Near-Optimal Strategies for Nonlinear and Uncertain
Networked Control Systems

Lucian Busoniu Romain Postoyan Jamal Daafouz

Abstract—We consider problems where a controller commu- since it allows the communication protocol to assign ptycio
nicates with a general nonlinear plant via a network, and the control task only when needed. Further, by only exegutin
must optimize a performance index. The system is modeled yhq controller at transmission instants, computation dsiced
in discrete time and may be affected by a class of stochastic 191, We al h h to handle stochasti work del
uncertainties that can take nitely many values. Admissible [19]. We also show how to handle stochastic network delays
inputs are constrained to belong to a nite set. Exploiting some between the controller and the actuators [48]. Other nétwor
optimistic planning algorithms from the articial intelligence  effects such as packet drop-outs are not considered.
eld, we propose two control strategies that take into account fhe The main contribution of our approach is providing a
communication constraints induced by the use of the network. tight relationship between near-optimality and lengthrahs-

Both strategies send in a single packet long-horizon solutions, = . int | th hand d th ther th
such as sequences of inputs. Our analysis characterizes theMISSIon intervals on tnhe one hand, and on the other tne

relationship between computation, near-optimality, and trans- COmputational load of the algorithm. This algorithm inchsd
mission intervals. In particular, the rst strategy imposes at a complete, explicit implementation of the optimizer. Ireth

each transmission a desired near-optimality, which we show is time-triggered strategy, the transmission intervals and near-
related to an imposed transmission period; for this setting, we optimality are simultaneously adjusted, and we analyze the

analyze the required computation. The second strategy has a . . .
xed computation budget, and within this constraint it adapts 'eduired computation. The advantage of aelf-triggered

the next transmission instant to the last state measurement, Strategy is that computation is directly controlled, whitgns-
leading to a self-triggered policy. For this case, we guarantee long mission intervals adapt to the current state and may be signi
transmission intervals. Examples and simulation experiments are cantly longer than in the time-triggered setting. All trésdione
provided throughout the paper. . for general, nonlinear and not necessarily smooth systems,
Index Terms—networked control systems, optimal control, d f I b ded d h th timal trol
nonlinear systems, planning, predictive control. an. Qr ggnera 0_un_ e rewgr S, where the optimal contro
objective is to maximize the discounted sum of rewards.
We are not aware of such explicitly implementable ap-
|. INTRODUCTION proaches with known computational bounds in the literature

In a variety of applications, controllers are implementef2nlinéar NCS. Instead, existing work on time-triggeredNC

over networks in order to reduce installation costs anddiifa typically uses model-predictive cpntrol to hgnd[e delays a
tate maintenance, leading networked control systenfsICS). packet dropouts, e.g. [2], [43], W|thqut considering coma_pu
The control law therefore has to share the communicatidq"" Furthermore, only a few seif-triggered NC.S technue
bandwidth with other network users. This constraint cannGg" handle optimal control, and those target linear systems

be ignored in general, as it may have a serious impact 6r9- 23], [25].

the system performance. Various methodologies for NCS haveWe borrow from arti cial intelligence and adapt to NCS

been developed over these last decades. Two main approaéWgs.re_Ce.ntOptimiStiC gL?Bninzgs(OP)daég; ;itth: hOP forMDeI—(
are distinguished based on whether the transmissions Eﬁfé“_'r_"s“c systems ( ) [28] an or stochastic arkov
de ned by a clock, see e.g. [7], [26], [44], or are triggere ecision Processes (OP-MDP) [9]. It is these algorithms

depending on the state of the plant, in which case we talk t lend our method its generality. They solve the_ optimal
event-based controkee [24] and the references therein. control problem at each state encountered by exploringea tre

In this paper, we develop an approach for the near-optin{ presentation of possible sequences of actions (inprds) f

; : ; ; ; that state. Thus, OP is a type of model-predictive control.
control of nonlinear NCS, allowing for either time-triggelr , ,
or self-triggered control strategies. The inputs are cairstd Several OP algorithms were introduced, €.9. [8]-{10], [33]

to belong to a nite set. We focus on reducing the numbil?‘G]’ and showed good performance in problems from control

of network transmissions, and we achieve this by sendi %6]’ med|C|_ne [10], and arti .C'.al _mtelllgence [22].
long-horizon solutions such as sequences of inputs, like inWe consider .rst determlmstlc_ systems, where we use
e.g., [2], [14], [25], [38], [43]-[45]. This type of sporadli OP_D and exploit the fa_ct that it returns long and near-
communication at known intervals is important in schedylin ©Ptimal sequences of actions [28]. Thus, rather than sgndin
only the rst action in the sequence and then rerunning the
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computational complexity grows with the selected peridge T To make the development easier to follow, we rst describe
second strategy enforces a xed computation budget at evéiyly the deterministic case, starting with OPD and its sBe
OP execution, and within this budget generates a sequemnté&ection I, followed by COP and STOP with their analysis
of actions from the last measured plant state. We analyaed simulations in Section Ill. The stochastic case is sirtyil
how the resulting near-optimality and sequence length (addveloped, with OP-MDP in Section IV and the NCS methods
therefore the communication interval) depend on the stagé, in Section V. Section VI focuses on the delayed case, and
call the algorithmSelf-Triggered OP (STOP¥)equence-basedSection VIl concludes the paper. We performed a preliminary
control was used among others by [14], [25], [38], [43]-[45ktudy in the deterministic case in [11].
In [45], different from our motivation of reducing network
transmissions, the controller nds sequences of actions at Il. DETERMINISTIC CASE BACKGROUND
steps when computational resources are large, and appties t We introduce the necessary techniques in detail, and we
sequences at future steps at which resources are insuf ciemdapt their analysis to the NCS setting.

In the stochastic case, we consider a class of uncertainties
modeled by nitely many random outcomes. The core ideds Optimal control problem
are similar to the deterministic case, but open-loop secggen Consider an optimal control problem for a deterministic,
are no longer appropriate, so we use OP-MDP and a nelgcrete-time nonlinear system:
solution concept: tree policies, which are feedback lawner ov _ i
possible realizations of the uncertainties up to an adaptiv Xirw = T (X Uk) (1)
length. This also requires a different NCS architecture: vaith statex 2 X and actionu 2 U. Here, X is an arbitrary
local, computationally cheap feedback controller is diyec space, such aRk™ or a discrete set. We restridil to a
connected to the system and implements the tree policyewhihite set below. Each transition from, to Xx+1 as a result
a computationally powerful OP-MDP controller sits beyondf ux is associated with a rewardcsa = (Xk;Ux), and
the network. Since the sequence length now depends tba goal is to nd for each stat& a sequence of actions
the uncertainty realization, COP has no direct counterpaut; = (Uo;Us;:::) 2 Ul that maximizes the in nite-horizon
instead, in the rst stochastic strategy a desired nearglity  discounted return (value):

is imposed at each transmission. The analysis then bounds A A

computation and leads to a probabilistic characterizatfahe VUi (x) = Kreer = K (Xk; Uk) (2
length. For the second, self-triggered strategy, a contipntl k=0 k=0

budget is again imposed, and we investigate near-optynalitherexy = x;Xx+1 = f (Xk;ux) fork 0, and 2 [0;1) is
and the related probabilistic lengths. the discount factor. Elemenk, U, f, , and together form

For both deterministic and stochastic systems, our siegega deterministic type of Markov decision process (MDP). The
allow sending only an initial part of the solutions foundoptimal value function is de ned ag (x) =sup,, VYt (x),
subsequences or subtrees. A tuning parameter allows movirgl under Assumption 1 below always exists and is unique,
from the original OP approach, which only applies the rsgee Ch. 4 of [4]. Because the system is deterministic, action
action, to applying the complete solutions. Interestinglg sequences are suf cient to represent the optimal solution.
show that closing the loop more often does not necessadity le  Assumption 1The action space is discrete (or discretized),
to better performance, but may do better or worse dependidg= u';:::;uM . Rewards are bounded [6; 1].
on the problem. This is because solutions that are bettérein t Reward boundedness is often assumed in the MDP lit-
long term may either be discovered or not, depending on tbeature, see e.g. Ch. 4 of [4] and [46], since it ensures
reward structure. Finally, the stochastic self-triggemeethod boundedness of the value in (2). The main way to achieve
is applied to deal with random delays in the control channédoundedness is by saturating a possibly unbounded original

