max_{u \in U} \min_j \|u - u_j\|_2 \end{cases}$$

• Assuming f, ρ Lipschitz:

 $\begin{aligned} |f(x, u) - f(\bar{x}, \bar{u})||_2 &\leq L_f(||x - \bar{x}||_2 + ||u - \bar{u}||_2) \\ |\rho(x, u) - \rho(\bar{x}, \bar{u})| &\leq L_\rho(||x - \bar{x}||_2 + ||u - \bar{u}||_2) \end{aligned}$

(& certain requirements on the MFs) $\Rightarrow \lim_{\delta_x \to 0, \delta_v \to 0} \widehat{Q}^{\theta^*} = Q^* - \text{consistency}$

RL Introduction	Fuzzy Q-iteration	Convergence & consistency ○●	Pendulum Swing-up	Conclusion
Consiste	ency			

• Consistency: $\widehat{Q}^{ heta^*}
ightarrow Q^*$ as accuracy increases

• Accuracy:
$$\begin{cases} \delta_x = \max_{x \in X} \min_i \|x - x_i\|_2\\ \delta_u = \max_{u \in U} \min_j \|u - u_j\|_2 \end{cases}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 = の Q @

• Assuming f, ρ Lipschitz:

$$\begin{split} \|f(x,u) - f(\bar{x},\bar{u})\|_2 &\leq L_f(\|x-\bar{x}\|_2 + \|u-\bar{u}\|_2) \\ |\rho(x,u) - \rho(\bar{x},\bar{u})| &\leq L_\rho(\|x-\bar{x}\|_2 + \|u-\bar{u}\|_2) \end{split}$$

(& certain requirements on the MFs) $\Rightarrow \lim_{\delta_x \to 0, \delta_u \to 0} \widehat{Q}^{\theta^*} = Q^* - \text{consistency}$

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion

Reinforcement learning (problem, solution, an algorithm)

- 2 Fuzzy Q-iteration
- 3 Convergence & consistency
- 4 Example: inverted pendulum swing-up
- 5 Conclusion & future work

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up ●ooooooooo	Conclusion
The swin	a-up proble	me		

 $J\ddot{lpha} = mgl\sin(lpha) - b\dot{lpha} - rac{K^2}{R}\dot{lpha} + K_m u$

- $\mathbf{X} = [\alpha, \dot{\alpha}]^{\mathrm{T}}$
 - $\alpha \in [-\pi,\pi]$ angle

 $\dot{\alpha} \in [-15\pi, 15\pi]$ velocity

- $u \in [-3, 3]$ control voltage
- *T*_s = 0.005
- Goal: stabilize in unstable equilibrium (pointing up)
- Difficulty: insufficient actuation, need to swing back & forth

TUDelft

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回■ のへで

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up ●ooooooooo	Conclusion
The swin	a-up proble	em		

$$J\ddot{\alpha} = mgl\sin(\alpha) - b\dot{\alpha} - rac{\kappa^2}{R}\dot{\alpha} + K_m u$$

•
$$\boldsymbol{x} = [\alpha, \dot{\alpha}]^{\mathrm{T}}$$

$$\alpha \in [-\pi,\pi]$$
 angle

$$\dot{\alpha} \in [-15\pi, 15\pi]$$
 velocity

•
$$u \in [-3, 3]$$
 control voltage

•
$$T_{\rm s} = 0.005$$

- Goal: stabilize in unstable equilibrium (pointing up)
- Difficulty: insufficient actuation, need to swing back & forth

TUDelft

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のへで

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up ●ooooooooo	Conclusion
The swin	a-up proble	em		

$$J\ddot{lpha} = mgl\sin(lpha) - b\dot{lpha} - rac{K^2}{R}\dot{lpha} + K_m u$$

•
$$\boldsymbol{x} = [\alpha, \dot{\alpha}]^{\mathrm{T}}$$

$$\alpha \in [-\pi,\pi]$$
 angle

$$\dot{\alpha} \in [-15\pi, 15\pi]$$
 velocity

•
$$u \in [-3, 3]$$
 control voltage

•
$$T_{\rm s} = 0.005$$

- Goal: stabilize in unstable equilibrium (pointing up)
- Difficulty: insufficient actuation, need to swing back & forth

