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Abstract—This paper presents an observer-based control de-
sign approach for a class of nonlinear discrete-time systems. The
model nonlinearities are handled in two ways: 1) a Takagi-Sugeno
fuzzy representation is used for nonlinearities that depend on
measured states, and 2) nonlinearities that depend on unmea-
sured states are kept in their original form and handled using
a slope-bound condition. The observer-based controller design
conditions are given as linear matrix inequalities. The approach
we propose significantly improves results in the literature by
providing less restrictive design conditions. These improvements
are illustrated in a detailed analytical and numerical comparison
on a synthetic example; while a pendulum-on-a-cart example
shows that the approach works both in simulation and in real-
time experiments.

I. INTRODUCTION

Controller and observer design are usually based on the
model of the system, which in most cases is nonlinear. Linear
approximations are often used, but they are valid only around
the considered operating point [1]. On the other hand, many
nonlinear representations are available in the literature, for
example the Takagi-Sugeno (TS) fuzzy models.

The TS fuzzy representation defines the model as a convex
combination of local linear models, and depending on how
it is obtained it can exactly represent a nonlinear model in a
compact set of the state-space [2]. This model can be used to
design both controllers and observers that are valid globally in
this compact set, see e.g. [3], [4], [5], [6], [7]. More advanced
control strategies are discussed for example in [8], where a
fuzzy sliding mode controller is presented, in [9] where the
passivity-based control strategies are used for wind energy
conversion system or in [10] where dissipativity and passivity
based strategies are discussed.

A disadvantage of TS models is that the complexity in-
creases exponentially with the number of nonlinearities in
the model, which can lead to computationally intractable
problems. To avoid that, some of the nonlinearities can be kept
in their original form, as nonlinear consequents, and they can
be handled using some other conditions. For example in [11]
sector- and slope-bound conditions are used for the nonlinear
consequents.

Most results on nonlinear observer and controller design
have been developed in continuous-time, while the discrete-
time case is not so well explored, see e.g. [12], [13]. However,
in many real-life applications the controller is digital. Digital
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controllers do not change the signal values continuously, but
with a specific sampling time, an effect that must be included
in the analysis, leading to discrete-time controller design.
For example, in [14] it is shown that feedback linearizability
of continuous-time systems can be destroyed through the
introduction of the usual sample and hold devices, and a
discrete-time model is proposed to overcome this issue.

There are a few approaches available in the literature that
tackle the problem of controller and observer design for
discrete-time TS fuzzy systems with nonlinear consequents,
see e.g. [11], [15], but the research in this area is not extensive;
less restrictive design conditions can be obtained that can also
handle a wider range of systems. This motivates us to focus
on the discrete-time case in the current work.

Specifically, we consider the problem of observer-based
controller design for a class of discrete-time TS fuzzy sys-
tems with nonlinear consequents. We use the fuzzy form to
handle nonlinearities that depend on measured states, while
the unmeasured-state nonlinearities are kept in the nonlinear
consequents. The design conditions are given as linear matrix
inequalities (LMI) and they are less restrictive than those
existing in the literature. The work in [11] is considered as
a starting point of this paper and we focus on improving
the results obtained there. We have the following two main
contributions:

• We use a slope-bound condition for the nonlinear con-
sequents, while in the state-of-the-art both Lipschitz
(included in slope-bound) and sector-bound conditions
are needed.

• For nonlinear consequents that fulfill both Lipschitz and
sector-bound conditions, our design conditions can handle
a wider range of systems than what can be handled with
the state-of-the-art.

There are other approaches available in the literature that
consider similar problems. For example, [16] gives an ap-
proach that handles directly the nonlinearities, without the
TS fuzzy form, where a slope-bound condition was used for
observer design. The results in [16] were further extended in
[17], [18], [19], [20], [21] to obtain less conservative design
conditions. Comparing our approach to these, we have the
advantage that we can handle some of the nonlinearities in
the fuzzy form. This helps to obtain less restrictive design
conditions and also allows to handle a wider range of nonlinear
systems.

Usually, Lipschitz or slope-bound conditions are used for
observer design, see e.g. [22], [11], and sector-bound condi-
tions for controller design, see e.g. [23], [11], [24], [25], [3],
[26]. One limitation of these approaches appears for observer-
based controller design, since in that case the nonlinearities
must fulfill both observer and controller design conditions.



In our case, due to the form of the controller the required
conditions are reduced to slope-bound conditions, and the non-
linearities do not need to fulfill the sector-bound condition. For
instance, with only the slope-bound condition it is possible to
include affine terms in the nonlinear consequents or nonlinear
functions that are not zero at the stabilization point. This is
not possible with the sector-bound condition.

The rest of the paper is organized as follows. In Section II
we present the general concepts as well as some lemmas
and properties that are used throughout the paper. Section III
presents first the observer and then the controller design,
followed by the observer-based controller design. Section IV
highlights the advantages compared to the available literature.
Finally, in Section V we present a comparison with the state-
of-the-art for a pendulum on a cart, both in simulation and in
experiments. Section VI concludes the paper and give some
further research directions.

II. PRELIMINARIES AND PROBLEM STATEMENT

Notations. Let F = FT ∈ Rn×n be a real symmetric
matrix; F > 0 and F < 0 mean that F is positive definite
and negative definite, respectively. I denotes the identity
matrix and 0 the zero matrix of appropriate dimensions. The
symbol ∗ in a matrix indicates a transposed quantity in the

symmetric position, for instance
(
P ∗
A P

)
=

(
P AT

A P

)
,

A + ∗ = A + AT , or ∗PA = ATPA. The notation
diag(f1, ..., fn), where f1, ..., fn ∈ R, stands for the diagonal
matrix, whose diagonal components are f1, ..., fn. Notation
‖s‖ is the Euclidean norm of s ∈ Rn. To avoid forward
referencing, the rest of the notations are defined at their first
use.