Our analysis focuses on near-optimality and transmissieeward function. This changes the optimal solution, buftisro
intervals, which are important even in the absence of immediuf cient in practice. Then, the resulting bounded rewards
ate stability guarantees. The connection between stabifil can be normalized t¢0; 1]. On the other hand, the physical
optimality would be interesting, but is not yet understood f limitations of the system may be meaningfully modeled by
the discounted type of cost required by OPD and OP-MDgaturating the states and actions. In this case, a rewamibou
For instance, when discounting is present stability cannf@ilows from the saturation limits.
generally be guaranteed even in the linear case, as illedtra Many systems have inherently discrete and nitely-many
by [31], while [12] emphasized similar dif culties in the N&C actions, because they are controlled by switches. Thisds th
setting. Many works in optimal control use discounted costase e.g. in traf ¢ signal control [18] or water level coritro
without guaranteeing stability, such as [1], [29] which sioler by barriers and sluices [47]. When the actions are originally
network effects, as well as works on classic optimal controbntinuous, discretization reduces performance, butdse is
of linear systems [27], nonlinear systems [34], singulgdy- often manageable. Discretized actions may even be préderab
turbed systems [21], or systems with discrete-valued bbesa due to their benets in NCS: the size of communication
as in our case [5], [15], [20]. We have made an initial stapili packets can be reduced by encoding the discrete actions by
analysis under the exactly optimal control [40], but a ccetel their index, and actuator saturation can be dealt with bykim
solution is not yet available and falls outside the scopéhisf t discretizing within the operating ranges. Other authoosa&tul
paper. interest in coarsely-discretized control for NCS, e.g.][17



B. Optimistic planning for deterministic systems Algorithm 1 Optimistic planning for deterministic systems

To introduce the algorithm, in this section we focus on HPUt: statex, budgetn or depthd (set the other td )

particular statex where it must be applied, and by convention 1 initialize tree:T  f root, i =0
set the current time t®, so thatx, = x. Of course, the 2 repeat

procedure works at any time step. s nd optimistic sequenceu” 2 argmax, . (r bx(u)
4: add childrenu! ;j =1;:::;M to the node ofuY
5: i i+1
g:until i=nor ( T)=d+1
7

n i;d (T) 1
Output: u 2 argmax,,_(r) x(u), d, n

to ( T) = d+ 1. Sometimes a sequence of lengthT)
may be returned, in which case the last action is removed for
uniformity of analysis. The computational budget is meadur
Fig. 1. lllustration of an OPD tre& . Nodes are labeled by actions, arcsby the number of expansions, since an expansion tekeslls
represent transitions and are labeled by the rewards artdsta®s resulting to the modef and to the reward function, and for nonlinear
?gea,aplgg'fsfgﬁeC;é{%i‘;?ﬂg;ns?t%ﬁf?r'oiﬁ’gsi%%tes ?ﬁf,gg“g)e.rs-rcgftlsegviesx systems computinfy dominates the execution time. Other tree
L(T) are enclosed in a dashed line, while the thick path highsigint action operations (such as computing b-values or traversing e tr
sequence. Note that the root corresponds to the empty sexjuenc to nd the optimistic sequence) are signi cantly cheapeut b
Optimistic planning for deterministic systems (OPD) [28tan be bounded betwe&(n logn) andO(n?), depending on
explores a tree representation of the possible action segee the branching factor (x) de ned in the next section.
from the current state, as illustrated in Figure 1. OPD start
with an unlabeled root node, and iteratively expands nodes,

where each expansion adds new children nodes correspad-Theoretical guarantees

depthd is reached via a unique path through the tree, amglence from a given state, we use the branching factor
can thus be uniquely associated to the sequence of actiog) (average number of children per node) of the near-

Ug = (Uog;us;:::;uq 1) on this path. In what follows, we optimal subtree. This subtree contains only nodes thagngiv
will work interchangeably with sequences and paths, kegpithe rewards obtained down to them in the tree, cannot be ruled
this equivalence in mind. out as belonging to optimal sequences. In general, exgjorin
For a sequencaqy, we de ne three quantities: these nodes is unavoidable, an) is in this sense necessary
% 1 d to characterize the problem. OP@nly explores the near-
“w(ug) = d° (Xgo; Ugo);  be(ug) = “x(ugq) + optimal subtree, leading to a priori guarantees on theioslat
do=0 1 between computation, sequence length, and near-optymalit
Vy(Ug) = “x(Uug)+ 9V (xq) Since (x) is generally unknown, actual values for e.g. near-

h the stat ted with th i optimality cannot be determined in advance. Neverthetbss,
where the states are generated wi € action sequeqce analysis provides con dence that OPD automatically adapts
like in (2). Subscriptx indicates that the three quantltlesto the complexity of the problem at state described by

depend on the state = xo where OPD is app_hed. Due to (x). We return to detail these properties after the formal
Assumption 1, the rewards (below depilh are in [0; 1], so development is in place

“x(uq) provides a lower bound on the value of any in nite . . _ .
. ; . The near-optimal subtree is de ned @s (x) = fuqjd
sequence that starts withy, while b, (uq4) is an upper bound. OV (X) vy (ug) d=(1 )g. Let T, (x) be the set

Value vy (ug) is obtained by continuing optimally afters. ¢ 1\ qeq ot depthll on T (x) andjj denote set cardinality
We denote the set of sequences corresponding to Ieave§h%¥:1 the asymptotic branching factor is de ned a&) = '
T by L(T). OPD optimistically explores the space of actionl. T .1=d
sequences, by always expanding further a most promisirig 18g SUPan 114 (X)! = " :
sequence: one with the largest upper boby( ). At the end, A sequ?niiud IS Sa'.d tohbe -opt_|mal whenV' (x) f1h
a sequence that maximizes the lower bourdu) among Vi (Ua) - The upcoming theorem Iis a consequence of the

the leaves is returned. Since leaves sit at varying dedthsanaIySiS in [28], [39). It is given here in a form that bring;sto.
in the tree so that 9=(1 ) varies, maximizing x(u) is the role of the sequence length, useful for the NCS apptioati

different from maximizingby (U), and can intuitively be seen in the sequel. Part (i) of the theorem shows that OPD returns a

as making a safe choice. Algorithm 1 summarizes the ent’Peng and near-optimal sequence, gnd parts (i), (iii) shioat t
procedure, where function( ) gives the depth of a tree,sequence length and near-optimality are closely relateteo

and any ties among several sequences maximizing upperCSP]pUtat'on budget, via branching fapto(rx).

lower bounds are broken arbitrarily. We allow the algorithm 'h€oreém liLetx 2 X. When OPD is called at:

to terminate either after a given number of expansions, or(i) The length of the sequence returnedisd= (' T) 1.
after a node at given depttd has been expanded, leading Denoting"(x) = V (X) “x(u ), we have'(x) —.



(i) When OPD is called with large target depth If channelis only used at intervals equal to the sequenceiengt
(x) > 1 it will require a number of expansiohs

n(x)= O( (x)9). If (x)=1,n(x)= O(d).
(i) When OPD is called with large budget If (x) > 1 o oL e ]
it will reach a depth ofd(x) = ( %), and"(x) = < >

logl =
o(n & @), If (x)=1,dx) = ( n)and"(x)= :
O( °XM), wherec(x) is a constant. -

Proof: (sketch) Item (i) follows from the proof of Theo-

Fig. 2. NCS architecture in the deterministi )
rem 2 in [28], (ii) from the proof of Theorem 3 in [28], and 9 arehiteciure in fhe deferministic case

(ii) from the proofs of Theorems 2 and 3 in [28]. ]

The sequence returned is al§x)-optimal, sinceV (x) B. Algorithms
V(U ) V(X)) “x(u) "(x)in view of part (i); the  Algorithm 1 and Theorem 1 suggest two ways in which
second inequality here is stronger th&ix)-optimality. OPD could be exploited for NCS. The rst possibility is to

These results rely on the core property that OPD onfihpose a desired sequence length (planning deptt)every
expands nodes i (x), although it uses solely reward infor-controller execution step, and then send to the plant either
mation from the current tree [28], [39]. To build more intait  the full sequence or an initial subsequence thereof. Degoti
onT (x) and (x), note thatT (x) contains sequences forthe |ength of the sent subsequence dfy d, this means
which it is impossible to tell, from their rewards down @ the communication between the controller and the plant is
whgther or nqt thgy are part of an optimal solution, becauggt to occur with a periodl®. Applying OPD in this way
their near-optimality is smaller than the amount of reward novel. Since lengtitl and the controller execution interval