TUDelft

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回□ のへで

Davisaria							
RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up o●oooooooo	Conclusion			

Reward function

• Reward function:
$$\rho(x, u) = -x^{T} \begin{bmatrix} 5 & 0 \\ 0 & 0.1 \end{bmatrix} x - u^{T} 1 u$$

• Discount factor: $\gamma = 0.98$

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up oo●oooooooo	Conclusion
Near-opti	mal solutio	n		

• Left: Q-function for u = 0; right: policy

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion oo	
Approximator setup					

- N' equidistant triangular MFs on each axis ($\Rightarrow N = N'^2$)
- 2D MFs: products of 1D MFs. Example: N' = 3

TIDelft

▲□▶ ▲□▶ ▲目▶ ▲目★ のへの

• M equidistant discrete actions

0000000	0000	00	000000000	00			
Example: Convergence							

- *N*′ = 41, *M* = 15
- Criterion: $\|\theta_{\ell+1} \theta_{\ell}\|_{\infty} \le 10^{-2}$
- Monotonic convergence

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up ○○○○○●○○○○○	Conclusion
Example:	Solution			

- *N*′ = 41, *M* = 15
- Left: Q-function for u = 0; right: policy
- Close to optimal

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up ○○○○○●○○○○	Conclusion	
Consistency & discontinuous rewards					

- Consistency requires Lipschitz rewards
- Study effect of discontinuous rewards
- Introduce discontinuity without altering the problem

 $\rho'(\mathbf{x}, \mathbf{u}) = \rho(\mathbf{x}, \mathbf{u}) + \gamma \psi(f(\mathbf{x}, \mathbf{u})) - \psi(\mathbf{x})$

- ho' preserves quality of policies, $Q^h_{
 ho'}-Q^*_{
 ho'}=Q^h_
 ho-Q^*_
 ho$
- ψ discontinuous, positive around origin:

$$\psi(x) = \begin{cases} 30 & \text{if } |x_1| \le \pi/4 \text{ and } |x_2| \le 2\pi\\ 0 & \text{otherwise} \end{cases}$$

- Consistency requires Lipschitz rewards
- Study effect of discontinuous rewards
- Introduce discontinuity without altering the problem

$$\rho'(\mathbf{x}, \mathbf{u}) = \rho(\mathbf{x}, \mathbf{u}) + \gamma \psi(f(\mathbf{x}, \mathbf{u})) - \psi(\mathbf{x})$$

- ho' preserves quality of policies, $Q^h_{
 ho'} Q^*_{
 ho'} = Q^h_
 ho Q^*_
 ho$
- ψ discontinuous, positive around origin:

$$\psi(x) = \begin{cases} 30 & \text{if } |x_1| \le \pi/4 \text{ and } |x_2| \le 2\pi\\ 0 & \text{otherwise} \end{cases}$$

- Consistency requires Lipschitz rewards
- Study effect of discontinuous rewards
- Introduce discontinuity without altering the problem

$$\rho'(\mathbf{x}, \mathbf{u}) = \rho(\mathbf{x}, \mathbf{u}) + \gamma \psi(f(\mathbf{x}, \mathbf{u})) - \psi(\mathbf{x})$$

- ho' preserves quality of policies, $Q^h_{
 ho'} Q^*_{
 ho'} = Q^h_
 ho Q^*_
 ho$
- ψ discontinuous, positive around origin:

$$\psi(x) = egin{cases} 30 & ext{if } |x_1| \leq \pi/4 ext{ and } |x_2| \leq 2\pi \\ 0 & ext{otherwise} \end{cases}$$

ゲロDelft ・ロト ・1日 ・ 1 王 ・ 1 王 ・ シュマ

0000000	0000	00	00000000000	00		
Discontinuous reward						

• Left, for comparison: original ρ ; right: discontinuous ρ'

ゲーム おうべい ふうべい (100 million 100 million

000000	0000	00	00000000000	00
Consiste	ency study			

- $N' \in \{3, 4, 5, \dots, 41\}$ equidistant MFs
- *M* ∈ {3,5,...,15} equidistant actions (odd to always include *u* = 0)
- Fuzzy Q-iteration with continuous ρ and discontinuous ρ'
- Always evaluate with ρ , average return from initial states: $X_0 = \{-\pi, -5\pi/6, -4\pi/6, \dots, \pi\} \times \{-16\pi, -14\pi, \dots, 16\pi\}$