The classic discrete-time TS fuzzy model is a convex
combination of linear models, having the form:

x(k + 1) =

s∑
i=1

hi(z(k))(Aix(k) +Biu(k))

y(k) =

s∑
i=1

hi(z(k))Cix(k),

(1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the
control input, y(k) ∈ Rny is the measured output vector, s is
the number of rules, z(k) ∈ Rnz is the premise vector, and
hi, i = 1, ..., s are nonlinear functions with the property

hi ∈ [0, 1], i = 1, ..., s,

s∑
i=1

hi(z) = 1. (2)

These nonlinear functions are called the membership func-
tions. Matrices Ai, Bi, and Ci represent the i-th local model.
Throughout this paper, the following shorthand notations are
used to represent convex sums of matrix expressions:

Fz =

s∑
i=1

hi(z(k))Fi, Fz+ =

s∑
i=1

hi(z(k + 1))Fi. (3)

Based on this notation, (1) can be rewritten as

x(k + 1) =Azx(k) +Bzu(k)

y(k) =Czx(k).
(4)

A. Properties and lemmas

In order to develop our results we will use the following
properties and lemmas.

Property 1 ([27]): Let A and B be matrices of appropriate
dimensions and ranks, with B = BT > 0. Then

−ATB−1A ≤ −A−AT +B

Property 2 ([27]): (Schur complement). Let M = MT =[
M11 M12

MT
12 M22

]
, with M11 and M22 square matrices of appro-

priate dimensions. Then:

M < 0⇔

{
M11 < 0

M22 −MT
12M

−1
11 M12 < 0

⇔

{
M22 < 0

M11 −M12M
−1
22 M

T
12 < 0

(5)

Lemma 1 ([27]): (Congruence) Given matrix P = PT and
a full column rank matrix Q, it holds that

P > 0 ⇒ QPQT > 0.

Estimation and control problems are often defined as double-
sum negativity problems having the form

Fzz =

s∑
i=1

s∑
j=1

hi(z)hj(z)Fij < 0, (6)

with symmetric matrices Fij and nonlinear functions hi satis-
fying the convex sum property in (2).

Lemma 2 ([28]): Equation (6) is satisfied if the following
conditions hold

Fii <0

2

s− 1
Fii + Fij + Fji <0 ∀i, j = 1, ..., s, i 6= j.

(7)

In some cases the conditions defined are as a triple sum
negativity problem having the form:

Fzzz =

s∑
i=1

s∑
j=1

s∑
l=1

hi(z)hj(z)hl(z)Fijl < 0. (8)

Applying Lemma 2 of two of the terms in (8), the following
condition is obtained:

Lemma 3: Equation (8) is satisfied if the following condi-
tions hold

Fiil <0

2

s− 1
Fiil + Fijl + Fjil <0 ∀i, j, l = 1, ..., s, i 6= j.

(9)

B. Problem statement

In order to develop our results we consider the following
model structure:

x(k + 1) =Azx(k) +Bzu(k) +BzGzψ(Hzx(k))

y(k) =Czx(k),
(10)



where x(k), u(k), y(k) have the same meaning as in (1) and
Az , Bz , Gz , Cz are convex combinations of matrices as in (3).

We assume that the scheduling vector z only depends on
measured variables. The nonlinearities that contain unmea-
sured states are collected in the vector function ψ(Hzx(k)).

A somewhat restrictive assumption we make is on the form
of the unmeasured nonlinear part, i.e. BzGzψ(Hzx(k)). Note
however that such a form often appears, e.g. for mechanical
systems in a classical state-space form obtained from Euler-
Lagrange equations. To see this, let us consider the model of
a robot arm

M(θ)θ̈ = −F (θ, θ̇)−G(θ) + τ, (11)

where τ represents the torque; θ, θ̇ and θ̈ are the angles,
angular velocities and angular accelerations. M(θ) is the mass
matrix, F (θ, θ̇) contains the centrifugal and Coriolis forces
and G(θ) contains the terms due to gravity. To obtain a
classical state-space representation, the whole equation must
be multiplied with the inverse of the mass matrix, leading to

θ̈ = −M(θ)−1F (θ, θ̇)−M(θ)−1G(θ) +M(θ)−1τ. (12)

In this context Bz =

[
0

M(θ)−1

]
, with states x =

[
θ

θ̇

]
.

The quantity ψ(Hzx(k)) ∈ Rr is an r-dimensional vector:

ψ(Hzx(k)) =


ψ1(Hz1x(k))

ψ2(Hz2x(k))
...

ψr(Hzrx(k))

 . (13)

One might expect that each individual ψl, l = 1, ..., r is a
function of the full vector Hzx(k). However, our assumptions
impose additional structure, in which ψl depends only on the
scalar Hzlx(k), where Hzl is row l in the matrix Hz . The
fuzzy matrix has the form: Hz =

∑s
i=1 hi(z(k))Hi, and Hi ∈

Rr×nx for i = 1, ..., s. A similar form of the nonlinearity –
although with a constant H matrix – have been used in [17],
[19].

To give an example, consider the state vector x(k) =[
x1(k) x2(k) x3(k)

]T
and the nonlinearities

ψ =

[
ψ1(x(k))
ψ2(x(k))

]
=

[
sin(x1(k)x2(k))

cos(x2(k))

]
,

where x1 ∈ [−1, 1] is measured and x2 is not measured. Since
x1 ∈ [−1, 1] we can rewrite ψ1(x(k)) in the form:

ψ1(x(k))=sin(x1(k)x2(k))=

sin
(
− 1− x1(k)

2
x2(k) +

1 + x1(k)

2
x2(k)

)
.

(14)
The membership functions are:

h1(x1(k)) =
1− x1(k)

2
, h2 = 1− h1, (15)

and using the minimum and maximum values of x1 leads to
the following:

H11 =
[
0 −1 0

]
, H12 =

[
0 1 0

]
.

For ψ2(x(k)) we have H21 = H22 =
[
0 1 0

]
, and that

leads to

Hz =h1(x1(k))H1 + h2(x1(k))H2 =

h1(x1(k))

[
0 −1 0
0 1 0

]
+ h2(x1(k))

[
0 1 0
0 1 0

]
.

