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The Problem

Discrete-time dynamics xk+1 = f (xk , uk ), x ∈ X , u ∈ U
Reward function rk+1 = ρ(xk , uk ) ∈ R

evaluates each transition

Goal
Find control policy u = h(x)
to maximize discounted return:

Rh(x0) =
∞∑

k=0
γkρ(xk , h(xk ))

from any x0; γ ∈ [0, 1) discount factor

Infinite-horizon (discounted) optimal control problem
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Solution using Q-functions

Define Q-function of h: Qh(x , u) = ρ(x , u) + γRh(f (x , u))

Optimal Q-function: Q∗ = maxh Qh

⇒ optimal policy h∗(x) = arg maxu Q∗(x , u)

Q∗ satisfies Bellman equation:

Q∗(x , u) = ρ(x , u) + γ max
u′

Q∗(f (x , u), u′)

⇒ iterative algorithms to compute Q∗
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Example: discrete-time integrator

f (x , u) = x + K · u
x ∈ [−5, 5], u ∈ [−2, 2], K = 2

Goal: quadratic stabilization. Reward function:
ρ(x , u) = −0.1x2 − 0.05u2
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Algorithms

Model-based:
f , ρ given
E.g., Q-iteration

Model-free:
f , ρ unknown
Estimate Q∗ from samples or trajectories
(xk , uk , xk+1, rk+1)
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Q-iteration

repeat at each iteration �
for all x , u do �

Q�+1(x , u) = ρ(x , u) + γ maxu′ Q�(f (x , u), u′) � T
end for �

until convergence

Compare Bellman equation:
Q∗(x , u) = ρ(x , u) + γ maxu′ Q∗(f (x , u), u′)

Write each iteration as Q�+1 = TQ�

T contraction: ‖T (Q) − T (Q′)‖∞ ≤ γ ‖Q − Q′‖∞
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Why Q-iteration?

Just one parameter: γ

Monotonous convergence to Q∗

Deterministic ⇒ predictable; easy to get insight
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Why approximation?

Q-iteration requires tabular storage of Q-functions

If X and / or U continuous – tabular storage impossible
(if X , U finite but large – tabular storage impractical)

⇒ need to approximate the Q-function
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Fuzzy approximation

Given:
Membership functions ϕ1, . . . , ϕN : X → [0, 1]

Discrete actions u1, . . . , uM ∈ U
Parameter matrix θ of size N × M

Approximate Q-function:

Q̂θ(x , u) =
N∑

i=1

ϕi(x)θi,j = [ϕ1(x) . . . ϕN(x)]

⎡⎣· · ·
⎡⎣θ1,j

...
θN,j

⎤⎦ · · ·
⎤⎦

j = arg min
j ′

∥∥u − uj ′
∥∥ (nearest neighbor)
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State approximation

Membership functions (MFs) ϕ1, . . . , ϕN

Normalized MFs:
∑

i ϕi(x) = 1 ∀x
Requirements:

ϕi(xi) = 1 for a unique core xi
all other MFs are 0 at xi

Example: triangular MFs, scalar x ∈ [−1, 1]
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Fuzzy Q-iteration

repeat at each iteration �
for all cores xi , discrete actions uj do

θ�+1,i,j = ρ(xi , uj) + γmaxj ′Q̂θ�(f (xi , uj), uj ′)
end for

until convergence

Compare: Exact Q-iteration
repeat at each iteration �

for all x , u do
Q�+1(x , u) = ρ(x , u) + γmaxu′Q�(f (x , u), u′)

end for
until convergence
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Fuzzy Q-iteration: policy

repeat at each iteration �
for all cores xi , discrete actions uj do

θ�+1,i,j = ρ(xi , uj) + γ maxj ′ Q̂θ�(f (xi , uj), uj ′)
end for

until convergence

⇒ θ̂∗, and policy:

ĥ∗(x) = uj , j = arg max
j ′

Q̂bθ∗(x , uj ′)

(Compare optimal policy: h∗(x) = arg maxuQ∗(x , u))
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Convergence

Q̂ non-expansion: ‖Q̂θ − Q̂θ′‖∞ ≤ ‖θ − θ′‖∞
T contraction: ‖T (Q) − T (Q′)‖∞ ≤ γ ‖Q − Q′‖∞

