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Near-Optimal Strategies for Nonlinear and Uncertain
Networked Control Systems

Lucian Buşoniu Romain Postoyan Jamal Daafouz

Abstract—We consider problems where a controller commu-
nicates with a general nonlinear plant via a network, and
must optimize a performance index. The system is modeled
in discrete time and may be affected by a class of stochastic
uncertainties that can take �nitely many values. Admissible
inputs are constrained to belong to a �nite set. Exploiting some
optimistic planning algorithms from the arti�cial intelligence
�eld, we propose two control strategies that take into account the
communication constraints induced by the use of the network.
Both strategies send in a single packet long-horizon solutions,
such as sequences of inputs. Our analysis characterizes the
relationship between computation, near-optimality, and trans-
mission intervals. In particular, the �rst strategy imposes at
each transmission a desired near-optimality, which we show is
related to an imposed transmission period; for this setting, we
analyze the required computation. The second strategy has a
�xed computation budget, and within this constraint it adapts
the next transmission instant to the last state measurement,
leading to a self-triggered policy. For this case, we guarantee long
transmission intervals. Examples and simulation experiments are
provided throughout the paper.

Index Terms—networked control systems, optimal control,
nonlinear systems, planning, predictive control.

I. I NTRODUCTION

In a variety of applications, controllers are implemented
over networks in order to reduce installation costs and to facili-
tate maintenance, leading tonetworked control systems(NCS).
The control law therefore has to share the communication
bandwidth with other network users. This constraint cannot
be ignored in general, as it may have a serious impact on
the system performance. Various methodologies for NCS have
been developed over these last decades. Two main approaches
are distinguished based on whether the transmissions are
de�ned by a clock, see e.g. [7], [26], [44], or are triggered
depending on the state of the plant, in which case we talk of
event-based control, see [24] and the references therein.

In this paper, we develop an approach for the near-optimal
control of nonlinear NCS, allowing for either time-triggered
or self-triggered control strategies. The inputs are constrained
to belong to a �nite set. We focus on reducing the number
of network transmissions, and we achieve this by sending
long-horizon solutions such as sequences of inputs, like in
e.g., [2], [14], [25], [38], [43]–[45]. This type of sporadic
communication at known intervals is important in scheduling,
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since it allows the communication protocol to assign priority to
the control task only when needed. Further, by only executing
the controller at transmission instants, computation is reduced
[19]. We also show how to handle stochastic network delays
between the controller and the actuators [48]. Other network
effects such as packet drop-outs are not considered.

The main contribution of our approach is providing a
tight relationship between near-optimality and length of trans-
mission intervals on the one hand, and on the other the
computational load of the algorithm. This algorithm includes
a complete, explicit implementation of the optimizer. In the
time-triggeredstrategy, the transmission intervals and near-
optimality are simultaneously adjusted, and we analyze the
required computation. The advantage of ourself-triggered
strategy is that computation is directly controlled, whiletrans-
mission intervals adapt to the current state and may be signi�-
cantly longer than in the time-triggered setting. All this is done
for general, nonlinear and not necessarily smooth systems,
and for general bounded rewards, where the optimal control
objective is to maximize the discounted sum of rewards.

We are not aware of such explicitly implementable ap-
proaches with known computational bounds in the literatureon
nonlinear NCS. Instead, existing work on time-triggered NCS
typically uses model-predictive control to handle delays and
packet dropouts, e.g. [2], [43], without considering computa-
tion. Furthermore, only a few self-triggered NCS techniques
can handle optimal control, and those target linear systems,
e.g. [23], [25].

We borrow from arti�cial intelligence and adapt to NCS
two recentoptimistic planning(OP) algorithms: OP for De-
terministic systems (OPD) [28] and OP for stochastic Markov
Decision Processes (OP-MDP) [9]. It is these algorithms
that lend our method its generality. They solve the optimal
control problem at each state encountered by exploring a tree
representation of possible sequences of actions (inputs) from
that state. Thus, OP is a type of model-predictive control.
Several OP algorithms were introduced, e.g. [8]–[10], [33],
[36], and showed good performance in problems from control
[36], medicine [10], and arti�cial intelligence [22].

We consider �rst deterministic systems, where we use
OPD and exploit the fact that it returns long and near-
optimal sequences of actions [28]. Thus, rather than sending
only the �rst action in the sequence and then rerunning the
algorithm, as done in [28], we choose to send a longer
subsequence which is stored in a buffer and applied in open
loop, as originally proposed by [2]. In the time-triggered
strategy, a �xed communication period between the plant and
the controller isfreely selected, by choosing the sequence
length. The algorithm is therefore calledClock-triggered OP
(COP), and we analyze how suboptimality decreases and how
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computational complexity grows with the selected period. The
second strategy enforces a �xed computation budget at every
OP execution, and within this budget generates a sequence
of actions from the last measured plant state. We analyze
how the resulting near-optimality and sequence length (and
therefore the communication interval) depend on the state,and
call the algorithmSelf-Triggered OP (STOP). Sequence-based
control was used among others by [14], [25], [38], [43]–[45].
In [45], different from our motivation of reducing network
transmissions, the controller �nds sequences of actions at
steps when computational resources are large, and applies the
sequences at future steps at which resources are insuf�cient.

In the stochastic case, we consider a class of uncertainties
modeled by �nitely many random outcomes. The core ideas
are similar to the deterministic case, but open-loop sequences
are no longer appropriate, so we use OP-MDP and a new
solution concept: tree policies, which are feedback laws over
possible realizations of the uncertainties up to an adaptive
length. This also requires a different NCS architecture: a
local, computationally cheap feedback controller is directly
connected to the system and implements the tree policy, while
a computationally powerful OP-MDP controller sits beyond
the network. Since the sequence length now depends on
the uncertainty realization, COP has no direct counterpart;
instead, in the �rst stochastic strategy a desired near-optimality
is imposed at each transmission. The analysis then bounds
computation and leads to a probabilistic characterizationof the
length. For the second, self-triggered strategy, a computational
budget is again imposed, and we investigate near-optimality
and the related probabilistic lengths.