To develop our results, the elements in vector ψ(Hzx(k))
must fulfill the following assumption.

Assumption 1: For any i ∈ {1, ..., r} there exist constants
0 < bi <∞, so that

0 ≤ ψi(v)− ψi(w)

v − w
≤ bi, ∀v, w ∈ R, v 6= w. (16)

This assumption allows us to handle nonlinearities in their
original form, without converting them into TS fuzzy repre-
sentation. Similar assumptions were used in [16], [17], [19],
[29], but for linear dynamics. To overcome this limitation, we
allow the rest of the dynamics to be nonlinear and handle them
with TS fuzzy modelling.

In view of (16), there exist δi(k) ∈ [0, bi], so that for any
v, w ∈ R

ψi(v)− ψi(w) = δi(k)(v − w). (17)

We use the notation δ(k), to handle all δi in one matrix: δ(k) =
diag(δ1(k), ..., δr(k)).

III. MAIN RESULTS

In this section, sufficient conditions will be developed for
observer-based controller design. We consider the following
observer structure:

x̂(k + 1) =Azx̂(k)+BzGzψ
(
Hzx̂(k) + Lψ(y(k)− ŷ(k))

)
+Bzu(k) + Lz(y(k)− ŷ(k))

ŷ(k) =Czx̂(k),
(18)

where Lz =
∑s
i=1 h(z(k))Li and Lψ =

∑s
i=1 h(z(k))Lψi,

contain the observer gains. The term Lψ adds an extra degree
of freedom, to obtain less conservative conditions.

The controller has the form:

u(k) =−KzQ
−1
z x̂(k)−Gzψ(Hzx̂(k)+Lψ(y(k)−ŷ(k))),

(19)
where Kz =

∑s
i=1 h(z(k))Ki contains the controller gains,

and with Q−1
z =

(∑s
i=1 h(z(k))Qi

)−1
an extra degree of

freedom is added. The term Gzψ(Hzx̂(k)+Lψ(y(k)−ŷ(k)))
is used to compensate the unmeasured-state dependent nonlin-
earities in the closed loop dynamics.

Based on (10) and (18) and defining the estimation error as
e(k) = x(k)− x̂(k), the error dynamics are

e(k + 1) = (Az − LzCz)e(k)

+BzGz
(
ψ(Hzx(k))−ψ(Hzx̂(k)+Lψ(y(k)−ŷ(k))

)
.

(20)

This can be further transformed by considering (17):

e(k + 1) =(Az − LzCz)e(k)

+BzGzδ(k)
(
Hzx(k)−Hzx̂(k)− Lψ(y(k)− ŷ(k))

)
=(Az − LzCz)e(k)

+BzGzδ(k)
(
Hze(k)− LψCze(k)

)
.

(21)



By denoting η(k) := (Hz − LψCz)e(k), we obtain:

e(k + 1) =(Az − LzCz)e(k)+BzGzδ(k)η(k). (22)

Next, considering the control law (19) in (10) the following
closed loop system is obtained:

x(k + 1) =(Az −BzKzQ
−1
z )x(k) +BzKzQ

−1
z e(k)

+BzGzδ(k)η(k)

η(k) =(Hz − LψCz)e(k).

(23)

The obtained form in (23) depends on δ(k)η(k). To develop
the design conditions, we consider the estimated states, x̂(k),
in closed loop instead of x(k):

x̂(k + 1) =(Az −BzKzQ
−1
z )x̂(k) + LzCze(k), (24)

which has a less complex expression, and we obtain the
following augmented dynamics:[

x̂(k + 1)
e(k + 1)

]
=

[
Az −BzKzQ

−1
z LzCz

0 Az − LzCz

][
x̂(k)
e(k)

]
+

[
0

BzGz

]
δ(k)η(k)

η(k) =(Hz − LψCz)e(k).

(25)

If both the error dynamics, e(k), and the estimated states, x̂(k),
are stable at the origin, then so are the system states, x(k). For
this reason in the following analysis we will consider (25).

Next we define the conditions for observer design (Section
III-A) and for controller design (Section III-B) respectively,
followed by the main result, which proves that the independent
designs indeed lead to a stable closed-loop system (Section
III-C).

A. Observer design

In this section we consider the estimation error in (22)
repeated here for convenience:

e(k + 1) =(Az − LzCz)e(k)+BzGzδ(k)η(k),

and develop sufficient conditions to prove exponential stability
of these error dynamics.

Theorem 1: Consider system (10) and observer (18). If there
exist matrices M = MT = diag(m1, ...,mr) > 0, S, Pi =
PTi > 0, Ni, Wψi, i = 1, ..., s, and constant ε > 0 so that

Fiil ≤0

2

s− 1
Fiil + Fijl + Fjil ≤0 ∀i, j, l = 1, ..., s, i 6= j.

(26)

where

Fijl =

 −Pi + εI ∗ ∗
MHi +WψiCj ν(M) ∗
SAi −NiCj SBiGj Pl − S − ST

 , (27)

and
ν(M) =− 2Mdiag(

1

b1
, ...,

1

br
), (28)

then the observer states defined in (18) converge exponentially
to the real system states in (10). The observer gains can be
recovered from Li = S−1Ni, Lψi = M−1Wψi.

Proof: Consider the Lyapunov function candidate V =
e(k)TPze(k), where Pz = PTz =

∑s
i=1 hi(z(k))Pi > 0, and

the difference

∆V = e(k + 1)TPz+e(k + 1)− e(k)TPze(k). (29)

We denote ζ(k) =
[
e(k)T (δ(k)η(k))T

]T
, which leads to

∆V = ζ(k)TΣ ζ(k), (30)

where

Σ =

[
E ∗

GTz B
T
z Pz+(Az−LzCz) ∗Pz+BzGz

]
E =(Az − LzCz)TPz+(Az − LzCz)− Pz.