9=(1 ) they might accumulate below depthUsually only 4o ¢ are freely selected, this rst strategy is called Clock-

some sequences have this property, thereforg) is smaller  triggered OP (COP); it is summarized in Algorithm 2. The
than the complete tree andx) is smaller than the number

of actionsM . The smaller (x), the more easily near-optimal Algorithm 2 COP: Clock-triggered optimistic planning
sequences can be distinguished, and the better OPD does. [Rh@t: initial statex,, target depthd, subsequence lengtt?
best case is (x) = 1, obtained e.g. when a single sequence;. Kk ¢
always obtains rewards df, and all the other rewards afe 5. |oop
In this case the algorithm must only develop this sequencey.  measure current stase
and suboptimality decreases exponentially. In the worseca 4. apply OPDKy; d), obtaining a sequenagg
(x) = M, obtained e.g. when all the sequences have thg. send initial subsequenaeg to plant
same value, the algorithm must explore the complete tree in@ kK + d° wait d° steps
uniform fashion, expanding nodes in order of their depth. 7. end loop

IIl. OPD FOR DETERMINISTIC NETWORKED CONTROL
SYSTEMS

Algorithm 3 STOP: Self-triggered optimistic planning

A. Setting Inlpul;[: m(l)tlal statexo, budgetn, subsequence fraction

We now focus on a networked-control setting, in which . loop
actuation and state signals are exchanged over a netwdrk tha measure current stase
must be ef ciently uti!ized. To this end, the controller $hd> 4: apply OPDg; n), obtaining a sequenagy )
only communicate with the plant when needed. OPD is welk.  send initial subsequenagq (e to plant
equipped to handle this case, since it guarantees thatlit wi}. k k+dd (x)e waitdd (x)e steps
returnlong and near-optimal sequences actions. 7: end loop
We envision the following setup, see Figure 2. The sequenee
of transmission instants is denoted Ry, i 2 f0;1;2;:::g, second possibility is to impose the computation budgédike
and it will either be xed by the user or de ned by thein the classical application of OPD, and let the algorithm
controller itself. At eactk;, the controller receives the state'snd the longest sequence it can within this budget. Then,
measurement and generates a sequence of control actidifferent from classical OPD which sends just one action, we
which is sent as a single packet to the actuators' buffeg ilik send again either the whole sequence or a subsequence. The
[2], [14], [25], [43], [44]. The actuators then apply thk&th returned sequence length depends in addition &so on the
component of the sequence to the plant at &ep k° until current state, through the planning complexity as expresse
the full sequence has been used. Afterwards, the new stafysbranching factor (x). Therefore, the algorithm is self-
measurement is sent to the controller and the proceduretriggered and we call it Self-Triggered OP (STOP); it is
repeated. The number of transmissions is reduced, since sh&marized as Algorithm 3. To allow sending subsequences,
STOP is parameterized by the fractior2 (0; 1], so that if a
'Letg;h:(0;1)! R.Statemeny(t) = O(h(1)) (org(t) = ( (1)) sequence of lengtt is returned by OPD, only the rstid e
for larget means thadto; ¢ > 0o thatg(t)  ch(t) (or g(t)  chit)) actions are actually sent and applied, whdre denotes the

8t  to. When the statement is made for smiglit means tha®to;c > 0 o
so that the same inequalities hold @8t to. ceiling operator.




C. Analysis Theorem 3Take any large budget and any 2 (0; 1]. (a)
e

og 1 =
An algorithm is called'-optimal if it applies in closed loop The near-optimality of STOP is:O(n s ~o7) if (Xo) > 1,
a sequencel; satisfyingV (xo) VUt (xo) ". Consider and O( ") if (xo) = 1. (b) At every statex where it
rst COP. is called, STOP produces a sequence of lengthi(x) =
. log n H — H —
Theorem 2:For anyd andd® d, the following hold. (a) ( &g ) f (X)> 1, and d(x)= ( n)if (x)=1.
COP isy : -optimal. (b) For larged, at every statex where Proof: It directly follows by reapplying the proof of
it is called, COP requires: n(x) = O( (x)9) expansions if Theorem 2(b) that STOP i§(xc)-optimal, and using the
(x) > 1; n(x)= O(d) expansions if (x) =1, with (x) expressions of(xo) from Theorem 1(iii) completes the rst
the branching factor of Section II-C. part. The second part follows directly from Theorem 1(iil.
Proof: The second part of the theorem is a consequenceThe performance guarantee of STOP depends only on the
of Theorem 1(ii). To prove part (a), denote bf the sequence planning dif culty at the initial statexo: it is a negative power
returned by OPD when applied &g, and recall that(xo) =  of n when (xo) > 1, and exponential (better) in when it
V (X0) x,(u®). If the full sequence is applied, then nas (xo) = 1. The sequence length grows fast, in a way that
matter what actions are taken afterwards at least Valu@©) is characterized using(x), and which basically “inverts' the
is obtained, so COP i§(xo)-optimal. relationship between computation and length in COP.
Now, consider applying a subsequenc® strictly shorter

5 ; . _ It must be emphasized that the analysis is performed under
thlan u”, and Ihen reexecuting OPD in tg‘g resulting staie assumption that the model is correct. This is the main
x* to obtainu”, see Figure 3. Denote by™ the leftover o550 for which the subsequence length (represented? by
subsequence fror®. For arbitrary sequences andt, let i, cop and in STOP) does not affect the near-optimality
(u; &) denote their concatenation. guarantee: there is no loss, whether the loop is closed soone
or later. Also, the full initial sequence could be appliedian
followed by arbitrary actions, while still guaranteeiqgi-
A optimality. No predictive algorithm can do better in genera
. /A‘ without increasing the horizon, because the rewards are not
assumed to be smooth so they may change unfavorably beyond
the horizon explored at the rst step. Of course, in practice
uncertainty is always present, as model errors or distudsn
which means the sequences cannot be too long and the loop
must be closed fairly often.

Even when the model is correct, some nontrivial relations
d%ra'ﬁe between shorter and longer sequences: applyingeshort
sequences — closing the loop more often — may achieve
better or worse performance, depending on the problem. The

Fig. 3. Using OPD with subsequences. Different from Figuréh& trees are
now oriented horizontally.

When applied fronx!, OPD builds the tre&; by expanding
nodes in the exactly the same order as it would have expan
when applied fronx, nodes in the subtree @ havingx* at
root. That is, for any sequeneg in Ty, the following b-value , . - S
relationship holds by de nition:h(o(u“);ul) = ", (U®) + foIIowmg.resuIt characterizes this behavior, in a generay

dih. (a), whered; is the depth ok in To. So, maximizing that applies to both COP and STOP.
b (8') is the same as maximizinig, (u®; u') with respect ~ Theorem 4:Let x 2 X and denote byugq the sequence
to &', Because OPD is applied with the same settingin returned by OPD ak. Let uq be an initial subsequence of
as inXo, it will expand more nodes and s is insideT;. Ugq andug, be obtained by replanning aftef} (see Figure 4).
Sinceu® maximizes'y: on Ty, we have'y: (ul) 41 (u?), De ne similarly ugwo andug, with d°>d° Then:
which means the composite sequence satis gtu®; u?l) =
\xo(um)"' dl\xl(ul) \Xo(um)+ dl\xl(uoo) = \XO(UO)

. d% dy
whered; is the depth of?. Vy(Uqo;Ug,)  Vx(Ugoo; Ug,)
Continuing in a similar fashion, for anyl, applyingN 1 1
shorter sequences followed by the flth sequence achieves
(u®uu®™ ful) x,(U°), see again Figure 3. Fyrthermore, if the budget or target depth of OPD are held

Thus the same is true of the limit @& ! 1 , and since copstant, then the bound is tight in a worst-case sense.
this limit is the valueV'* (xq) of the overall closed-loop

sequence, we have obtaingd(xo) VUY* (Xo) V (Xo)
%o (U) "(Xp). To obtain the nal result, notice that by
Theorem 1(i)," (Xo) 1—d [ ]
Thus, the quality of the solution grows with the imposed
sequence lengttl, and the computation requirements to reach
this length are bounded and characterized usif}g. Specif-
ically, computation grows exponentially h with base (x)
—unless (x) =1, in which case it grows linearly id. Next,
we move on to STOP.