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up ○○○○○○○●○○	Conclusion 00		
Consiste	Consistency study					

- $N' \in \{3, 4, 5, \dots, 41\}$ equidistant MFs
- *M* ∈ {3,5,...,15} equidistant actions (odd to always include *u* = 0)
- Fuzzy Q-iteration with continuous ρ and discontinuous ρ'
- Always evaluate with ρ , average return from initial states: $X_0 = \{-\pi, -5\pi/6, -4\pi/6, \dots, \pi\} \times \{-16\pi, -14\pi, \dots, 16\pi\}$

TUDalft

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up ○○○○○○○○●○	Conclusion	
Consistency results (simulation)					

- Left: continuous ρ ; right: discontinuous ρ'
- Performance variation decreases for ρ , not for ρ'
- Performance not monotonous as N, M increase
- M not very important

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up ○○○○○○○○●○	Conclusion	
Consistency results (simulation)					

- Left: continuous ρ ; right: discontinuous ρ'
- Performance variation decreases for ρ , not for ρ'
- Performance not monotonous as N, M increase
- M not very important

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up ○○○○○○○○●○	Conclusion
Consister	ncy results			

- Left: continuous ρ ; right: discontinuous ρ'
- Performance variation decreases for ρ , not for ρ'
- Performance not monotonous as N, M increase
- M not very important

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up ○○○○○○○○●	Conclusion
Demo				

0000000	0000	00	0000000000			
Conclusion and future work						

- Fuzzy Q-iteration: fuzzy approx in X; discretization of U
- Algorithm is convergent & consistent
- Good performance in simulation & with real system
- Continuous reward functions important in practice

Ongoing & future work

- Automated discovery of MFs
- Sample-based and online techniques

0000000	0000	•••	0000000000	•0		
Conclusion and future work						

• Fuzzy Q-iteration: fuzzy approx in X; discretization of U

・ロト・(理ト・(ヨト・(ヨト・(ロト))

- Algorithm is convergent & consistent
- Good performance in simulation & with real system
- Continuous reward functions important in practice

Ongoing & future work

- Automated discovery of MFs
- Sample-based and online techniques

RL Introduction	Fuzzy Q-iteration	Convergence & consistency	Pendulum Swing-up	Conclusion ○●
Thank v	011			

Thank you! Questions?

Thanks to BSIK-ICIS project #BSIK03024 (Interactive Collaborative Information Systems) & NWO Van Gogh grant #VGP 79-99 & STW-VIDI project #DWV.6188

References I

D. Bertsekas (2007).

Dynamic Programming and Optimal Control, *Athena Scientific*, vol. 2, 3rd ed.

- D. Bertsekas and J.N. Tsitsiklis (1996). Neuro-Dynamic Programming, *Athena Scientific*.
- J.N. Tsitsiklis and B. Van Roy (1996).
 Feature-based methods for large scale dynamic programming.
 Machine Learning, 22:59–94.

Appendix o		Backup slides ●○

Action approximation

• Discrete actions u_1, \ldots, u_M

$$\widehat{Q}^{\theta}(x,u) = \sum_{i=1}^{N} \varphi_i(x) \theta_{i,j}$$
 $j = \arg \min_{j'} \left\| u - u_{j'} \right\|$

 $\Rightarrow \widehat{Q}^{\theta}$ constant in Voronoi cell of each u_j

• Example: Voronoi partitions of $U = [-1, 1] \times [-1, 1]$ for random & equidistant discretizations

Append o	lix		Backup slides ●○
-	_		

Action approximation

• Discrete actions u_1, \ldots, u_M

$$\widehat{Q}^{\theta}(x,u) = \sum_{i=1}^{N} \varphi_i(x) \theta_{i,j}$$
 $j = \arg \min_{j'} \left\| u - u_{j'} \right\|$

 $\Rightarrow \widehat{Q}^{\theta}$ constant in Voronoi cell of each u_j

• Example: Voronoi partitions of $U = [-1, 1] \times [-1, 1]$ for random & equidistant discretizations

Consistency results (cont'd)

- Average performance over *M*, for every *N'*
- Performance with ρ usually at least as good as with ρ'