(31)

If ∆V < 0 then the error dynamics are stable. Since Pz+ =
PTz+ > 0, then the positive or negative definiteness of the term
at (2,2) in Σ depends only on BzGz . This condition is very
conservative. To overcome this issue we add some additional
terms. Next, consider the inequality:

ζ(k)TΣ ζ(k) + ζ(k)TΓ ζ(k) ≤ 0, (32)

where

Γ =

[
εI ∗
B ν(M)

]
, B = MHz +MLψCz, (33)

and ν(M) is defined in (28). Let us now examine ζ(k)TΓζ(k):

ζ(k)TΓ ζ(k) =ε‖e(k)‖2 + ∗ ν(M)δ(k)η(k)

+ 2e(k)T (HT
z + CTz L

T
ψ)Mδ(k)η(k)

(34)

We know that η(k) = (Hz + LψCz)e(k), which leads to:

−ζ(k)TΓ ζ(k) = −ε‖e(k)‖2 − 2η(k)TDη(k), (35)

where D = Mδ(k)+2δ(k)T ν(M)δ(k). Since all the elements
in D are on the main diagonal we can examine the elements:

miδi(k)
(
1− 1

bi
δi(k)

)
. (36)

Based on (17) δi(k) ≤ bi, from where we can conclude that
D ≥ 0, and this leads to:

−ζ(k)TΓ ζ(k) ≤− ε‖e(k)‖2 ≤ 0. (37)

Therefore, if ζ(k)TΣ ζ(k) + ζ(k)TΓ ζ(k) ≤ 0, then ∆V < 0.
To obtain LMI conditions, consider the matrix inequality

Σ + Γ ≤ 0. Then,[
E + εI ∗

GTz B
T
z Pz+(Az−LzCz)+B ∗Pz+BzGz+ν(M)

]
≤ 0.

(38)
Due to the coupled terms in E , the inequality is bilinear.
Applying a Schur complement in the form:[
−Pz + εI ∗
B ν(M)

]
+

[
FT

GTz B
T
z

]
Pz+

[
F BzGz

]
≤ 0

(39)
with F = Az−LzCz , leads to:−Pz + εI ∗ ∗

B ν(M) ∗
F BzGz −P−1

z+

 ≤ 0. (40)



Next we consider full rank matrix S ∈ Rnx×nx . Congruence
with diag[I I S] leads to the following:−Pz + εI ∗ ∗

B ν(M) ∗
SF SBzGz −SP−1

z+ S
T

 ≤ 0. (41)

Using Property 1 we have −SP−1ST ≤ P −S −ST and we
obtain: −Pz + εI ∗ ∗

MHz +MLψCz ν(M) ∗
SAz − SLzCz SBzGz Pz+ − S − ST

 ≤ 0. (42)

By denoting Nz := SLz and Wψ := MLψ , and applying
Lemma 3, the LMI conditions in Theorem 1 are obtained.

Note that, by using a fuzzy Lyapunov function the conser-
vatism is already reduced with respect to a common quadratic
one. Naturally the approach is still conservative, and this
conservatism can be further reduced by using more sums in
the Lyapunov functions, using delayed Lyapunov functions,
developing asymptotically necessary and sufficient conditions
etc. However, such generalizations are left for future research.

B. Controller design

This part presents our conditions for controller design
assuming that all states are available.

Lemma 4: Consider system (10) with the assumption that
all the states are available, and consider the following control
law:

u(k) = −KzQ
−1
z x(k)−Gzψ(Hx(k)). (43)

If there exist matrices Pz = PTz > 0, and controller gain
matrices Ki, Qi, where i = 1, ..., s, such that,

Fiil <0

2

s− 1
Fiil + Fijl + Fjil <0 ∀i, j, l = 1, ..., s, i 6= j,

(44)

where
Fij =

[
−Qi −QTi + Pi ∗
BjKi +AjQi −Pl

]
, (45)

then the closed loop system is asymptotically stable at the
origin.

Proof: Based on (10) and (43) the closed loop system is:

x(k + 1) = (Az −BzKzQ
−1
z )x(k). (46)

Consider the Lyapunov function candidate V (x(k)) =
x(k)TP−1

z x(k), and the difference

∆V = x(k + 1)TP−1
z+ x(k + 1)− x(k)TP−1

z x(k) (47)

This can be written as:

∆V = x(k)T
(
HTP−1

z+H− P−1
z

)
x(k) (48)

with H := Az −BzKzQ
−1
z . We have:(

HTP−1
z+H− P−1

z

)
< 0. (49)

Applying the Schur complement we have[
−P−1

z ∗
Az −BzKzQ

−1
z −Pz+

]
< 0. (50)

Congruence with
[
QTz 0
0 I

]
leads to[

−QTz P−1
z Qz ∗

AzQz −BzKz −Pz+

]
< 0. (51)

Using Property 1 on −QTz P−1
z Qz leads to[

−QTz −Qz + Pz ∗
AzQz −BzKz −Pz+

]
(52)

Finally, the sufficient LMI conditions (44) are obtained by
applying Lemma 2.

C. Observer-based control

In closing of our analytical development, we prove that
stability is ensured by using in tandem the controller and
observer obtained by using Theorem 1 and Lemma 4 for
system (10).

Theorem 2: Consider system (10). If there exist controller
gains Qi, Ki, where i = 1, ..., s, which fulfill (44) and if
there exist observer gains Lψi, Li, where i = 1, ..., s which
fulfill (26), then the augmented system states in (25) are
asymptotically stable at the origin.