Fig. 4. Shorter versus longer subsequences.



Proof: Denote byx® andx®the states reached lf} and —

00 - - T 0.8 0.7 0.5 0.8 0
U4, respectively. The inequality is shown as follows: %) 2) (1)
d D—2—@—0©@—=CG
o
. _ = d° € 0 teeieene >
Vx(Udo;Ug,) = “x(Uao) + 7 vxo(Ug, ) P —
N 0 0 -
= U+ V() TV (XY veo(ug,)] &
d%+ dy d%+ dy
Vy (U go) Vy (U goo; Ug,) Fig. 6. A ve-state MDP and two COP solutions. States are showcircles,
1 1 and rewards in italics above them. The solution foogn= 4 withd®= d =2

" is shown in gray on top of the gure, while the one fdP =1,d =2 is
where the rst step follows from the de nition of the-value, shown in black on the bottom. Solutions are shown as sequericastions,

the second just adds and subtracts an extra term, the thit@re the bullets mark the states in which planning is run, amapplied
follows from Theorem 1(i) when applied &f, and nally the Seduence tails are shown in dashed lines.

last step is true becausecannot increase if more actions are

added to the sequence. to the left. It eventually reaches stateand remains there,
achieving the optimal return 08:62. However, whend® is
increased t®, COP exploits the rewards of sta¢snd5 and
cycles between these states forever, obtaining a subdptima
return of3:17.

Example 2: Longer sequences can perform beftesimilar

MDP is taken but now with state spaté; 2;:::;7g and the
rewards shown in Figure 7. The discount factor is the same.

rewards=0

qnmw--. rewards=1

Fig. 5. Constructing an example where the bound is tight. R E
i : i i 5 0 0.7 0 0.2 1 0
To show tlghtnesg, a WOI’SF case example is prowded_ whe 1l ) (3 2) 2 ®) @
the bound holds with equality. Construct a problem, in th &/ &/ &/ 2/ X/
form of a tree, where all rewards aBeexcept for one subtree T P >
placed belowx®at depthd®+ di, in which they are alll, see D '

Figure 5. Note that due to the zero rewards udti# d;, up Fig. 7. A seven-state MDP and two COP solutions, d8r= d = 3 (top,
until this depth all trees will be expanded uniformly. Whemray) andd®= 1, d =3 (bottom, black).

OPD is applied to ndug and ug,, it cannot discriminate Now, when applied fromko = 3 with d®= d = 3, COP
between sequences since they all have a lower boweglial  §iscovers the large reward in staBeand controls towards
to 0, so OPD must choose one arbitrarily. We take the arpitra,;g state, cycling afterwards betweBrand 6 for a return of
sequencely, so that it does not contai? leading to a value 5.5 Whend®= 1 however, replanning from statemisleads

Vx (Ugo;Ug,) = 0. o _ the algorithm into a shorter-horizon cycle that focuseslan t
When OPD is called ax™ it starts expanding nodesieyardo:7, achieving only a suboptimal return af56.
uniformly, and since this state is at degtf?> d° and OPD

has the same budget or target depth ag%it will expand _ )

at least a node at deptlf+ d;. We simply place the subtreeD- Simulation results for a DC motor

with rewards ofl under this node, thereby ensuring that the We study the behavior of COP and STOP in simulations
algorithm discovers it and that the sequerfogeo; ug,) has with a DC motor. See also [11] for a nonlinear example.

the optimal valueg. So the bound is tight. m Discretizing in time a rst-principles model of the DC motor
The theorem says that applying a shorter sequence and tiéih the zero-order-hold method afid = 0:01s, we obtain:
replanning may lose some performance, but not too much: the 1 00095 0:0084

maximum loss is given b¥1}+hﬁ accuracy of ggtire composite  f (xU) = AX+Bu; A o 1o 00 B Jeere (3)
sequencéuqo; Ug, ), i.e., ——. Further, from the worst-case _ . _
example it is clear that the same loss can be incurred ever?fv erelxllt B q IS tt;]e sf}?ft ans/llepq R it thet ::mgu- d
the loop is closed again sooner thanor d,. The following art_ velocity, ant !Jt de Vo age.t otreovter,z € .sa esdan
examples provide more insight into this issue, using COP gglions are restricted using saturation to [ ]rad,

it allows to directly control the (sub)sequence length. _2 [ 15.; ;5 .] rad{s,u 2 [ 30,301V, in ordgr to reprgsent
physical limitations in the system. The goal is to stabilize
Example 1: Shorter sequences can perform betiem-

. ) ) system arouna = 0, and is described by the reward function:
sider an MDP with state spackl;?2;:::;5g, two actions

1;1 (“left” and “right”), and additive dynamicx+1 = (x;u)= x>Qx U’ Ru; Q = diag5;0:001); R=0:01
max(1; min(5; xx + ux)). The rewards obtained upon reaching 4)
each of the ve states are, respectivélyB; 0:7; 0:5; 0:8; 0, and with discount factor = 0:9. State and action saturation
the discount factor i9:8, see Figure 6. ensure bounded rewards, and these rewards are then rescaled
When applied fromxg = 4 with d =2 andd®= 1, COP into [0;1]. The actions are discretized into the ggt =
replans inx; = 3, which allows it to detect the larger rewardd 10; 3;0; 3; 10g.



We apply the two algorithms fromp = [2 =3; ], setting sequences are indeed better, e.g. STOP gains signi cantly
d = 10 for COP andn = 300 for STOP. Figure 8 shows more return when is below0:5.
the solutions obtained when the complete returned seqsence

are applied, that is, whed” = 10 and respectively = 1. It

is interesting to see the evolution of the planning compyexi
along the trajectory. This is shown in COP by the changing
computation numben of expansions required to reach the

9.0675

0.067} o—e—e—e—e—\_e_H

9.0665

return

\>4

desired sequence lengths, where the practical effects ef Th 0 2 4 6 8 10

orem 2(b) are seen; and in STOP by the lengths produced,
illustrating Theorem 3(b). Complexity is generally smalle
in states closer to the equilibrium (fewer expansions/wng
sequences), although the evolution is not always monatonic
STOP especially requires only three controller executam
transmissions, thanks to a very long last sequence.
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Fig. 8. Comparison between COP and STOP when applying compl
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Fig. 9. Returns obtained by COP (top) and STOP (bottom) asethgth of
the applied subsequence varies.
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Fig. 10. Performance with a noisy system (COP in gray and STQffack).

Finally, the resilience of the deterministic-case aldoms
to random disturbances is empirically evaluated, by adding
a Gaussian disturbance to the discrete-time transitiohs (3
The disturbance is zero-mean and has covariance matrix
diag(0:01;0:01). COP and STOP employ the original de-
terministic model during planning. Representative trages
are shown in Figure 10, illustrating that the algorithms kvor
reasonably despite the rather large disturbance ampéitude
Aaddition to these results, in the remainder of the paper we

sequences. The top graphs are the controlled trajectavie’s,COP in gray pProvide a detailed analysis of stochastic extensions of COP

and STOP in black. The bottom two graphs show, at every clbertiexecution
instant: for COP, the computatian spent; and for STOP: the lengthof the
sequences found. The horizontal coordinates of the pairtiseise graphs are
also the transmission times.

and STOP for a class of discrete uncertainty.

IV. STOCHASTIC CASE BACKGROUND

To investigate the effect of applying shorter sequences,In the second part of the paper, we provide methods that

allow a class of stochastic uncertainties.