⇒ fuzzy Q-iteration converges monotonically to θ∗

‖Q̂θ∗ − Q∗‖∞
bounded
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Consistency

Consistency: Q̂θ∗ → Q∗ as accuracy increases

Accuracy:

⎧⎨⎩
δx = max

x∈X
min

i
‖x − xi‖2

δu = max
u∈U

min
j

‖u − uj‖2

Assuming f , ρ Lipschitz:

‖f (x , u) − f (x̄ , ū)‖2 ≤ Lf (‖x − x̄‖2 + ‖u − ū‖2)

|ρ(x , u) − ρ(x̄ , ū)| ≤ Lρ(‖x − x̄‖2 + ‖u − ū‖2)

(& certain requirements on the MFs)
⇒ limδx→0,δu→0 Q̂θ∗ = Q∗ — consistency
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The swing-up problem

Jα̈ = mgl sin(α) − bα̇ − K 2

R α̇ + Kmu

x = [α, α̇]T

α ∈ [−π, π] angle
α̇ ∈ [−15π, 15π] velocity

u ∈ [−3, 3] control voltage
Ts = 0.005

Goal: stabilize in unstable
equilibrium (pointing up)
Difficulty: insufficient actuation,
need to swing back & forth
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Reward function

Reward function: ρ(x , u) = −xT
[
5 0
0 0.1

]
x − uT1u

Discount factor: γ = 0.98
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Near-optimal solution

Left: Q-function for u = 0; right: policy
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Approximator setup

N ′ equidistant triangular MFs on each axis (⇒ N = N ′2)
2D MFs: products of 1D MFs. Example: N ′ = 3

M equidistant discrete actions
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Example: Convergence

N ′ = 41, M = 15
Criterion: ‖θ�+1 − θ�‖∞ ≤ 10−2

Monotonic convergence
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Example: Solution

N ′ = 41, M = 15
Left: Q-function for u = 0; right: policy
Close to optimal
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Consistency & discontinuous rewards

Consistency requires Lipschitz rewards
Study effect of discontinuous rewards
Introduce discontinuity without altering the problem

ρ′(x , u) = ρ(x , u) + γψ(f (x , u)) − ψ(x)

ρ′ preserves quality of policies, Qh
ρ′ − Q∗

ρ′ = Qh
ρ − Q∗

ρ

ψ discontinuous, positive around origin:

ψ(x) =

{
30 if |x1| ≤ π/4 and |x2| ≤ 2π

0 otherwise
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Discontinuous reward

Left, for comparison: original ρ; right: discontinuous ρ′
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Consistency study

N ′ ∈ {3, 4, 5, . . . , 41} equidistant MFs

M ∈ {3, 5, . . . , 15} equidistant actions
(odd to always include u = 0)

Fuzzy Q-iteration with continuous ρ and discontinuous ρ′

Always evaluate with ρ, average return from initial states:
X0 = {−π,−5π/6,−4π/6, . . . , π}× {−16π,−14π, . . . , 16π}
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Consistency results (simulation)

Left: continuous ρ; right: discontinuous ρ′

Performance variation decreases for ρ, not for ρ′

Performance not monotonous as N, M increase

M not very important
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Demo

Demo
N ′ = 41, M = 15
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Conclusion and future work

Fuzzy Q-iteration: fuzzy approx in X ; discretization of U
Algorithm is convergent & consistent
Good performance in simulation & with real system
Continuous reward functions important in practice

Ongoing & future work
Automated discovery of MFs
Sample-based and online techniques
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Thank you

Thank you!
Questions?

Thanks to BSIK-ICIS project #BSIK03024
(Interactive Collaborative Information Systems)

& NWO Van Gogh grant #VGP 79-99
& STW-VIDI project #DWV.6188
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Action approximation

Discrete actions u1, . . . , uM

Q̂θ(x , u) =
N∑

i=1
ϕi(x)θi,j j = arg minj ′

∥∥u − uj ′
∥∥

⇒ Q̂θ constant in Voronoi cell of each uj

Example: Voronoi partitions of U = [−1, 1] × [−1, 1]
for random & equidistant discretizations
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Consistency results (cont’d)

Average performance over M, for every N ′

Performance with ρ usually at least as good as with ρ′