Proof: Consider the Lyapunov function Vc(x̂(k)) =
x̂(k)TPcx̂(k) with Pc = PTc =

∑s
i=1 hi(z(k))Pci > 0, and

Pc+ =
∑s
i=1 hi(z(k + 1))Pci, so that:

HTPc+H− Pc < 0, H := Az −BzKzQ
−1
z , (53)

i.e. it ensures stability for (46). On the other hand, consider the
Lyapunov function Vo(e(k)) = e(k)TPoe(k) with Po = PTo =∑s
i=1 hi(z(k))Poi > 0, and Po+ =

∑s
i=1 hi(z(k+ 1))Poi, so

that:
∆V =

ζ(k)T
[

E ∗
GTz B

T
z Po+(Az−LzCz) ∗Po+BzGz

]
ζ(k) < 0,

(54)
i.e. it ensures the stability of (20), with the notations
E := (Az − LzCz)

TPo+(Az − LzCz) − Po, and ζ(k) =[
e(k)T (δ(k)η(k))T

]T
. Since η(k) = (H−LψCz)e(k), (54)

can be rewritten as:

e(k)T (GTPo+G − Po)e(k) < 0

G := Az − LzCz +BzGzδ(k)(H − LψCz).
(55)

Next, consider (25), rewritten as[
x̂(k + 1)
e(k + 1)

]
=

[
H J
0 G

][
x̂(k)
e(k)

]
, (56)

where J := LzCz , and the candidate Lyapunov function:

V (x̂(k), e(k)) =

[
x̂(k)
e(k)

]T [
αPc 0

0 Po

] [
x̂(k)
e(k)

]
. (57)

∆V < 0 if[
HT 0
J T GT

] [
αPc+ 0

0 Po+

] [
H J
0 G

]
−
[
αPc 0

0 Po

]
< 0 (58)

i.e.[
α(HTPc+H− Pc) αHTPc+J

∗ αJ TPc+J + GTPo+G − Po

]
< 0.

(59)



Since HPc+H − Pc < 0, it is invertible, and a Schur
complement leads to

GTPo+G − Po + αJ TPc+J
− αJ TPc+H(HTPc+H− Pc)−1HTPc+J < 0.

(60)

Since GTPo+G −Po < 0, and both other terms are multiplied
with α, then there exists a constant α > 0 that (60) is true. So,
it is proved that if an observer and controller can be designed
based on Theorem 1 and Lemma 4, then also an observer-
based controller can be obtained by the combination of the
two.

IV. ANALYTICAL AND NUMERICAL COMPARISON
WITH EXISTING RESULTS

In this section we highlight the advantages of our approach
compared to state-of-the-art conditions. Most existing results
using TS fuzzy models with nonlinear consequents are in
continuous-time, and only a few handle the discrete-time
case [12], [11].

As to controller design, recently [26] defined a cone-bound
sector condition for the nonlinear consequents. This condition
is not necessary in our approach. Since we focus on observer-
based controller design, we compare our approach to [11], the
closest reference to our work.

A. Comparison of the conditions for nonlinear consequents

As a first basis for comparison, we consider the nonlinear
terms ψ(·). In our approach the nonlinear terms need to fulfill
Assumption 1, which is a slope-bound condition, while in [11]
these nonlinearities need to fulfill two conditions: a sector-
bound condition and a Lipschitz condition. The sector-bound
condition is defined as

ψi(x(k)) ∈ co{0, Eix(k)}, (61)

where Ei is a vector that defines a linear combination of the
states, and co{x, y} is the convex hull of x, y. Some types of
nonlinearities satisfy the slope-bound conditions, while others
are sector-bounded. Of course, there are nonlinearities that
fulfill both, but to highlight the difference, here are some
examples which are slope-bounded, but not sector-bounded:

ψ1(x) =x2 + 2x+ 3, x ∈ [−1, 1]

ψ2(x) =ex, x ∈ [0, 2]
(62)

With the slope-bound condition, affine terms can be included
in the nonlinearities, as well as other terms that are not zero
at x = 0; such elements can not be handled by (61). To
summarize the class of nonlinearities that can be handled with
our approach or with [11] see Fig. 1, where the slope-bound
condition is for our approach, and the intersection of Lipschitz
and sector-bound conditions (hatched surface) is for [11].

Fig. 1. Conditions on local nonlinearities

B. Comparison for observer design

To highlight the advantages of the observer design in our
Theorem 1 compared to Theorem 1 in [11], we present here
the LMI condition used in Theorem 1 in [11]:−Poi +RTΘΛoR ∗ ∗

0 −Λo ∗
SoAi+YjC2i SoGxi+YjGyi Pol−So−STo

 < 0,

(63)
To build a correspondence between Theorem 1 in [11] and
our Theorem 1, we consider (27) with Wψi = 0, Hi = H ,
Bi = B, for i = 1, ..., s, furthermore in (63) we take Poi :=
Pi, Soi := Si, Yj := Ni, Gxi := BGi, Gyi := 0, C2i := Ci
for i = 1, ..., s, and function φ() := ψ(). In [11] the notation
φe(k) = φ(x(k)) − φ(x̂(k)) was used. To match this with
our approach we consider φe(k) := δ(k)η(k), with δi(k) ∈
[0, bi], for i = 1, ..r, and R = H , Λo := Λo = M , Θ :=
diag(b21, ..., b

2
r).

The Lipschitz condition used in [11] is:

‖φi(x(k))− φi(x̂(k))‖ ≤ θi‖Ri(x(k)− x̂(k))‖,
i = 1, ..., r

(64)

It is assumed that the nonlinearities ψ(·) satisfy both (16) and
(64). Since our conditions prove exponential stability due to
the term εI , which is not the case in Theorem 1 of [11], we
consider for the purposes of this comparison ε = 0. We can
see that the elements consists at (3, 1), (3, 2), (3, 3) of the
matrix and their transposes are the same in (63) and (27). The
elements that are different in (63) are:

A1 =

[
RTΘΛoR ∗

0 −Λo

]
. (65)

In what follows, we show that due to the terms in (65)
our conditions are less conservative than the conditions in
Theorem 1 in [11]. By pre- and post multiplying A1 with[
e(k)
φe(k)

]T
we obtain

[
e(k)
φe(k)

]T
A1

[
e(k)
φe(k)

]
=

e(k)TRTΘΛoRe(k)− φe(k)TΛoφe(k),

(66)

and because of the Lipschitz condition in (64) we have:

e(k)TRTΘΛoRe(k)− φe(k)TΛoφe(k) ≥ 0. (67)



This condition was used to prove Theorem 1 in [11]. Now
consider (65) with our notations:

A1 =

[
HTdiag(b21, ..., b

2
r)MH ∗

0 −M

]
. (68)

Pre- and post multiplying with ζ(k)T and ζ(k), we obtain:

e(k)THTdiag(b21, .., b
2
r)MHe(k)−η(k)T δ(k)TMδ(k)η(k)

(69)
Since Wψ = 0, then η(k) = He(k), leading to:

η(k)T
(
diag(b21, ..., b

2
r)M − δ(k)Mδ(k)

)
η(k) (70)

All matrices are diagonal, so we can examine just their
diagonal elements:

mi

(
b2i − δi(k)2

)
, (71)

and mi > 0, so we have

b2i − δi(k)2 ≥ 0, (72)

which is true because bi ≥ δi(k).
Now we consider our Assumption (1), where the diagonal

elements lead to (36), repeated here for clarity:

mi

(
δi(k)− δi(k)

2

bi

)
.