0:1;0:2;:::;1; the returns obtained are shown in Figure 9.
The suboptimality of each return obeys the upper bounds &f Control problem and optimistic planning algorithm

Theorem 2(a) for COP and Theorem 3(a) for STOP; e.g., the

COP bound i9:9'°=(1 0:9)
Theorem 4 is unavoidable in general, in this problem shorter Xk+1 Xk Uk; ) (5)

3:49. Although the loss from

In the stochastic case, the dynamics change to [3]:



where the transition probability functioft provides for each only some nodes of; :
pair (x;u) the probability distributionf{x;u;x% over next B ] T )
statesx®. The reward function is extended to also allow 10~ fsgg, an_dof(_)r anyd_ 0:h : Ta ! U

a dependence on the next stat@i; = ~(Xi; U Xks1). Ta+1 = fs72 Ty js”is a child ofs along actionhq(s)g
We still require discrete actions and bounded rewards, age op, assigns actions as desired. Then, the overall selected
in Assumption 1. Moreover, we focus on uncertainties thﬁree isT

= Tq, and the policy itself iy, : T,y ! U,
can be modeled by aite number of outcomes with known hy (s) —hlhd( )(Sd) \(;vh(:ered(s) gi\?es t%e Septh los 1
= s '

probab|I|t|e§. ) The objective is then to nd, locally akg, a policy hy
Assumption 2For any pair(x; u), the number of next Statesmaximizing theexpectedreturn:

reachable with nonzero probability is at most intefyer O. ( )
This class of problems disallows continuous uncertainty, hy _ X K

such as the Gaussian disturbance empirically studied in Sec VT (x0) = En, o M+t ®)

tion 111-D. Nevertheless, it is highly relevant, includingany
discrete-event systems [13, Ch. 7,9] such as Markov jump sy#ere the expectation is taken over all trajectoriesTin .
tems [16], and with important applications in power systenfgnally, denote the optimal valug (xo) = sup,, V" (Xo).
[6], fault detection [35], building automation [37], etsge also ~ OP-MDP works of course with nite tree policies, denoted
our application to stochastic network delays in Section Vsimply byh and exempli ed in Figure 11. These policies must
This is also the general form of MDPs typically studied ircorrespond to well-de ned subtreds at the top ofT; , so
arti cial intelligence [42] and operations research [4Fp that any node is either fully expanded or not at all. The lsave
the variant of OP for these stochastic systems is called O#-T, are denoted by.,. We will treat policiesh and their
MDP [9]. Of course,f” may also be the discretization ofcorresponding treed, interchangeably. Similarly to OPD,
an originally continuous distribution, a procedure redate de ne three values:
scenario generation in stochastic programming [30]. . _ X
. : - x(h) = P(s) R(s)
Before stating the optimal control objective, some prepara oL,

tory steps are necessary. Like OPD, OP-MDP works at the X d(s)
current system state, conventionally denoted It explores b (h) = P(s)[R(s) + ] @)
iteratively an in nite tree that represents all possiblecstastic 1
evolutions of the system starting froxg. Denote a state node
by s, labeled by an actual state. The planning tre€rl; ,
of which Figure 11 only shows a few top nodes, is de ned
recursively as follows. First, the root nodg is labeled by whereR(s) is the discounted return accumulated along the
the current statexg, and then each nods is expanded by path from the root tos, and P(s) is the probability of
adding, for any state® for which f{x; u;x% > 0 for someu, reaching leas, equal to the product of the individual transition
a new child nodes? labeled byx®. So each node has at mosprobabilities along the path. So,(h) is the expected partial
NM children, corresponding to all possible states reachalskiurn accumulated bly, and is a lower bound on the expected
by applying all possible actions. Note that Figure 11 exyic returns of all complete, in nite policiet; starting withh;
includes also the action nodes. b, (h) is an upper bound on these expected returns;valid)

is the expected return when continuing Igptimally belowt
d=0 is important to note thal, (h) = “x(h)+ ¢, P(s) ©

1
We denote the sum in this expression digm(h), called the

diameter ofh; andc(s) = P(s) ﬁ the contribution of node
s to the diameter. Since the lower and upper bounds on the
values of policies starting with are separated bgliam(h),
this diameter is an uncertainty o (h), andc(s) quanti es

4=2 the contribution ofs to this uncertainty.
EE N OP-MDP builds a subtred of T; by rening at each
Fig. 11. lllustration of OP-MDP tree foN = M = 2. The squares are iteration an optimistic policy that maximizdx; and at the
o, Taraton S S e i g S 1 e1US 2 polcy maximizinge. Thus he approach is
(r:(Ie:/‘\:/aer;sore;-Jpe?s;ipts index the possible actions and state outcommgle similar to_ OPD, with the major dlﬁ_erence that now a policy
subscripts are depths, which only increase with the statie rievels. The has multiple leaf nodes so a choice between them must be
thick subtree highlights a tree policy. made. This is resolved by selecting for expansion a node with
aximal contribution to the diameter. Algorithm 4 summaesiz
e approach. The algorithm can stop either aftenode

. . expansions or after reaching a prede ned diameter for the
realization of the random transitions. Instead, a closeg Pansit . gap T
optimistic policy . Value has a dual meaning: diameter

local solution concept calledtaee policyis needed. At depth nd near-optimality, see the upcoming guarantees. Note tha

d, this tree policy is an assignment of actions to all stafd : . X .
. . . ) expanding a node takes up ltb times more simulations than

outcomes under the previous action choices, thereby geject o
in the deterministic case.

Vx(h) = P(S)[R(s)+ “®V (x(s))]
s2L p

oo
[HCTVPRS

The open-loop action sequences from OPD would be SL{E
optimal in the stochastic case, since they cannot reacteto



Algorithm 4 Optimistic planning for MDPs deterministic systemN = 1) having a single policy with

Input: statex, and budgeth or desired diameter rewards of 1; this reduces to OPD with (x) = 1. In

1: initialize tree:T f rootg,i =0 this case, the results say that computation scales logarith

2: hY  initial empty policy, ™ % cally with desired diameter/near-optimality— or, conversely,

3: repeat shrinks exponentially withn. More generally, when the

4: expand nodes” 2 argmaxs, . c(s) problem is deterministic, the generalized developmeninfro

5 nd new optimistic policy hY 2 arg max,,t b (h) this section reduces to the deterr?inistic case, by taking

6 ~  minf 7 diam(hY)g,i i+1 (x)=log( (x))=log(1= ) and = ;—. The most dif cult

7: until i = n or diam(hY) stochastic problem is for (x) = log( NM )=log(1= ), when

8: if input wasn, then ~, elsen=i end if all rewards in the tree are equal and the probabilities are
Output: h 2 argmax,,r x(h), ,n uniform, making the solutions impossible to differentiated

requiring a uniform exploration of the tree.

B. Theoretical guarantees V. OP-MDPFOR STOCHASTIC NETWORKED CONTROL

While in OPD only one sequenceq was rened at a SYSTEMS

given iteration, in OP-MDP expanding a single node re a#is A. Setting

policies that reach it with a positive probability. To hamdhis The main idea in applying OP-MDP to uncertain NCS
global effect, a new complexity measure called near-optiyna is similar to the deterministic case: the network is used
exponent (x) is required [9]. This exponent is related to othepnly sporadically to measure the state, a new tree policy is
measures of complexity for stochastic optimization [8R][3 computed based on this measurement, and this policy is then
which however do not take global re nement into account, ansknt via the network to the system, where it is locally agblie
(x) serves that purpose. To formalizéx), de ne the largest However, using tree policies instead of action sequencassle
diameter of any (nite) tree policy to which the contributio to several key new elements.
of s is the greatest: (s) = SUPy, 4 () diam(h), H(s) = First, the architecture must now include two controllers. A
fhjs2Ln;c(s)=maxsen, ¢(s9)g. This characterizes the high-level controller sits beyond the network and impletaen
global impact of nodes. Then, de ne the set of nodes thatOP-MDP, see Figure 12. This controller is assumed to be
have large impact on near-optimal policies: computationally powerful. Instead of the buffer from Figu,
a second, local controller is introduced, which is directly
S(x)= s2Ty () % connected to the system but is computationally much simpler
and9h; 3sstV (x) VM (x) (s) (8) and does not perform any optimization. The local controller
applies the tree policy in closed loop, starting from thetroo
statexy . At each step, it applies the action the policy indicates,
measures the resulting realization of the next state, cogspa
it to all the children states of the applied action, and moves
Ghe pointer in the tree to the matching child. This local loop
e o o _ only costsO(N ) computation, to compare with thé children
_ Similarly to the deterministic case, a polityis "-optimal * giate5 |t is executed until reaching a leaf state, at whghtp
if V.(x) w(h) ", andde ne )=V (x) x(h), the local controller signals that the higher-level loop tries
immediately meaning thatt is (x)-opt|m§1I. The fOIIOW'n_g closed via the network. The memory required by the local
results are a consequence of the analysis of OP-MDP in [@} . qller to store the tree policy varies up @fn), since it

[39], and are stated so as to emphasize the role of the diam&{e,; \yorst proportional to the size of the entire OP-MDP tree
Theorem 5:Let x 2 X . When OP-MDP is called at:

where we have made explicit the dependencesofon the
current, root state. Finally, the near-optimality exponent is
de ned as the smallest number(x) so that for smafl "
iS'(x)j = o(" ™). This measures the complexity of th
optimal control problem ax.

