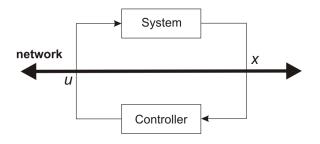
Optimistic Planning for Networked Control Systems

L. Buşoniu, R. Postoyan, J. Daafouz

COPHY, 25/06/2013

Introduction ●○○	Optimistic planning	OP for NCS	Experiments & outlook
Motivation			



- Networked control systems: shared network
 ⇒ communication limited, cannot transmit all the time
- Focus: discrete-time optimal control
- Challenge: No solution for general nonlinear dynamics and general cost functions

Goal

- Design near-optimal control for a general class of nonlinear systems
- For general, nonquadratic cost
- Transmission intervals fixed (clock-triggered) or adapted to last measured state (self-triggered)

Introduction ○○●	Optimistic planning	OP for NCS	Experiments & outlook
Setting			

- System $x_{k+1} = f(x_k, u_k)$, state $x \in X \subseteq \mathbb{R}^m$, action $u \in U$
- Reward function $\rho(x_k, u_k)$
- For any x₀, find an action sequence u∞ = (u₀, u₁,...) to maximize the discounted return:

$$R_{x_0}(\boldsymbol{u}_{\infty}) = \sum_{k=0}^{\infty} \gamma^k \rho(x_k, u_k)$$

where discount factor $\gamma \in [0, 1)$

Assumptions

- Dynamics f known and noise-free
- Finite, discrete action space $U = \{u^1, \dots, u^K\}$
- Bounded reward function $\rho(x, u) \in [0, 1], \forall x, u$

Experiments & outlook

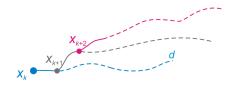
- 2 Background: Optimistic planning
- OP for networked control systems
- Experiments and outlook

Introduction	Optimistic planning ●oooooo	OP for NCS	Experiments & outlook
Principle			

Input: state *x*, computation budget *n* (~# simulations) explore iteratively action sequences from *x* **Output:** near-optimal sequence $u_{d^*}^*$ with length d^*

(Hren & Munos, 2008)

- Adapts AI algorithm A* to infinite-horizon control
- A general type of model-predictive control
- Usually only the first action of *u*^{*}_{d*} is sent to actuator ⇒ receding-horizon control



Introduction	Optimistic planning ○●○○○○	OP for NCS	Experiments & outlook
Values			

Finite sequence u_d also seen as set of infinite sequences (u₀,..., u_{d-1}, *, *,...)

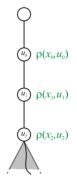
•
$$\nu(\boldsymbol{u}_d) = \sum_{k=0}^{d-1} \gamma^k \rho(\boldsymbol{x}_k, \boldsymbol{u}_k)$$

lower bound on returns of $\boldsymbol{u}_{\infty} \in \boldsymbol{u}_d$

•
$$b(\boldsymbol{u}_d) = \nu(\boldsymbol{u}_d) + \frac{\gamma^d}{1-\gamma}$$

upper bound on returns of $\boldsymbol{u}_{\infty} \in \boldsymbol{u}_d$

 v(u_d) = sup_{u∞∈u_d} R(u_∞) value of applying u_d and then acting optimally

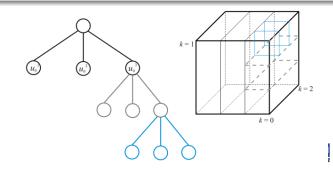


Introd	uction

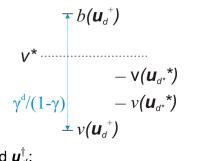
Experiments & outlook

Algorithm (Hren & Munos, 2008)

Initialize empty sequence u_0 (= all infinite sequences) **loop** *n* times Select **optimistic** leaf sequence u_d^{\dagger} , maximizing *b* Expand u_d^{\dagger} : initialize all values for the *d* + 1-th action **end loop return** greedy u_{d*}^* maximizing ν



Near-opti	mality		
Introduction	Optimistic planning	OP for NCS	Experiments & outlook



For any expanded $\boldsymbol{u}_d^{\dagger}$:

- $b(\boldsymbol{u}_{d}^{\dagger}) \geq v^{*}$, otherwise it wouldn't have been selected
- $\nu(\boldsymbol{u}_{d}^{\dagger}) \leq \nu(\boldsymbol{u}_{d^{*}}^{*})$ since $\boldsymbol{u}_{d^{*}}^{*}$ maximizes ν
- $v(\boldsymbol{u}_{d^*}^*) \geq \nu(\boldsymbol{u}_{d^*}^*)$ by definition
- So $v^* v(\boldsymbol{u}_{d^*}^*) \leq \frac{\gamma^d}{1-\gamma}$

Moreover, deepest expanded $d = d^*$

Polation t	o budaet <i>n</i>		
Introduction	Optimistic planning 0000●0	OP for NCS	Experiments & outlook

Algorithm only expands in near-optimal subtree:

$$\mathcal{T}^* = \left\{ oldsymbol{u}_d \mid oldsymbol{v}^* - oldsymbol{v}(oldsymbol{u}_d) \leq rac{\gamma^d}{1-\gamma}
ight\}$$

- Define κ = asymptotic branching factor of *T**:
 complexity measure of optimal control problem
- So to reach depth d, $n = O(d^{\kappa})$ expansions required

$$\Rightarrow \quad d^* = \Omega(\frac{\log n}{\log \kappa}), \quad v^* - v(\boldsymbol{u}_{d^*}^*) = O(n^{-\frac{\log 1/\gamma}{\log \kappa}})$$

Introduction	Optimistic planning ooooo●	OP for NCS	Experiments & outlook

Summary of OP guarantees

Recall everything in fact depends on x (v, ν , b, d^{*}, κ)

• OP returns a long sequence $u_{d(x)}$, $d(x) = \Omega(\frac{\log n}{\log \kappa(x)})$ 2

$$v_x^* - v_x(\boldsymbol{u}_{d(x)}) \leq \frac{\gamma^{d(x)}}{1-\gamma} = O(n^{-\frac{\log 1/\gamma}{\log \kappa(x)}})$$

- General optimal control, paid by exponential computation $n = O(\kappa(x)^{d(x)})$
- But $\kappa(x)$ can be small in interesting problems!

(Hren & Munos. 2008)

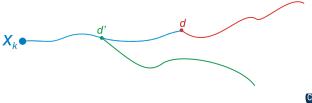
Experiments & outlook

- 2 Background: Optimistic planning
- OP for networked control systems
 - Experiments and outlook

Introduction	Optimistic planning	OP for NCS ●0000000	Experiments & outlook
ldea			

Usually only first action of each sequence is sent to actuator

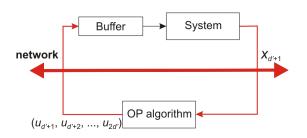
- But recall: OP returns long sequences!
- \Rightarrow Instead of first action, send a longer subsequence



Introduction	Optimistic planning 000000	OP for NCS o●oooooo	Experiments & outlook
NCS Arch	nitecture		

- Sporadically closes loop and transmits (sub)sequences, each applied in open-loop
- Requires a **buffer** to store the (sub)sequences

k = d' + 1



Introduction	Optimistic planning	OP for NCS	Experiments & outlook
Strategy 1			

Self-triggered OP (STOP) Input: computation budget *n* loop measure state x_k apply OP at x_k with budget *n* to obtain $\boldsymbol{u}_{d(x_k)}$ transmit initial subsequence $\boldsymbol{u}_{d'(x_k)}$ $k \leftarrow k + d'(x_k)$, wait $d'(x_k)$ steps end loop

Adaptive, long transmission intervals $d'(x_k) \sim d(x_k) = \Omega(\frac{\log n}{\log \kappa(x_k)})$

Introduction	Optimistic planning	OP for NCS 000€0000	Experiments & outlook
Strategy 2			

OP can also be called with a desired sequence length d

```
Clock-triggered OP (COP)

Input: transmission interval d

loop

measure state x_k

apply OP at x_k with desired length d to obtain u_d

transmit initial subsequence u_{d'}

k \leftarrow k + d', wait d' steps

end loop
```

Bounded computation to reach *d*, $n(x_k) = O(\kappa(x_k)^d)$

Introduction	Optimistic planning	OP for NCS	Experiments & outlook

Near-optimality guarantee

Theorem 1

The overall sequence obtained in closed loop is near-optimal:

•
$$\frac{\gamma^{d(x_0)}}{1-\gamma}$$
-optimal in STOP;

•
$$\frac{\gamma^d}{1-\gamma}$$
-optimal in COP.