For both deterministic and stochastic systems, our strategies
allow sending only an initial part of the solutions found:
subsequences or subtrees. A tuning parameter allows moving
from the original OP approach, which only applies the �rst
action, to applying the complete solutions. Interestingly, we
show that closing the loop more often does not necessarily lead
to better performance, but may do better or worse depending
on the problem. This is because solutions that are better in the
long term may either be discovered or not, depending on the
reward structure. Finally, the stochastic self-triggeredmethod
is applied to deal with random delays in the control channel.

Our analysis focuses on near-optimality and transmission
intervals, which are important even in the absence of immedi-
ate stability guarantees. The connection between stability and
optimality would be interesting, but is not yet understood for
the discounted type of cost required by OPD and OP-MDP.
For instance, when discounting is present stability cannot
generally be guaranteed even in the linear case, as illustrated
by [31], while [12] emphasized similar dif�culties in the NCS
setting. Many works in optimal control use discounted costs
without guaranteeing stability, such as [1], [29] which consider
network effects, as well as works on classic optimal control
of linear systems [27], nonlinear systems [34], singularlyper-
turbed systems [21], or systems with discrete-valued variables
as in our case [5], [15], [20]. We have made an initial stability
analysis under the exactly optimal control [40], but a complete
solution is not yet available and falls outside the scope of this
paper.

To make the development easier to follow, we �rst describe
fully the deterministic case, starting with OPD and its analysis
in Section II, followed by COP and STOP with their analysis
and simulations in Section III. The stochastic case is similarly
developed, with OP-MDP in Section IV and the NCS methods
in Section V. Section VI focuses on the delayed case, and
Section VII concludes the paper. We performed a preliminary
study in the deterministic case in [11].

II. D ETERMINISTIC CASE: BACKGROUND

We introduce the necessary techniques in detail, and we
adapt their analysis to the NCS setting.

A. Optimal control problem

Consider an optimal control problem for a deterministic,
discrete-time nonlinear system:

xk+1 = f (xk ; uk ) (1)

with statex 2 X and actionu 2 U. Here,X is an arbitrary
space, such asRm or a discrete set. We restrictU to a
�nite set below. Each transition fromxk to xk+1 as a result
of uk is associated with a rewardr k+1 = � (xk ; uk ), and
the goal is to �nd for each statex a sequence of actions
u 1 = ( u0; u1; : : : ) 2 U1 that maximizes the in�nite-horizon
discounted return (value):

V u 1 (x) =
1X

k=0


 k r k+1 =
1X

k=0


 k � (xk ; uk ) (2)

wherex0 = x; x k+1 = f (xk ; uk ) for k � 0, and
 2 [0; 1) is
the discount factor. ElementsX , U, f , � , and
 together form
a deterministic type of Markov decision process (MDP). The
optimal value function is de�ned asV � (x) = sup u 1

V u 1 (x),
and under Assumption 1 below always exists and is unique,
see Ch. 4 of [4]. Because the system is deterministic, action
sequences are suf�cient to represent the optimal solution.

Assumption 1:The action space is discrete (or discretized),
U =

�
u1; : : : ; uM

	
. Rewards are bounded in[0; 1].

Reward boundedness is often assumed in the MDP lit-
erature, see e.g. Ch. 4 of [4] and [46], since it ensures
boundedness of the value in (2). The main way to achieve
boundedness is by saturating a possibly unbounded original
reward function. This changes the optimal solution, but is often
suf�cient in practice. Then, the resulting bounded rewards
can be normalized to[0; 1]. On the other hand, the physical
limitations of the system may be meaningfully modeled by
saturating the states and actions. In this case, a reward bound
follows from the saturation limits.

Many systems have inherently discrete and �nitely-many
actions, because they are controlled by switches. This is the
case e.g. in traf�c signal control [18] or water level control
by barriers and sluices [47]. When the actions are originally
continuous, discretization reduces performance, but the loss is
often manageable. Discretized actions may even be preferable
due to their bene�ts in NCS: the size of communication
packets can be reduced by encoding the discrete actions by
their index, and actuator saturation can be dealt with by simply
discretizing within the operating ranges. Other authors showed
interest in coarsely-discretized control for NCS, e.g. [17].
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B. Optimistic planning for deterministic systems

To introduce the algorithm, in this section we focus on a
particular statex where it must be applied, and by convention
set the current time to0, so that x0 = x. Of course, the
procedure works at any time step.

u0
1 u0

2

! x  u( , )0 0
2

L T( )

f x  u( , )0 0
2

! x  u( , )0 0
1

f x  u( , )0 0
1

u1
1 u1

2

d = 1

d = 2

d = 3

Fig. 1. Illustration of an OPD treeT . Nodes are labeled by actions, arcs
represent transitions and are labeled by the rewards and next states resulting
by applying the corresponding action. Subscripts are depths, superscripts index
the M possible actions/transitions from a node (here,M = 2 ). The leaves
L (T ) are enclosed in a dashed line, while the thick path highlights an action
sequence. Note that the root corresponds to the empty sequence.

Optimistic planning for deterministic systems (OPD) [28]
explores a tree representation of the possible action sequences
from the current state, as illustrated in Figure 1. OPD starts
with an unlabeled root node, and iteratively expands nodes,
where each expansion adds new children nodes correspond-
ing to all the M actions u1; : : : ; uM . Each node at some
depth d is reached via a unique path through the tree, and
can thus be uniquely associated to the sequence of actions
u d = ( u0; u1; : : : ; ud� 1) on this path. In what follows, we
will work interchangeably with sequences and paths, keeping
this equivalence in mind.