0 Th ot diam(h ) 400 developed.

i) The policy h satis es diam and " (x , m——

with  the diameter returned. ﬂ'ola' Cf?mm'('jer}_' system

(i) When OP-MDRP is called with small near-optimality (di- network
ameter) : If (x) > Oit will requiren(x)= O( ) < P>
expansions. If (x) = 0, n(x) = O((log 1= )"X))
with b(x) > 0 a constant. OP-MDP <

(i) When OP-MDP is called with larga: If (x)> 0t
will obtain diameter (x) = O(n = ™), If (x)= . :
0, (x)=exp[ (n=a(x)):=")], wherea(x);b(x) > 0 The second novelty |s_that the sequence _ac_tually applied
are constants. has a random length, which must be probabilistically charac

. L . terized. To this end, we de ne theffective lengtlof a policy
When (x) is smaller, the problem is simpler. The SIMy " the valued so that:

plest problem, for (x) = 0, can e.g. be obtained with a

Fig. 12. NCS architecture in the stochastic case.

d d(s)

2f (t) = O(g(t)) for small (or large)X when9a;b;to > 0 so thatf (t) 1 =Esa 1
a(log g(t))Pg(t) 8t to (or 8t tg). The logarithmic term asymptotically ) )
becomes negligible compared ggt). Note thatd is different from theexpected valuef the length.

= diam( h) (9)
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Finally, it will also be interesting to apply shorter subjpol Algorithm 7 STOPS
cies so as to close the loop more often, e.g. to reduce tiigut: initial statexy, budgetn, diameter fraction
size of data packets transmitted and the memory required at loop
the local controller. Formally, from a policy with diameter 2: measure current sta
, one can obtain subpolicies with larger diametefsthis  3: apply OP-MDPX; n), obtaining policyh

is equivalent to changing the effective length from theiahit 4 truncateh to diameterw, obtainingh®
d= 90 ) {0 the smallerd” = % Our analysis 5 sendh®to plant
is largely independent on the actual procedure to nd thes:  Wwait until policy exhausted
subpolicy, but Algorithm 5 shows one possibility. The didere 7: end loop
of the output policyh® will be close to, and smaller than®.
Algorithm 5 Tree policy truncation if subpolicies are applied. (b) For smal| at every statex
Input: Ty, desired diameter® where it runs planning, DOPS requiresn(x) = O(  ®)
1: repeat starting fromTo = frooty expansions if (x) > 0; n(x) = O((log 1= )®X)) expan-
2: add toTho all children ofs’ 2 argmaxy | 52, €(S)  sions if (x) =0, whereb(x) is a constant.
3: until diam(Tho) 0 Proof: The computation bounds follow directly from
Output: Tho Theorem 4, (iii). From part (i)Y (Xo) x,(ho) , Where

ho is the policy found at initial state&g. Since 'y, (ho) is a
lower-bound on the value @y policy afterhg, fully applying
B. Algorithms ho followed by any actions maintains the bound.

There are two ways to adapt Algorithm 4 for NCS. A The case of subpolicies is more involved. Instead of apply-
counterpart to COP is obtained by setting at every transamissing ho, a subpolicyhg is used, and upon reaching any leaf
a desired near-optimality, which is equivalent to setting aS°2 L § of hg, OP-MDP is applied again to nd a new policy
diameter and, through (9), an effective lengtiEither the full hi(s%); see Figure 13 for a graphical illustration. For now
policy, or a subpolicy with diametef is sent via the network, consider that the full new policy is applied, and denote by
and the local controller takes over. The larg@rcorresponds hi the policy resulting from joinindg with the new policies
to a smaller effective length®, but the actual length of the h1(s?) at all s°. Then:

applied sequence is random and may be different fd3nso -
X ) X ) V' (Xo) Vx,(h1) = .
this scheme is no longer clock-triggered. It is more acelyat . i
called Diameter-triggered OP for Stochastic systems (DOPS = V (Xo) P(s) R(sY+ vy g0 (hi(sY)
and shown in Algorithm 6. S%Lg h i
0
Algorithm 6 DOPS =V (o) P(s) R(sY+ OV (x(sY)
0 0

Input: initial statex,, target diam. , subpolicy diam. ° ® ZLZ o

1: loop + P(s) )V (x(s9)) Vs (h1(sY)

2 measure current state so21 8

3 apply OP-MDPXy; ), c_)btaining. policyh . + P(s9) s = 4 d (10)

4:  truncateh to °(e.g. with Algorithm 5), obtainind® SooL 0

5. sendh®to plant _ ’ _ _

6 wait until policy exhausted whered® is the effective length corresponding t& The rst

7: end loop equality follows from the de nition ofv-values, the second is

obtained by adding and subtracting the optimal values®at
The second alternative is to call OP-MDP as usual, witind the third step is due to the near-optimality of OP-MDP at
a xed computation budgen, but then apply either the full both the root state and arsy.
policy or a subpolicy with a larger diameter. The length @& th
applied sequence depends stochastically on the complaixity
the current state, via the diameter, see (9). We have threrefo
obtained Self-Triggerred OP for Stochastic systems, STOPS
see Algorithm 7. Parameter 2 (0; 1] controls the truncation,
and is chosen to give antimes smaller effective depth of the
subpolicy, leading to the diameter formula on line 4.

C. Analysis

We begin by analyzing DOPS. An algorithm is called Fig. 13. using OP-MDP with subpolicies. The full trees deyeid are also

optimal if in closed-loop it generates an in nite polidy;  shown in gray outline. Note the new planning tree and politynfs® are
satisfyingV (xo) \VALH (xo) " shown displaced from their roaf for readability.

Theorem 6:Take any > Oand °< . (a) DOPS is - Now, if everyh;(s9 is truncated at® a similar inequality
optimal if the full policies are applied, anpﬁ-optimal holds for each such truncated policy; and combining thi& wit



the derivation above, the bound+ 9 + 2¢° s obtained
for the overall policy. Continuing recursively like thig) the
limit we obtain TS Ty [ |
Thus, computation depends on planning complexity,
expressed by the near-optimality expone(t). The desired
bounds the closed-loop near-optimality when full policées
applied. For subpolicies, an extra denominator @ arises
from the proof. Nevertheless, a strong intuition con rmed i

experiments indicates this extra term is conservative andl

always bound the closed-loop performance. A similar priyper

can actually be proven for STOPS, as described next.

Theorem 7:Take any largen and any 2 (0;1]. (a) The
near-optimality of STOPS is: O(n ﬁ) if  (xo) > 1,
and  O(exp[ (n=a(xo))¥™PX)]) if (xg) = 0. (b) at
every statex where it is called, STOPS returns a policy o
diameter: (x) = O(n <1x>) if (x)> 1, and (X)=
O(exp[ (n=a(x))¥™™)]) if (x) = 0. Here,a and b are
problem- and state-speci ¢ constants.

Proof: The second part follows from Theorem 5(iii).
When hy is fully applied ( = 1), the rst part holds as in
Theorem 6.

Otherwise, examine the case when the rst poligy is
truncated at diameter® > diam(hy); and consider again the
composite policyh;, see again Figure 13. lisvalue satis es:

[
‘Xo (hl) =

s02L 9

h
P(S) RS+ 9D (50 (he(s9)

|
P(s) R(sY+ 90 (50 (ho(s9)

so2L

= \Xo (ho)

wherehg(s?) is the part ohg belows®, which gets replaced by
h1(s9. The crucial relation iSy(so)(h1(s%)  “x(so(ho(s9),
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from any leaf of the subpolicy, obtaining a maximal diameter
1. Then, the value of the composite poliby satis es:

on(hl) on(hO) 0 1(1 )
as

Furthermore, if the budget or target diameter are held eomst
and Algorithm 5 is used to nd the subpolicy, then the bound
is tight in a worst-case sense.