Near-optimality at first step dominates; no change in bound with shorter or longer sequences (d')

Introduction	Optimistic planning	OP for NCS	Experiments & outlook

Shorter sequences

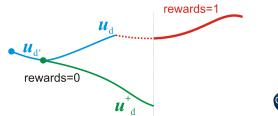
Depending on problem, shorter sequences better or worse

Theorem 2

Bounded loss from applying subsequence $u_{d'}$ followed by new sequence u_d^+ :

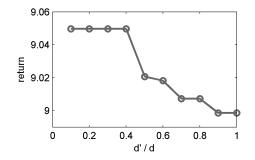
$$v_x((oldsymbol{u}_{d'},oldsymbol{u}_d^+)) \geq v_x(oldsymbol{u}_d) - rac{\gamma^{oldsymbol{d}+oldsymbol{d'}}}{1-\gamma}$$

which is tight in the worst case.



Introduction 000	Optimistic planning 000000	OP for NCS	Experiments & outlook
Shorter se	quences (cont'd)		

In practice shorter sequences often better, e.g. DC motor



Some related work					
Introduction	Optimistic planning	OP for NCS	Experiments & outlook		

- Eqtami et al. (CDC 2011): nonlinear MPC, quadratic costs, applies subsequences: we handle nonquadratic cost, characterize OP solver
- Linear MPC with subsequences: Henriksson et al. (IFAC ACCP 2012), Barradas Berglind et al. (IFAC NLMPCC 2012)
- Antunes et al. (CDC 2012): exploits dynamic programming (like OP); linear, discounted quadratic costs
- Chaillet & Bicchi (CDC 2008): applies subsequences to deal with delays

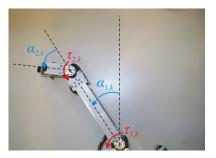
- 2 Background: Optimistic planning
- 3 OP for networked control systems

Optimistic planning

OP for NCS

Experiments & outlook

Example: nonlinear robot arm

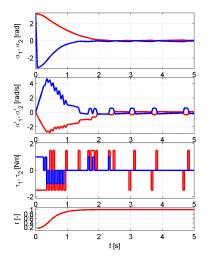


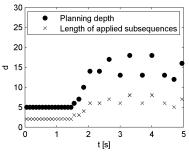
- State $[\alpha_1, \alpha_2, \dot{\alpha}_1, \dot{\alpha}_2]^{\top}$
- Action $[\tau_1, \tau_2]^{\top}$, $U = \{-1.5, 0, 1.5\} \times \{-1, 0, 1\}$
- $T_{\rm s} = 0.05\,{
 m s}$
- Rewards to reach zero state: $-x_k^{\top}Qx_k - u_k^{\top}Ru_k, \gamma = 0.95$

Introduction 000	Optimistic planning	OP for NCS	Experiments & outlook o●oooo

Robot arm results

STOP from $x_0 = [\pi, \pi, 0, 0]^{\top}$, n = 1000, $d'(x) = [0.4 \cdot d(x)]$





Less than 1.22% loss in return w.r.t. transmitting at each step

Summary & Ongoing work

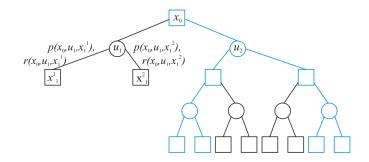
- Near-optimal control in nonlinear NCS
- Theoretical guarantees and promising simulations

Ongoing work

- Classes of stochastic dynamics (uncertainty)
- Deal with computational cost: parallelization, new strategies

Introduction	Optimistic planning	OP for NCS	Experiments & outlook

Stochastic case



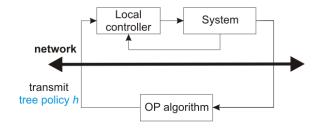
Sequence replaced by closed-loop policy *h* (subtree), characterized by:

() Near-optimality δ

3 Effective depth *d* s.t.
$$\gamma^d = E\left\{\gamma^{d(x)}\right\} \le \delta(1 - \gamma)$$

Introduction	Optimistic planning	OP for NCS	Experiments & outlook
			000000

Stochastic case: Architecture



- Requires local, computationally cheap state feedback controller
- ... connected via network to the OP controller

Optimistic planning

OP for NCS

Experiments & outlook

Stochastic case: Strategies

- Set budget n
 - \Rightarrow small distance from optimal δ , large effective depth d
- Set near-optimality δ (corresponding to d)
 - \Rightarrow bounded computation