Since mi > 0, we have

δi(k)− δi(k)2

bi
≥ 0⇔ biδi(k)− δi(k)2 ≥ 0, (73)

which is true because bi ≥ δi(k). This proves that our
conditions are more relaxed, as we only need biδi(k) instead
of b2i :

0 ≤ biδi(k)− δi(k)2 ≤ b2i − δi(k)2. (74)

To further see the advantages, consider the following nu-
merical example.

Example 1: Model (10) is considered with matrices

A1 =A2 =

[
1 0.008
0 a1

]
, A3 =A4 =

[
1 0.008
0 0.99

]
, B=

[
0
1

]
G1 =G3 = a2, G2 = G4 = 0.0027, C =

[
1 0

]
.

(75)

In this model we have two parameters a1 ∈ [−1, 3] and
a2 ∈ [−1.5, 1.5], and we look for feasible solutions with both
Theorem 1 and Theorem 1 in [11].

A single unmeasured-state-dependent nonlinearity is in-
cluded in ψ(Hx(k)), which satisfies (16) with b = 1 and
H =

[
0 1

]
. The values for which feasible solutions have

been obtained can be seen in Fig. 2. Theorem 1 provides a
wider range compared to Theorem 1 of [11], and the range
can be further extended by considering the injection term Wψ .

C. Comparison for controller design

In the case when we consider only the controller design,
i.e. all variables are known, one advantage stems from the
matching condition BzGzψ(·), which leads to the cancellation
of the nonlinear consequents. In Corollary 1 of [11], the terms

Fig. 2. b = 1: ’.’-Theorem 1 from [11], ’o’-Theorem 1 with Wψ = 0,
’@A’-Theorem 1

in the LMI condition (written with our notations) are defined
as:

Fijl =

Pi −Q−QT ∗ ∗
EQ −2Λc ∗

AiQ+BiVaj GiΛc +BiVbj −Pl

 , (76)

while the corresponding term in our Theorem 4 is:

Fijl =

[
Pi −Qi −QTi ∗
BjKi +AjQi −Pl

]
. (77)

We generalize the Q matrix by considering the fuzzy form:
Qz =

∑s
i=1 hi(z)Qi, which provides less restrictive condi-

tions than the constant Q in Corollary 1 of [11]. When Qz = Q
in (76) we have only the elements at positions (1,1), (1,3), (3,1)
and (3,3) of (76), therefore (77) is necessary for (76), but not
vice versa. In (76) the condition depends on E which makes
it sector-bound-dependent condition, hence more restrictive.

Note that a disadvantage of our approach compared to
[11] is that the model is restricted so that the input is
matching the nonlinearity. This structure is not restricted in
Corollary 1 of [11]. Next we highlight the advantages of our
approach on a numerical example.

Example 2: Consider (10) with matrices:

A1 =

[
1 0.008
0 −1

]
, A2 =

[
1 0.008
0 0.9

]
, B =

[
0
1

]
,

H =
[
0 1

]
, G1 = −0.027, G2 = 0.027,

membership functions h1(x1(k)) = 1−sin(x1)
2 , h2(x1(k)) =

1 − h1(x1(k)), and a nonlinear consequent ψ(·) that fulfills
the sector bound condition with E = [0, α], where α is a
varying parameter. Note that for the design the sector-bound
is used, and the form of the nonlinearity is not important.
Therefore we do not specify the nonlinearity for this example.

In order to apply Corollary 1 in [11] we use

G̃1 = BG1 =

[
0

−0.027

]
, G̃2 = BG2 =

[
0

0.027

]
.

With these, we obtain feasible solutions for values α ≤ 14.
Since in our case in Theorem 4 the LMI conditions do not
depend on the sector-bound they are feasible for any values
of α.



TABLE I
PARAMETER TABLE

Notation Value Description
g [ms/s] 9.8 gravitational acceleration

m [kg] 0.2 mass of pendulum
M [kg] 1.61 mass of cart

γ [N/rad/s] 0.4898 friction coefficient
l [m] 0.67 length of pendulum

J [kgm2] 0.0232 moment of inertia
Km [-] 6.5914 PWM gain
σ [rad/s] 15 max angular velocity

D. Comparison for observer-based control

For observer-based controller design both observer and
controller design conditions must be fulfilled.

Also in this context our approach provides less restrictive
design conditions than the approach of [11] since for the
controller design we do not require the sector-bound condition.

V. CASE STUDY: A PENDULUM SYSTEM

In this section we test the proposed observer-based con-
troller in experiments involving a pendulum on a cart. In
the sequel we present the model of the pendulum, which
is followed by a comparison with the state of the art in
Section V-A. Next, the simulation results are presented in
Section V-B, and finally, experimental results in Section V-C
close the section.