Proof: The inequalitﬁ is shown similarly to (10)i:

V()= P(SY RS+ 9Dy g0 (hy(s9)
so2L § .
|

P() R+ v (x(s9)
s02 0

P(s) 97 v (x(s9)

s02L 9

VXo(hg)

. Vy(s9) (1(s9)
P(s) 47 4
so2L 9
Vio(ho) ¥ 1= vip(ho) 2@ )
with the difference thah,(s% can stop at a different diameter
1, and exploiting the fact that thevalue of a policy can only

increase by truncation, since optimal choices are madegarl
at s° Here,d’is again the effective depth for.

di+d

Fig. 14. Worst-case example in the stochastic case. Notationstyles are
reused from Figure 13.

which holds because OP-MDP expands nodes in the sameyq construct a worst-case example, the deterministic exam-

order in the subtree of% Since its budget is stilh, when
called ats® it will expand at least all the nodes dny(s% and
in the end choose a policy with at least as large  amlue.
We can get a similar inequality for amy (s%) that is truncated
instead of being fully applied, and recursively repeatihis t
we get in the limit thatV": (xo)  “x,(ho), whereh; is

ple of Figure 5 is extended by changing all action sequences
into policy trees with uniform probabilitiest“(ﬁ;u;xo) =
1=N. Choosg some lengtth and take 1 = = —, or, if n

is used,n = ?:OI(NM )i, so as to ftj[I)Iy expand up to depth
d in a uniform tree; and take® = —, d° < d. Construct

the complete policy that would be applied in closed looghe problem in Figure 14, where all rewards @rexcept on

Hence, this policy is near-optimal at least to the extent
hg, completing the proof. [ ]

egrtain subtrees at deptf? + d, as explained below. Due to
the O rewards and uniform probabilities, &y as well as any

Like in the deterministic-case STOP, near-optimality de the algorithm will expand a uniform tree up to depdh

pends only on the planning complexity at the initial stage
The diameter shrinks like a power af when (x) > 0, or
faster, exponentially, when(x) = 0, which implies a growth
rate similar to that in STOP of the effective lengtfand thus
of d°. More preciselyd is of the order®%’, or (n=a(x)) =)
when (x)=0.

The closed-loop bound is independent of the subpoli
diameter in STOPS, and has a dependence on this diameter

is not believed to be very informative in DOPS, as explaineglue of

and since all policies havevalue0, it will arbitrarily choose
the output policies. Then, below the composite polgywe
assign zero rewards, so that its overall value is 0. For g8ch
we pick the part$o(s? of arbitrary policyho to be different
from hy(sY, and nally we assign rewards dof at all nodes
below depthd®+ d downstream othg(s%. This is done for
| s% and so replanning at any leaf node kof will surely
sgover ﬂge rewards of, leading to an overall closed-loop

d+d .
— The example is complete. ]

after Theorem 6. So a more direct characterization of the

values of subpolicies will be useful.

Theorem 8Consider that OP-MDP returns a poliby with
diameter , which is truncated to®< , and replanning is run

D. Simulation results for the inverted pendulum swingup

DOPS and STOPS are applied to swing up and balance an
underactuated inverted pendulum. The states deagle) and
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— while the input voltage is limited to[ 3; 3]V, insuf cient
to push up the pendulum in one go; instead, the pendulum =) (\/\//\Mm
needs to be swung back and forth to gather energy. Rewards - 0
are quadratic (4) witlfQ = diag[1;0:001]andR = 0:01, and
= 0:95. The pendulum is a relevant problem due to its highly 00 1 5 3 P
nonlinear solution and large depths to which the swings must _
be planned. Actions are discretized intto 3;0;3g, and an ?‘ﬁ
unreliable actuator is modeled that only applies the inteind o
action u with probability 0:7, and with probability 0:3 it ] ‘ ‘ ‘ ,
applies only0:6u (when the intended action it staysO). 50 1 2 3 4

This leads to a discrete uncertainty with= 2 values.
We apply DOPS withd = 8 and STOPS witm = 2000, % ojﬂ—"—'m—’l-u—’l—”q‘—u—"ﬂ-u—n
from the pointing down state. We state results in terms of

effective lengths, to make them easy to compare with the 5 i
deterministic case. Figure 15 shows the returns for varying o9l ! A 3 4
subpolicy lengths, illustrating the bounds of Theorems) 6(a =87 ‘ ‘ : :
and 7(a). Shorter subpolicies are usually better. 0 1 2 3 4
t[s]
19 20 [
O o O O o
m}
E 1 ——— © 10} b O o 5 oo . .
o = — = En] Q o &
- ml O O
L s .
17 0 ; : :
2 4 6 0 1 2 3 4
d' t[s]
19
Fig. 16. Top: a controlled trajectory. Bottom: effective d¢im of full policies
(), of subpolicies (), and real length of the applied sequences. (

return

VI. RANDOM DELAYS IN THE CONTROL CHANNEL

This section shows how our stochastic framework in Fig-
ure 12 can be applied to deal with a type of network effects:
area is thed5% con dence interval on the mean, from 10 experiments. randkom delays in the transmission channel for control packe

: . . . Packets must arrive in the order they were sent, and the
Wli:rl]gure i16 Sr;]?v:’/s; trijgci:]o% fol; St:'Cr)nPSrwnhh: 0:4. Ihe thmeasurement channel should still be delay-free to acdyrate
ztategsuglozeafo tehees’tae:t whereethg sc\)/ving ap WE; SO |c|e Ghnal when OP must be rerun. Receipt of the control packets

' gup must be pPlannglias ot have to be acknowledged, since the local tree-based

are difcult and lead to short policies/large diameters, as . .
: . ontroller has all the info
characterized by Theorem 7(b). The graph also illustrdtes t information needed to react to thayjel

. o i . as explained below. The delays must be a multiple of the
practical effects of the probabilistic relationship (9)tween sampling time, and are modeled by a probability distributio

effective lengthd® and the (random) length of the actually. . .~ ... ... . g .

applied sequgence The two( are usJaIIy giﬁerent dfumay yp 1012 -9 ! . [0 1],.Where Pl ). 's the probability t'hat
. ' o - ' the packet is received with a delay jofsteps. The delay is at

still be useful as a qualitative prediction of the length. mostJ steps, and any delay up Sohas nonzero probability:

Before moving on, it is important to discuss some compu- Assumption 3:The distribution p is known and time-
tational implications of discretization, in the deternsiind as invariant. Further9J; p(j) =0 8j>J andp(j) > 08} J.
well as the stochastic case. When the actions are originallyThis is related to the setting of [48], which also applies
continuous, their discretization will usually contain anmher predictive control under random delays; while that apphnoac
of pointsM exponential in the action dimension, and similarladditionally allows delays on the measurement channel, it
for the uncertainty withN discretized points. Recalling thatis limited to linear dynamics. In our setting, the contrdlle
each node expansion has complexity or NM , OP suffers system is taken deterministic with dynamitsand rewards
in this sense from the curse of dimensionality. This is the and we aim to maximize thexpected return under the
price to pay for the high generality of the method, recallingandom delaysThis return is usually smaller than the original
that it works for nonlinear, nonsmooth dynamics and genemgptimal value under the deterministic dynamics. We conside
rewards. A crucial point of OP analysis is that themberof STOPS with fully applied tree policies, and characterize it
expansions does not directly dependMkl — but only on the performance relative to the maximal expected return, a$ wel
complexity measures(x) or (x). Finally, in some problems as the transmission intervals.
the actions or uncertainties might be natively discretejiog By convention, letk = 0 be the current step where the
e.g. from discrete phenomena in the network. We detail sucbntrol is sent, and denote the previously applied action,

a case in the next section. which will be maintained as long as the new control packet

Fig. 15. Returns obtained by DOPS (top) and STOPS (bottong.sHaded
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does not arrive. A stochastic MDP is de ned with augmenteahd the notion of near-optimality must be reconsidered. We
statex = [x>;j]7 2 X f 1,0;:::;d9 % = [X3 :0], therefore de ne near-optimality with respect to the irlitiéDP
wherej = 1 means the packet has been received, whifgo: an algorithm is"-optimal if its overall policy hy it

j 0 means a delay of has occurred so far. The stateapplies in closed loop satis e¥,, (x0) Va! (%) .
evolves and rewards are assigned according to the previdiie upcoming Theorem 9 bounds this as well as the smallest
action, andj increases, until the packet arrives, modeled dyansmission interval.

the following MDP dynamics and rewards: Consider theentire OP-MDP treeT; , which can be imag-

8
27 (X u )ik +1]> wp. 1 q()if je <3 ined as in Figure 17 with an additional branching irib