For a sequenceu d, we de�ne three quantities:

`x (u d) =
d� 1X

d0=0


 d0
� (xd0; ud0); bx (u d) = `x (u d) +


 d

1 � 


vx (u d) = `x (u d) + 
 dV � (xd)

where the states are generated with the action sequenceu d,
like in (2). Subscriptx indicates that the three quantities
depend on the statex = x0 where OPD is applied. Due to
Assumption 1, the rewards (below depthd) are in [0; 1], so
`x (u d) provides a lower bound on the value of any in�nite
sequence that starts withu d, while bx (u d) is an upper bound.
Value vx (u d) is obtained by continuing optimally afteru d.

We denote the set of sequences corresponding to leaves of
T by L (T ). OPD optimistically explores the space of action
sequences, by always expanding further a most promising leaf
sequence: one with the largest upper boundbx (u ). At the end,
a sequence that maximizes the lower bound`x (u ) among
the leaves is returned. Since leaves sit at varying depthsd
in the tree so that
 d=(1 � 
 ) varies, maximizing`x (u ) is
different from maximizingbx (u ), and can intuitively be seen
as making a safe choice. Algorithm 1 summarizes the entire
procedure, where function�( �) gives the depth of a tree,
and any ties among several sequences maximizing upper or
lower bounds are broken arbitrarily. We allow the algorithm
to terminate either after a given number of expansions, or
after a node at given depthd has been expanded, leading

Algorithm 1 Optimistic planning for deterministic systems
Input: statex, budgetn or depthd (set the other to1 )

1: initialize tree:T  f rootg, i = 0
2: repeat
3: �nd optimistic sequence:u y 2 arg maxu 2L (T ) bx (u )
4: add childrenuj ; j = 1 ; : : : ; M to the node ofu y

5: i  i + 1
6: until i = n or �( T ) = d + 1
7: n  i ; d  �( T ) � 1

Output: u � 2 arg maxu 2L (T ) `x (u ), d, n

to �( T ) = d + 1 . Sometimes a sequence of length�( T )
may be returned, in which case the last action is removed for
uniformity of analysis. The computational budget is measured
by the number of expansions, since an expansion takesM calls
to the modelf and to the reward function� , and for nonlinear
systems computingf dominates the execution time. Other tree
operations (such as computing b-values or traversing the tree
to �nd the optimistic sequence) are signi�cantly cheaper, but
can be bounded betweenO(n logn) andO(n2), depending on
the branching factor� (x) de�ned in the next section.

C. Theoretical guarantees

To characterize the complexity of �nding the optimal se-
quence from a given statex, we use the branching factor
� (x) (average number of children per node) of the near-
optimal subtree. This subtree contains only nodes that, given
the rewards obtained down to them in the tree, cannot be ruled
out as belonging to optimal sequences. In general, exploring
these nodes is unavoidable, and� (x) is in this sense necessary
to characterize the problem. OPDonly explores the near-
optimal subtree, leading to a priori guarantees on the relation
between computation, sequence length, and near-optimality.
Since� (x) is generally unknown, actual values for e.g. near-
optimality cannot be determined in advance. Nevertheless,the
analysis provides con�dence that OPD automatically adapts
to the complexity of the problem at statex, described by
� (x). We return to detail these properties after the formal
development is in place.

The near-optimal subtree is de�ned asT � (x) = f u d j d �
0; V � (x) � vx (u d) � 
 d=(1 � 
 )g. Let T �

d (x) be the set
of nodes at depthd on T � (x) and j�j denote set cardinality,
then the asymptotic branching factor is de�ned as� (x) =
lim supd!1 jT �

d (x)j1=d.
A sequenceu d is said to be"-optimal when V � (x) �

vx (u d) � " . The upcoming theorem is a consequence of the
analysis in [28], [39]. It is given here in a form that brings out
the role of the sequence length, useful for the NCS application
in the sequel. Part (i) of the theorem shows that OPD returns a
long and near-optimal sequence, and parts (ii), (iii) show that
sequence length and near-optimality are closely related tothe
computation budget, via branching factor� (x).

Theorem 1:Let x 2 X . When OPD is called atx:

(i) The length of the sequenceu � returned isd = �( T )� 1.
Denoting"(x) = V � (x) � `x (u � ), we have"(x) � 
 d

1� 
 .
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(ii) When OPD is called with large target depthd: � If
� (x) > 1 it will require a number of expansions1

n(x) = O(� (x)d). � If � (x) = 1 , n(x) = O(d).
(iii) When OPD is called with large budgetn: � If � (x) > 1

it will reach a depth ofd(x) = 
( log n
log � (x ) ), and"(x) =

O(n� log 1 =

log � ( x ) ). � If � (x) = 1 , d(x) = 
( n) and "(x) =

O(
 c(x )n ), wherec(x) is a constant. �
Proof: (sketch) Item (i) follows from the proof of Theo-

rem 2 in [28], (ii) from the proof of Theorem 3 in [28], and
(iii) from the proofs of Theorems 2 and 3 in [28].

The sequence returned is also"(x)-optimal, sinceV � (x) �
vx (u � ) � V � (x) � `x (u � ) � " (x) in view of part (i); the
second inequality here is stronger than"(x)-optimality.