The model for the pendulum system is adopted from [22]
and in continuous time has the following form:

ẋ1 =x2

ẋ2 =ρ1(x1)x2+ρ2(x1)ρ3(x1)ψ(Hx)+ρ2(x1)(ũ+β(x1))

y =x1
(78)

where x1 is the angle of the pendulum and x2 is the angular
velocity. The system has an unstable equilibrium point at the
pointing up position and the purpose of the controller is to
stabilize the system at that point by moving the cart. The
nonlinear functions are:

ψ(Hx) =x22 + 2σx2, H =
[
0 1

]
ρ1(x1) =

−γ + 2σam2l2 cos(x1) sin(x1)

α(x1)

ρ2(x1) =
−Kmaml cos(x1)

α(x1)

ρ3(x1) =
ml sin(x1)

Km
, β(x1) = − g sin(x1)

a cos(x1)
,

(79)

where α(x1) = (J +ml2)−a(ml cos(x1))2, a = 1/(M +m)
and the rest of the parameters can be found in Table I.

The nonlinearity which depends on the unmeasured states
is ψ(Hx) and to fulfill Assumption 1 it is assumed that the
angular velocity is bounded x2 ∈ [−σ, σ], which will be
verified a posteriori. Under this condition Assumption 1 is
satisfied with b = 4σ.

Since β(x1) depends only on the measured state, x1, we
can eliminate its effect by defining ũ = u− β(x1). Now (78)
matches the form required for (10).

Based on considerations from the real application, the
sampling time is taken Ts = 0.01[s], and a discrete-time state-
space model obtained by forward Euler discretization is

x(k + 1) =A(x1(k))x(k) +B(x1(k))u(k)

+B(x1(k))G(x1(k))ψ(Hx(k))

y(k) =Cx(k),

(80)

where

A(x1(k)) =

(
I + Ts

[
0 1
0 ρ1(x1(k))

])
, C =

[
1 0

]
B(x1(k)) =Ts

[
0

ρ2(x1(k))

]
, G(x1(k)) = ρ3(x1(k)).

(81)

A. Comparison with the state of the art

The observer should converge rapidly to the system states.
The convergence can be manipulated by considering a decay
rate [30], which defines the following relationship: ‖e(k)‖ ≤
ωkχ‖e(0)‖. Thus, the error at time step k decreases expo-
nentially compared to the initial error with a decay rate ω ∈
(0, 1), and some Lyapunov function dependent constant χ.

It can be seen that both ρ1(·) and ψ(·) depend on the
maximum angular velocity σ, a parameter that needs to be
verified a posteriori to see if the obtained results indeed
fulfill the assumption that the angular velocity is below the
maximum. If this condition is not satisfied, then we have no
theoretical guarantee for the observer. Thus, the greater the
value of σ, the better.

For the observer design we consider the case when the rod
of the pendulum can make a full circle, therefore the compact
set of the state space under which the TS model is defined
is x1 ∈ [−π, π] and x2 ∈ [−σ, σ]. We use the sector-
nonlinearity approach [2] to obtain the local models.

Using [11] for observer design with a value of the decay
rate ω = 0.31, the maximum angular velocity σ for which a
feasible solution can be found is σ = 45[rad/s]. Using our
approach with no injection term (Lψ = 0) increases this to
σ = 65[rad/s], and if we use the injection term we have
σ = 114[rad/s]. We can see that using our approach with
no injection term leads to a 44% increase of the maximum
angular velocity, while with the injection term, this value is
increased by 153%. This property highlights the advantage
of our approach compared to the observer design in [11].
Note that for other values of the decay rate we still have
improvements, but the numbers are very large so they will
not be reached in practice.

Next we consider the compact set of the state x1 ∈ [−π, π]
and σ = 65[rad/s]. We focus only on the performances of the
observer, so we consider the unforced-case, where we have
no input signal. The initial condition for the system is x0 =
[−0.1, 0.7]T .

In what follows, we test the performances of three observers.
The first one is the observer designed using the approach
presented in [11], with ω = 0.4, because this is the smallest
value for which feasible solution have been found with respect
to the given σ = 65[rad/s]. Next we set ω = 0.31, and the
second observer is based on Theorem 1 with no injection term
(Lψ = 0), while the third observer is with the injection term.



Fig. 3. Norm of the errors

The norm of the estimation errors can be seen on Fig. 3,
where the sample index is on the horizontal axis, ‖eD‖ is
the norm of the error with Theorem 1 in [11], ‖eZ‖ is with
Theorem 1, when Lψ = 0, and ‖eZLψ‖ is with the injection
term. For all three cases the initial conditions for the observers
are x̂0 = [0, 0]T . It can be seen that the convergence is faster
in our case, and also the maximum error is reduced, especially
when we have the injection term.

As it was already mentioned in Section IV, for controller
design we have the advantage that we do not need the sector-
bound condition. For the inverted pendulum model in (80) the
nonlinear consequent is ψ(x(k)) = x2(k)2 + σx2(k), with
the assumption that |x2| ≤ σ. The sector-bound condition for
ψ(·) is ψ(x(k)) ∈ co{0, Ex(k)}, where E = [0, 2σ], so the
sector bound depends on the double of the maximum angular
velocity. Similarly to observer design, here also greater values
of σ are better.

In (10) we use the form BzGzψ(Hx), while in [11] only
G̃zψ(x) is used. For the comparison, we have:

G̃1 =G̃3 = G̃5 = G̃7 =

[
0

−0.45e− 3

]
,

G̃2 =G̃4 = G̃6 = G̃8 =

[
0

0.45e− 3

]
.

(82)

To highlight the advantage of our approach we consider
a decay rate ωc = 0.64, to have a fast convergence to the
stabilization point. Using this decay rate our LMI conditions
provide feasible solutions for any value of σ, while Corollary 1
in [11] provides feasible solutions only for σ ≤ 42[rad/s].
This proves that under these conditions our LMIs are less
restrictive than the ones in Corolloary 1 in [11]. Note that for
greater values of the decay rate we still have improvements,
but the numbers are very large so they will not be reached in
practice.

As it was mentioned in Section IV for observer-based
controller design we need both observer and controller design
conditions. For example, we consider Theorem 1 and Corol-
lary 1 in [11]. We would like to have a decay-rate ωo = 0.31
for observer design, which leads to a maximum angular
velocity σ = 45[rad/s] and for controller design we consider
a decay-rate ωc = 0.64, which leads to σ = 42[rad/s]. So in

the case of observer-based controller design the approaches of
[11] provides theoretical guarantees only for σ = 42[rad/s],
due to the limitation of the controller.