- >iy oy T CoN e discrete actions at every node, see also Figure 11. Consider
Mo > I . (ka uk)f 1]> Wp- q(J,k? i <‘? also the subtred (x(s;)) having as root some nodg at
( [F~ (i uk); 1] w.p. 1if je2f 1Jg depthJ on T, . The notation is justied by the fact that
(xq;u ) ifjsz O this subtree is, in fact, the deterministic OPD tree forestat
Mk+1 = iU i jees = 1 X(s;), since downstream of the random delay the problem

is the time-invariant, deterministic one. Recall also lstdang
Where q(j) is the probability that the packet is received afactor (x(s;)) of the near-optimal subtreg& (x(s;)), see
< J g|ven thatit was not received so fag(j) = p(j)=1 Section II-C. The performance of STOPS will then be dictated
. =0 p(|)] 0 j<J.The MDP dened in this way is by (mg) := maxs, (x(s;)), i.e. the most dif cult deter-
denotedmg and depends on the state and default action ministic node encountered after any delay, which is intaiti
the current step. The entire OP-MDP analysis in Section IV-hce STOPS must take into account all such states. To prove
carries through by replacing the dependence on the curréns, the analysis of OP-MDP will be specialized to the
state by a dependence on the entire MBI in quantities particular type of MDP for random delays. The key insight
V;v;;b;S, and , e.g. the optimal value ato is V,, (%0). is that asymptotically, for larga, the initial, stochastic tree is
This dependence is marked in subsequent notation. fully expanded, and only the behavior along the deternmimist
branches is important; (mg) dominates this behavior.

Theorem 9:In the delayed case, for large and = 1:
(a) STOPS near-optimality is O(n & <mo>) if (mg) >
1, and O( ™) if (mg) = 1. (b) When called for any
x and previous actiom , which together give an MDFn,
STOPS applies a sequence of lengtid(m) = ( ,Og'°9 ?m))
if (m)>121and dm)=( n)if (m)=1

Proof: We start with proving near-optimality (a), as
follows. Take a generic MDIPng. To achieve near-optimality
Fig. 17. A tree policy for random delays. Only the state noglesshown.  « hq algorithm only expands nodes @ (mg), see (8),

Actions are applied by near-optimally reacting to the deso budgetn | S-(mg)j. The main part is bounding the
lay realization, using a tree policy with the structure froneardinality jS-(mg)j as a function of". Then the direct
Figure 17. At depthD, either the packet is received and theelationship between and near-optimality follows.

intended action is applied, leading to the white node attdept L o .
1, or a delay occurs (gray node at depth The branch Quantity jS-(mo)j will be bound byexcludingnodes from

corresponding to the rst case is deterministic, while thg' (o), and then counting all the remaining nodes. Con-

second, delayed branch faces two similar outcomes; and >} %er the setSd(mr?) = s 2T d d;%h; 3
on until depthd, taken2 in the gure. FromJ, all branches S St Vim,(%0) — Vmg (%o) (s) . We characterize the
are deterministic. Of course, all nodes on fhetep delay 'MPact (s) of node s — see again Section V-C for the
branch have probabilitp(j ). The local controller determines € Nition of impact — in the asymptotic regime, along the
the delay] with which the packet was received, by comparing_zterm'n'snc branches. All tree policies have the stmectu
the packet timestamp with the current time, and applies t Figure 17. The contr|but|on of a nods‘d at depthd
sequence on branch starting at depthj, thereby reacting ©n branchj, is C(Sd) P(i);—. The maximal-diameter
in closed loop to the delay. The overall STOPS protocol jsolicy on whichc(s))) is largest is obtained by picking for
obtained by applying OP-MDP to the augmented MBPat any j° 6 j a nodes® with ¢(s? o(sl)). Therefore,
each step where it is called. At each such step, a tree pollcegl) Jc(sjd) = Jp(] )1—d;8d;j.

h is found and sent using the architecture of Figure 12.

While the results of Section V could be applied off-the- De ne for conveniencevm,(s) = supy, ssVih? (xo).
shelf, the restriction to STOPS with full policies allows tass Choose a node),, at depthe = d J on the deterministic
show a stronger, interesting property: that STOPS behavas isubtre€el (x(s;)) of somes;, that doesiot belong to the near-
certain sense like the deterministic STOP and so the eftéctsoptimal subtreeT (x(s;)). Denote byu. the deterministic
the delay are mild. Since the MDIR changes with the step action sequence o8 on T(x(s;)). Then, V (x(s;))
where OP-MDP is applied, the optimal value also changeg,s,)(ue) > 1— whereV and vy s,y are values in the
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underlying deterministic problem, not img. Therefore: at the leaves oh, and so on recursively, thus generatimg .
j J. But sinceh is fully applied,VnQ; (%) is at least as large as
Vino (¥0) Vo (Sy)  Vmo(Ss)  Vmo(Sy) “mo(h), so thatVy, (x0) V! (o) and the rst part of

B) °IV (X(35))  Vager(Ue)] > (i) Thearem © Is proven.

1 For the length guarantee (b), the shallowest branch of the

- - - tree policyh gives the minimal sequence length. For any leaf
J J . J

Take anoner node. an Delopy S W know (Saead - nodes atd, we havee(s) = pli)—  dam(h) . By

Jp(j)t—- By choosingd” = 5= , we haveJ 1 using (13) and solving fod, we have:

. o . . (

and ‘(S]d+ ) j p(G)— < ijO(XO.) . Vi, (Sy)- Since o |oglog(r:no) it (mo)> 1

Vo (Sh)  Vimo (Shs go) @nd Vim, (Shy o) IS in turn larger than d coon me) =1

the value of any policyh; containingsl, ,, there exists 12 (Mo) =

no such policy so that the conditiow,, (xo) Vi (xo) where the constants are chosen to cover for all vah(g}.

(S+ o) in the de nition of Sy. 4o(Mo) can be satis ed, and Since the derivation holds at any where STOPS is executed,
SO st+ 40 Z Sd+ do(Mo). the proof is complete. |

Henceforth,c, denotes for anya an appropriately chosen
constant whose value is not important to the asymptotic
analysis. To boungiSy(my)j for any larged, we count nodes
that cannot be excluded as above, updoln particular, We have developed a novel approach for the optimal control
applying the exclusion rule with a suboptimal noslevhich of general nonlinear NCS, allowing for either time-trigger
is a direct child of a near-optimal one, we nd that onlyor self-triggered strategies. The strategies are direotjyle-
nodes up tod®+ 1 levels belows must be counted. At mentable and have guaranteed near-optimality, which epla
depthe = d J in T(x(sy)), the count of such nodes isin a tight relationship with the transmission intervals dhd

VIl. CONCLUSIONS

enoted o(s;) and upper bounded as followse(s;) computation invested. A class of stochastic uncertaintias

0. . . . .

id:gl o (X(s)))e ;K' e (x(s7))¢, when (x(sy)) > acc((j)mmodatedl,( ?jmlj it V\_/ashshown h(Iththls cllasi can mo?el
1, and o(sy) ?:Sl K = ¢ when (x(s;))=1. random network delays in the control channel. These results

Thus, jSq(Mo)j accumulates o(s; ) for all ( nitely many) were obtained by adapting optimistic planning (OP) aldwnis

s, and anye up tod  J, in addition to a constant number"oM arti cial intelligence. _ _ .
& oanodes in the overall tree up t: jSq(Mo)j s + Aqalyzmg the stablllty.of t.he rgsultmg control is th_(nT main
d I _(sy). With some calculation, we obtain: priority in future work. This will build on a general statiifire-

s &0 sult for discounted optimal control, which we already avhi
. : cs (me)dif (mg)>1 in [40]. Stability of COP and STOP further requires dealing
JSa(mo)] crd it (mg)=1 A1) with errors coming from quantization and sub-optimality.

_ ~ Dealing with other network effects, such as packet losses, i
Returning now toS-(mo), note that any nodes up ®in  another interesting direction. Overall, we believe thathsu
this set belong t®a(mo). Then, takeD the smallest depth so syncretic combinations of arti cial intelligence and cooit

thatdJp;— ", wherep = max; p(j). For anys atd >D, ideas have a strong future.
(s) " ands 2z S.(mg), so thatS-(mg)  Sp(mg). From
i log Jp=[" (1 ; ;
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