These results rely on the core property that OPD only
expands nodes inT � (x), although it uses solely reward infor-
mation from the current tree [28], [39]. To build more intuition
on T � (x) and � (x), note thatT � (x) contains sequences for
which it is impossible to tell, from their rewards down tod,
whether or not they are part of an optimal solution, because
their near-optimality is smaller than the amount of reward

 d=(1� 
 ) they might accumulate below depthd. Usually only
some sequences have this property, thereforeT � (x) is smaller
than the complete tree and� (x) is smaller than the number
of actionsM . The smaller� (x), the more easily near-optimal
sequences can be distinguished, and the better OPD does. The
best case is� (x) = 1 , obtained e.g. when a single sequence
always obtains rewards of1, and all the other rewards are0.
In this case the algorithm must only develop this sequence,
and suboptimality decreases exponentially. In the worst case,
� (x) = M , obtained e.g. when all the sequences have the
same value, the algorithm must explore the complete tree in a
uniform fashion, expanding nodes in order of their depth.

III. OPD FOR DETERMINISTIC NETWORKED CONTROL

SYSTEMS

A. Setting

We now focus on a networked-control setting, in which
actuation and state signals are exchanged over a network that
must be ef�ciently utilized. To this end, the controller should
only communicate with the plant when needed. OPD is well
equipped to handle this case, since it guarantees that it will
return long and near-optimal sequencesof actions.

We envision the following setup, see Figure 2. The sequence
of transmission instants is denoted byki , i 2 f 0; 1; 2; : : :g,
and it will either be �xed by the user or de�ned by the
controller itself. At eachki , the controller receives the state's
measurement and generates a sequence of control actions
which is sent as a single packet to the actuators' buffer, like in
[2], [14], [25], [43], [44]. The actuators then apply thek0-th
component of the sequence to the plant at stepki + k0, until
the full sequence has been used. Afterwards, the new state's
measurement is sent to the controller and the procedure is
repeated. The number of transmissions is reduced, since the

1Let g; h : (0; 1 ) ! R. Statementg(t ) = O(h(t )) (or g(t ) = 
( h(t )) )
for large t means that9t0 ; c > 0 so thatg(t ) � ch(t ) (or g(t ) � ch(t ))
8t � t0 . When the statement is made for smallt , it means that9t0 ; c > 0
so that the same inequalities hold for8t � t0 .

channel is only used at intervals equal to the sequence lengths.

network
System

OP algorithm

Buffer

Fig. 2. NCS architecture in the deterministic case.

B. Algorithms

Algorithm 1 and Theorem 1 suggest two ways in which
OPD could be exploited for NCS. The �rst possibility is to
impose a desired sequence length (planning depth)d at every
controller execution step, and then send to the plant either
the full sequence or an initial subsequence thereof. Denoting
the length of the sent subsequence byd0 � d, this means
the communication between the controller and the plant is
set to occur with a periodd0. Applying OPD in this way
is novel. Since lengthd and the controller execution interval
d0 � d are freely selected, this �rst strategy is called Clock-
triggered OP (COP); it is summarized in Algorithm 2. The

Algorithm 2 COP: Clock-triggered optimistic planning
Input: initial statex0, target depthd, subsequence lengthd0

1: k  0
2: loop
3: measure current statexk

4: apply OPD(xk ; d), obtaining a sequenceu d

5: send initial subsequenceu d0 to plant
6: k  k + d0, wait d0 steps
7: end loop

Algorithm 3 STOP: Self-triggered optimistic planning
Input: initial statex0, budgetn, subsequence fraction�

1: k  0
2: loop
3: measure current statexk

4: apply OPD(xk ; n), obtaining a sequenceu d(x )

5: send initial subsequenceu d�d (x )e to plant
6: k  k + d�d (x)e, wait d�d (x)e steps
7: end loop

second possibility is to impose the computation budgetn, like
in the classical application of OPD, and let the algorithm
�nd the longest sequence it can within this budget. Then,
different from classical OPD which sends just one action, we
send again either the whole sequence or a subsequence. The
returned sequence length depends in addition ton also on the
current state, through the planning complexity as expressed
by branching factor� (x). Therefore, the algorithm is self-
triggered and we call it Self-Triggered OP (STOP); it is
summarized as Algorithm 3. To allow sending subsequences,
STOP is parameterized by the fraction� 2 (0; 1], so that if a
sequence of lengthd is returned by OPD, only the �rstd�d e
actions are actually sent and applied, whered�e denotes the
ceiling operator.
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C. Analysis

An algorithm is called"-optimal if it applies in closed loop
a sequenceu 1 satisfyingV � (x0) � V u 1 (x0) � " . Consider
�rst COP.

Theorem 2:For anyd and d0 � d, the following hold. (a)
COP is 
 d

1� 
 -optimal. (b) For larged, at every statex where
it is called, COP requires:� n(x) = O(� (x)d) expansions if
� (x) > 1; � n(x) = O(d) expansions if� (x) = 1 , with � (x)
the branching factor of Section II-C. �

Proof: The second part of the theorem is a consequence
of Theorem 1(ii). To prove part (a), denote byu 0 the sequence
returned by OPD when applied atx0, and recall that" (x0) =
V � (x0) � `x 0 (u 0). If the full sequence is applied, then no
matter what actions are taken afterwards at least value`x 0 (u 0)
is obtained, so COP is"(x0)-optimal.

Now, consider applying a subsequenceu 00 strictly shorter
than u 0, and then reexecuting OPD in the resulting state
x1 to obtain u 1, see Figure 3. Denote byu 000 the leftover
subsequence fromu 0. For arbitrary sequencesu and ~u, let
(u ; ~u) denote their concatenation.

T0

T1

u 0! u0 uN. . .x1 x2

xN

u 1!
u1

u N-1! uN-1

Fig. 3. Using OPD with subsequences. Different from Figure 1, the trees are
now oriented horizontally.