On the other hand, using our observer-based controller
design approach in Theorem 2 we do not have the sector-
bound restriction for controller design and the observer design
conditions are less restrictive, therefore we have theoretical
guarantee for σ = 114[rad/s].

B. Simulation results

The compact set of the state-space on which the TS model
is constructed is given by: x1 ∈ [−π3 ,

π
3 ] and x2 ∈ [−σ, σ],

with σ = 15[rad/s]. Since we have 3 nonlinearities, ρ1(x1),
ρ2(x1), and ρ3(x1), all depending on measured variable x1, we
obtain an s23 = 8 rule TS fuzzy model, with local matrices:

A1 =A2 = A3 = A4 =

[
1 0.01
0 0.85

]
,

A5 =A6 = A7 = A8 =

[
1 0.01
0 1.05

]
,

B1 =B2 = B5 = B6 =

[
0

−0.0473

]
,

B3 =B4 = B7 = B8 =

[
0

−0.0221

]
,

G1 =G3 = G5 = G7 = −0.0176,

G2 =G4 = G6 = G8 = 0.0176.

(83)

We apply Theorem 1 for the observer design. At the first try
we obtained Lψi terms that were close to each other, therefore
we consider a constant Lψ . The following observer gains were
obtained:

Lψ =− 11.0232, L1 =

[
1.11
9.89

]
, L2 =

[
1.11
9.83

]
,

L3 =

[
1.11
9.87

]
, L4 =

[
1.11
9.82

]
, L5 =

[
1.12
13.55

]
,

L6 =

[
1.10
12.75

]
, L7 =

[
1.12
12.95

]
, L8 =

[
1.10
12.75

]
.

(84)

Next, we apply Lemma 4 for controller design. To reduce
the computational complexity of the LMIs, Q is defined
constant, and the obtained controller gains are:

K1 =
[
−0.65 0.05

]
, K2 =

[
−0.65 0.05

]
,

K3 =
[
−0.70 0.14

]
, K4 =

[
−0.70 0.14

]
,

K5 =
[
0.24 −0.55

]
, K6 =

[
0.24 −0.55

]
,

K7 =
[
0.30 −0.59

]
, K8 =

[
0.30 −0.59

]
,

Q−1 =

[
4.29 3.03
3.04 6.81

]
.

(85)

The initial condition for the simulation is x(0) = [π6 , 0.4]T ,
and for the observer x̂(0) = [π6 , 0]T . The system states can
be seen in Fig. 4. The obtained results show that the system
states are stabilized at the unstable equilibrium point and the
estimated states converge to the true states (Fig. 5).



Fig. 4. Closed-loop system states with initial condition x(0) = [π
6
, 0.4]T

-simulation

Fig. 5. Estimation error

C. Experimental results

For the real application the control input is bounded,
u ∈ [−1, 1], so the generated input signal is not enough to
move the pendulum in the pointing up position. To overcome
this issue a destabilizing control law is used which is applied
when |x1| > 0.3 [rad]. For destabilization, we use the system’s
inertia: for example, if the angle is negative, we move the cart
in the opposite direction with maximum input for 5[s], then
suddenly a brake is applied, so the rod of the pendulum is
moving from the negative angle towards 0. When the angle
is |x1| < 0.3 [rad], then the observer-based control law is
applied.

The angle of the physical model is limited to move on the
range x1 ∈ [−π6 ,

π
6 ], see Fig. 6.

The obtained output is denoted with yZ and is shown in
Fig. 7. As it can be seen the controller is stabilizing faster
than in simulation due to the inertia of the pendulum, which
gives the system a large angular velocity.

To provide another perspective from the experimental point
of view, we compare our experiments to the approach pre-
sented in [31]. To apply the approach in [31] we approximate
(78) as

ẋ = Azx+Bzu,

Fig. 6. Pendulum on a cart

Fig. 7. Real system output, yZ - our approach, yH approach from [31]

with matrices:

A1 =

[
0 1
mgl
µ − γµ

]
, B1 =

[
0
−amlµ

]
,

A2 =

[
0 1
mgl
µκ

− γ
µκ

]
, B2 =

[
0

−amlκµκ

]
,

(86)

where κ = cos
(
π
6

)
, µ = J +ml2 − am2l2, and

µκ = (J+ml2)−am2l2 cos
(
π
6

)2
. The membership functions

are the same as in [31], therefore they are not presented here.
Applying Lemma 1 in [31], the controller gains are:

K1 =
[
−30.76 −4.38

]
, K2 =

[
−30.73 −4.73

]
. (87)

Since the angular velocity is not measured we use the
approximation x2 = x1(k)−x1(k−1)

Ts
. The experimental results

obtained with this controller are given in Fig. 7 (yH ).
In both cases the angle is not exactly 0 in steady state.

These small deviations are there because of the friction of the
electro-mechanical elements. To make the motor move, the
input signal should pass a certain threshold to overcome the
friction force of the motor, but since we are very close to
the pointing up position, the generated torque is not enough
to pass this threshold. Furthermore, we have a relatively high
static friction due to the other mechanical parts of the system,
which further increases the threshold.

The approach we propose provides a smoother result, but
a somewhat larger steady-state error. The controller of [31]



provides a smaller steady-state error, but with a larger settling
time due to the oscillations around the stabilization point.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a novel observer-based control design
approach for nonlinear systems with local nonlinearities. Two
types of nonlinearities were considered: measured and unmea-
sured state nonlinearities. The nonlinearities that depend on
measured states were handled using TS fuzzy modelling, while
those that depend on unmeasured states were kept as local
nonlinearities. The new approach of observer and controller
design proved to be less conservative than existing results in
the literature. We showed that the control and the observer can
be independently designed. Finally, the design was illustrated
on a pendulum on a cart example.

In the future we will consider model uncertainties in the
design. We will also apply our method for more complex
real systems.
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