When applied fromx1, OPD builds the treeT1 by expanding
nodes in the exactly the same order as it would have expanded,
when applied fromx0, nodes in the subtree ofT0 havingx1 at
root. That is, for any sequence~u 1 in T1, the following b-value
relationship holds by de�nition:bx 0 (u 00; ~u 1) = `x 0 (u 00) +

 d1 bx 1 ( ~u 1), whered1 is the depth ofx1 in T0. So, maximizing
bx 1 ( ~u 1) is the same as maximizingbx 0 (u 00; ~u 1) with respect
to ~u 1. Because OPD is applied with the same setting inx1

as in x0, it will expand more nodes and sou 000 is insideT1.
Sinceu 1 maximizes̀ x 1 on T1, we havè x 1 (u 1) � `x 1 (u 000),
which means the composite sequence satis�es:`x 0 (u 00; u 1) =
`x 0 (u 00) + 
 d1 `x 1 (u 1) � `x 0 (u 00) + 
 d1 `x 1 (u 000) = `x 0 (u 0)
whered1 is the depth ofx1.

Continuing in a similar fashion, for anyN , applyingN � 1
shorter sequences followed by the fullN th sequence achieves
`(u 00; u 01; : : : ; u 0N � 1; u N ) � `x 0 (u 0), see again Figure 3.
Thus the same is true of the limit asN ! 1 , and since
this limit is the valueV u 1 (x0) of the overall closed-loop
sequence, we have obtainedV � (x0) � V u 1 (x0) � V � (x0) �
`x 0 (u 0) � " (x0). To obtain the �nal result, notice that by
Theorem 1(i)," (x0) � 
 d

1� 
 .
Thus, the quality of the solution grows with the imposed

sequence lengthd, and the computation requirements to reach
this length are bounded and characterized using� (x). Specif-
ically, computation grows exponentially ind, with base� (x)
– unless� (x) = 1 , in which case it grows linearly ind. Next,
we move on to STOP.

Theorem 3:Take any large budgetn and any� 2 (0; 1]. (a)

The near-optimality of STOP is:� O(n� log 1 =

log � ( x 0 ) ) if � (x0) > 1,

and � O(
 cn ) if � (x0) = 1 . (b) At every statex where it
is called, STOP produces a sequence of length:� d(x) =

( log n

log � (x ) ) if � (x) > 1, and� d(x) = 
( n) if � (x) = 1 . �

Proof: It directly follows by reapplying the proof of
Theorem 2(b) that STOP is"(x0)-optimal, and using the
expressions of" (x0) from Theorem 1(iii) completes the �rst
part. The second part follows directly from Theorem 1(iii).

The performance guarantee of STOP depends only on the
planning dif�culty at the initial statex0: it is a negative power
of n when � (x0) > 1, and exponential (better) inn when it
is � (x0) = 1 . The sequence length grows fast, in a way that
is characterized using� (x), and which basically `inverts' the
relationship between computation and length in COP.

It must be emphasized that the analysis is performed under
the assumption that the model is correct. This is the main
reason for which the subsequence length (represented byd0

in COP and� in STOP) does not affect the near-optimality
guarantee: there is no loss, whether the loop is closed sooner
or later. Also, the full initial sequence could be applied and
followed by arbitrary actions, while still guaranteeing


d

1� 
 -
optimality. No predictive algorithm can do better in general
without increasing the horizon, because the rewards are not
assumed to be smooth so they may change unfavorably beyond
the horizon explored at the �rst step. Of course, in practice
uncertainty is always present, as model errors or disturbances,
which means the sequences cannot be too long and the loop
must be closed fairly often.

Even when the model is correct, some nontrivial relations
arise between shorter and longer sequences: applying shorter
sequences – closing the loop more often – may achieve
better or worse performance, depending on the problem. The
following result characterizes this behavior, in a generalway
that applies to both COP and STOP.

Theorem 4:Let x 2 X and denote byu d the sequence
returned by OPD atx. Let u d0 be an initial subsequence of
u d andu d1 be obtained by replanning afteru 0

d (see Figure 4).
De�ne similarly u d00 andu d2 with d00> d 0. Then:

vx (u d0; u d1 ) � vx (u d00; u d2 ) �

 d0+ d1

1 � 


Furthermore, if the budget or target depth of OPD are held
constant, then the bound is tight in a worst-case sense.�

ud!

ud1

ud"

ud2

x1

x!

x

Fig. 4. Shorter versus longer subsequences.
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Proof: Denote byx0 andx00the states reached byu 0
d and

u 00
d , respectively. The inequality is shown as follows:

vx (u d0; u d1 ) = `x (u d0) + 
 d0
vx 0(u d1 )

= `x (u d0) + 
 d0
V � (x0) � 
 d0

[V � (x0) � vx 0(u d1 )]

� vx (u d0) �

 d0+ d1

1 � 

� vx (u d00; u d2 ) �


 d0+ d1

1 � 


where the �rst step follows from the de�nition of thev-value,
the second just adds and subtracts an extra term, the third
follows from Theorem 1(i) when applied atx0, and �nally the
last step is true becausev cannot increase if more actions are
added to the sequence.

ud!

ud1

ud" ud2

rewards=1

rewards=0

x!

x1

x"x

Fig. 5. Constructing an example where the bound is tight.

To show tightness, a worst-case example is provided where
the bound holds with equality. Construct a problem, in the
form of a tree, where all rewards are0 except for one subtree
placed belowx00at depthd0+ d1, in which they are all1, see
Figure 5. Note that due to the zero rewards untild0 + d1, up
until this depth all trees will be expanded uniformly. When
OPD is applied to �ndud and ud1 , it cannot discriminate
between sequences since they all have a lower bound` equal
to 0, so OPD must choose one arbitrarily. We take the arbitrary
sequenceud1 so that it does not containx00, leading to a value
vx (u d0; u d1 ) = 0 .

When OPD is called atx00, it starts expanding nodes
uniformly, and since this state is at depthd00> d 0 and OPD
has the same budget or target depth as atx0, it will expand
at least a node at depthd0+ d1. We simply place the subtree
with rewards of1 under this node, thereby ensuring that the
algorithm discovers it and that the sequence(u d00; u d2 ) has

the optimal value
 d 0+ d 1

1� 
 . So the bound is tight.
The theorem says that applying a shorter sequence and then

replanning may lose some performance, but not too much: the
maximum loss is given by the accuracy of theentire composite
sequence(u d0; u d1 ), i.e., 
 d 0+ d 1

1� 
 . Further, from the worst-case
example it is clear that the same loss can be incurred even if
the loop is closed again sooner thand1 or d2. The following
examples provide more insight into this issue, using COP as
it allows to directly control the (sub)sequence length.

Example 1: Shorter sequences can perform better.Con-
sider an MDP with state spacef 1; 2; : : : ; 5g, two actions
� 1; 1 (“left” and “right”), and additive dynamicsxk+1 =
max(1; min(5; xk + uk )) . The rewards obtained upon reaching
each of the �ve states are, respectively,0:8; 0:7; 0:5; 0:8; 0, and
the discount factor is0:8, see Figure 6.

When applied fromx0 = 4 with d = 2 and d0 = 1 , COP
replans inx1 = 3 , which allows it to detect the larger rewards

1 3
0.8 0.7

4
0.5

2 5
0.8 0

Fig. 6. A �ve-state MDP and two COP solutions. States are shown in circles,
and rewards in italics above them. The solution fromx0 = 4 with d0 = d = 2
is shown in gray on top of the �gure, while the one ford0 = 1 , d = 2 is
shown in black on the bottom. Solutions are shown as sequencesof actions,
where the bullets mark the states in which planning is run, andunapplied
sequence tails are shown in dashed lines.

to the left. It eventually reaches state1 and remains there,
achieving the optimal return of3:62. However, whend0 is
increased to2, COP exploits the rewards of states4 and5 and
cycles between these states forever, obtaining a suboptimal
return of3:17. �

Example 2: Longer sequences can perform better.A similar
MDP is taken but now with state spacef 1; 2; : : : ; 7g and the
rewards shown in Figure 7. The discount factor is the same.

1 3
0.5 0

4
0.7

2 5
0 0.2

6 7
1 0

Fig. 7. A seven-state MDP and two COP solutions, ford0 = d = 3 (top,
gray) andd0 = 1 , d = 3 (bottom, black).

Now, when applied fromx0 = 3 with d0 = d = 3 , COP
discovers the large reward in state6 and controls towards
this state, cycling afterwards between5 and6 for a return of
2:22. Whend0 = 1 however, replanning from state4 misleads
the algorithm into a shorter-horizon cycle that focuses on the
reward0:7, achieving only a suboptimal return of1:56. �

D. Simulation results for a DC motor

We study the behavior of COP and STOP in simulations
with a DC motor. See also [11] for a nonlinear example.
Discretizing in time a �rst-principles model of the DC motor,
with the zero-order-hold method andTs = 0 :01s, we obtain:

f (x; u) = Ax + Bu; A �
�
1 0:0095
0 0:9100

�
; B �

�
0:0084
1:6618

�
(3)

where x1 = � is the shaft angle,x2 = _� the angu-
lar velocity, and u the voltage. Moreover, the states and
actions are restricted using saturation to� 2 [� �; � ] rad,
_� 2 [� 15�; 15� ] rad/s,u 2 [� 30; 30]V, in order to represent
physical limitations in the system. The goal is to stabilizethe
system aroundx = 0 , and is described by the reward function:

� (x; u) = � x> Qx � u> Ru; Q = diag(5; 0:001); R = 0 :01
(4)

with discount factor
 = 0 :9. State and action saturation
ensure bounded rewards, and these rewards are then rescaled
into [0; 1]. The actions are discretized into the setU =
f� 10; � 3; 0; 3; 10g.
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We apply the two algorithms fromx0 = [2 �= 3; � ]> , setting
d = 10 for COP andn = 300 for STOP. Figure 8 shows
the solutions obtained when the complete returned sequences
are applied, that is, whend0 = 10 and respectively� = 1 . It
is interesting to see the evolution of the planning complexity
along the trajectory. This is shown in COP by the changing
computation numbern of expansions required to reach the
desired sequence lengths, where the practical effects of The-
orem 2(b) are seen; and in STOP by the lengths produced,
illustrating Theorem 3(b). Complexity is generally smaller
in states closer to the equilibrium (fewer expansions/longer
sequences), although the evolution is not always monotonic.
STOP especially requires only three controller executionsand
transmissions, thanks to a very long last sequence.
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0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

n

t [s]

0 0.2 0.4 0.6 0.8 1
0

100

200

d

t [s]

Fig. 8. Comparison between COP and STOP when applying complete
sequences. The top graphs are the controlled trajectories,with COP in gray
and STOP in black. The bottom two graphs show, at every controller execution
instant: for COP, the computationn spent; and for STOP: the lengthd of the
sequences found. The horizontal coordinates of the points in these graphs are
also the transmission times.

To investigate the effect of applying shorter sequences,
we vary for COPd0 = 1 ; 2; : : : ; 10 and for STOP� =
0:1; 0:2; : : : ; 1; the returns obtained are shown in Figure 9.
The suboptimality of each return obeys the upper bounds of
Theorem 2(a) for COP and Theorem 3(a) for STOP; e.g., the
COP bound is0:910=(1� 0:9) � 3:49. Although the loss from
Theorem 4 is unavoidable in general, in this problem shorter

sequences are indeed better, e.g. STOP gains signi�cantly
more return when� is below0:5.

0 2 4 6 8 10
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Fig. 9. Returns obtained by COP (top) and STOP (bottom) as the length of
the applied subsequence varies.
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Fig. 10. Performance with a noisy system (COP in gray and STOP in black).

Finally, the resilience of the deterministic-case algorithms
to random disturbances is empirically evaluated, by adding
a Gaussian disturbance to the discrete-time transitions (3).
The disturbance is zero-mean and has covariance matrix
diag(0:01; 0:01). COP and STOP employ the original de-
terministic model during planning. Representative trajectories
are shown in Figure 10, illustrating that the algorithms work
reasonably despite the rather large disturbance amplitudes. In
addition to these results, in the remainder of the paper we
provide a detailed analysis of stochastic extensions of COP
and STOP for a class of discrete uncertainty.

IV. STOCHASTIC CASE: BACKGROUND

In the second part of the paper, we provide methods that
allow a class of stochastic uncertainties.

A. Control problem and optimistic planning algorithm

In the stochastic case, the dynamics change to [3]:

xk+1 � ~f (xk ; uk ; �) (5)
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where the transition probability function~f provides for each
pair (x; u) the probability distribution~f (x; u; x 0) over next
states x0. The reward function is extended to also allow
a dependence on the next state:r k+1 = ~� (xk ; uk ; xk+1 ).
We still require discrete actions and bounded rewards, as
in Assumption 1. Moreover, we focus on uncertainties that
can be modeled by a�nite number of outcomes with known
probabilities.

Assumption 2:For any pair(x; u), the number of next states
reachable with nonzero probability is at most integerN > 0.

This class of problems disallows continuous uncertainty,
such as the Gaussian disturbance empirically studied in Sec-
tion III-D. Nevertheless, it is highly relevant, includingmany
discrete-event systems [13, Ch. 7,9] such as Markov jump sys-
tems [16], and with important applications in power systems
[6], fault detection [35], building automation [37], etc.,see also
our application to stochastic network delays in Section VI.
This is also the general form of MDPs typically studied in
arti�cial intelligence [42] and operations research [41],so
the variant of OP for these stochastic systems is called OP-
MDP [9]. Of course, ~f may also be the discretization of
an originally continuous distribution, a procedure related to
scenario generation in stochastic programming [30].

Before stating the optimal control objective, some prepara-
tory steps are necessary. Like OPD, OP-MDP works at the
current system state, conventionally denotedx0. It explores
iteratively an in�nite tree that represents all possible stochastic
evolutions of the system starting fromx0. Denote a state node
by s, labeled by an actual statex. The planning treeT1 ,
of which Figure 11 only shows a few top nodes, is de�ned
recursively as follows. First, the root nodes0 is labeled by
the current statex0, and then each nodes is expanded by
adding, for any statex0 for which ~f (x; u; x 0) > 0 for someu,
a new child nodes0 labeled byx0. So each node has at most
NM children, corresponding to all possible states reachable
by applying all possible actions. Note that Figure 11 explicitly
includes also the action nodes.

x1
1

x0

x2
1

u2
0

f(x , ,x  )0 1
2u

u

1

1
0

0r (x , ,x  )0 1
2

f(x , ,x  )0 1
1u

u

1

1
0

0r (x , ,x  )0 1
1

~ ~

~~ u1
0

d 0=

d = 2

d = 1

Fig. 11. Illustration of OP-MDP tree forN = M = 2 . The squares are
state nodes labeled by statesx, and the actionsu are explicitly included as
circle nodes. Transition arcs to next states are labeled by probabilities ~f and
rewards~� . Superscripts index the possible actions and state outcomes, while
subscripts are depths, which only increase with the state node levels. The
thick subtree highlights a tree policy.

The open-loop action sequences from OPD would be sub-
optimal in the stochastic case, since they cannot react to the
realization of the random transitions. Instead, a closed-loop
local solution concept called atree policyis needed. At depth
d, this tree policy is an assignment of actions to all state
outcomes under the previous action choices, thereby selecting

only some nodes ofT1 :

T0 = f s0g; and for anyd � 0: hd : Td ! U;

Td+1 = f s0 2 T1 js0 is a child ofs along actionhd(s)g

wherehd assigns actions as desired. Then, the overall selected
tree isTh1 =

S
d� 0 Td, and the policy itself ish1 : T1 ! U,

h1 (s) = hd(s) (s) whered(s) gives the depth ofs.
The objective is then to �nd, locally atx0, a policy h1

maximizing theexpectedreturn:

V h1 (x0) = E h1

(
1X

k=0


 k r k+1

)

(6)

where the expectation is taken over all trajectories inTh1 .
Finally, denote the optimal valueV � (x0) = sup h1

V h1 (x0).
OP-MDP works of course with �nite tree policies, denoted

simply byh and exempli�ed in Figure 11. These policies must
correspond to well-de�ned subtreesTh at the top ofT1 , so
that any node is either fully expanded or not at all. The leaves
of Th are denoted byL h . We will treat policiesh and their
corresponding treesTh interchangeably. Similarly to OPD,
de�ne three values:

`x (h) =
X

s2L h

P(s) R(s)

bx (h) =
X

s2L h

P(s) [R(s) +

 d(s)

1 � 

]

vx (h) =
X

s2L h

P(s) [R(s) + 
 d(s) V � (x(s))]

(7)

where R(s) is the discounted return accumulated along the
path from the root tos, and P(s) is the probability of
reaching leafs, equal to the product of the individual transition
probabilities along the path. So,`x (h) is the expected partial
return accumulated byh, and is a lower bound on the expected
returns of all complete, in�nite policiesh1 starting withh;
bx (h) is an upper bound on these expected returns; andvx (h)
is the expected return when continuing optimally belowh. It
is important to note thatbx (h) = `x (h) +

P
s2L h

P(s) 
 d ( s )

1� 
 .
We denote the sum in this expression bydiam(h), called the
diameter ofh; andc(s) = P(s) 
 d ( s )

1� 
 , the contribution of node
s to the diameter. Since the lower and upper bounds on the
values of policies starting withh are separated bydiam(h),
this diameter is an uncertainty onvx (h), and c(s) quanti�es
the contribution ofs to this uncertainty.

OP-MDP builds a subtreeT of T1 by re�ning at each
iteration an optimistic policy that maximizesbx ; and at the
end, it returns a policy maximizing̀x . Thus the approach is
similar to OPD, with the major difference that now a policy
has multiple leaf nodes so a choice between them must be
made. This is resolved by selecting for expansion a node with
maximal contribution to the diameter. Algorithm 4 summarizes
the approach. The algorithm can stop either aftern node
expansions or after reaching a prede�ned diameter for the
optimistic policy � . Value � has a dual meaning: diameter
and near-optimality, see the upcoming guarantees. Note that
expanding a node takes up toN times more simulations than
in the deterministic case.
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Algorithm 4 Optimistic planning for MDPs
Input: statex, and budgetn or desired diameter�

1: initialize tree:T  f rootg, i = 0
2: hy  initial empty policy, ~�  1

1� 

3: repeat
4: expand nodesy 2 arg maxs2L h y

c(s)
5: �nd new optimistic policy hy 2 arg maxh2T bx (h)
6: ~�  minf ~�; diam(hy)g, i  i + 1
7: until i = n or diam(hy) � �
8: if input wasn, then �  ~� , elsen = i end if

Output: h� 2 arg maxh2T `x (h), � , n

B. Theoretical guarantees

While in OPD only one sequenceu d was re�ned at a
given iteration, in OP-MDP expanding a single node re�nesall
policies that reach it with a positive probability. To handle this
global effect, a new complexity measure called near-optimality
exponent� (x) is required [9]. This exponent is related to other
measures of complexity for stochastic optimization [8], [32],
which however do not take global re�nement into account, and
� (x) serves that purpose. To formalize� (x), de�ne the largest
diameter of any (�nite) tree policy to which the contribution
of s is the greatest:�� (s) = sup h2 H (s) diam(h), H (s) =
f h j s 2 L h ; c(s) = max s02L h c(s0) g. This characterizes the
global impact of nodes. Then, de�ne the set of nodes that
have large impact on near-optimal policies:

S" (x) =
�

s 2 T1
�
� �� (s) � ";

and9h1 3 s s.t. V � (x) � V h1 (x) � �� (s)
	

(8)

where we have made explicit the dependence ofS" on the
current, root statex. Finally, the near-optimality exponent is
de�ned as the smallest number� (x) so that for small2 "
jS" (x)j = ~O(" � � (x ) ). This measures the complexity of the
optimal control problem atx.

Similarly to the deterministic case, a policyh is " -optimal
if V � (x) � vx (h) � " , and de�ne "(x) = V � (x) � `x (h� ),
immediately meaning thath� is " (x)-optimal. The following
results are a consequence of the analysis of OP-MDP in [9],
[39], and are stated so as to emphasize the role of the diameter.

Theorem 5:Let x 2 X . When OP-MDP is called atx:
(i) The policy h� satis�es diam(h� ) � � and "(x) � � ,

with � the diameter returned.
(ii) When OP-MDP is called with small near-optimality (di-

ameter)� : � If � (x) > 0 it will require n(x) = ~O(� � � )
expansions.� If � (x) = 0 , n(x) = O((log 1=� )b(x ) )
with b(x) > 0 a constant.

(iii) When OP-MDP is called with largen: � If � (x) > 0 it
will obtain diameter� (x) = ~O(n� 1=� (x ) ). � If � (x) =
0, � (x) = exp[ � (n=a(x))1=b(x ) ], wherea(x); b(x) > 0
are constants. �

When � (x) is smaller, the problem is simpler. The sim-
plest problem, for� (x) = 0 , can e.g. be obtained with a

2f (t ) = ~O(g(t )) for small (or large)t when9a; b; t0 > 0 so thatf (t ) �
a(log g(t )) bg(t ) 8t � t0 (or 8t � t0 ). The logarithmic term asymptotically
becomes negligible compared tog(t ).

deterministic system (N = 1 ) having a single policy with
rewards of 1; this reduces to OPD with� (x) = 1 . In
this case, the results say that computation scales logarithmi-
cally with desired diameter/near-optimality� – or, conversely,
� shrinks exponentially withn. More generally, when the
problem is deterministic, the generalized development from
this section reduces to the deterministic case, by taking
� (x) = log( � (x))=log(1=
 ) and � = 
 d

1� 
 . The most dif�cult
stochastic problem is for� (x) = log( NM )=log(1=
 ), when
all rewards in the tree are equal and the probabilities are
uniform, making the solutions impossible to differentiateand
requiring a uniform exploration of the tree.

V. OP-MDPFOR STOCHASTIC NETWORKED CONTROL

SYSTEMS

A. Setting

The main idea in applying OP-MDP to uncertain NCS
is similar to the deterministic case: the network is used
only sporadically to measure the state, a new tree policy is
computed based on this measurement, and this policy is then
sent via the network to the system, where it is locally applied.
However, using tree policies instead of action sequences leads
to several key new elements.

First, the architecture must now include two controllers. A
high-level controller sits beyond the network and implements
OP-MDP, see Figure 12. This controller is assumed to be
computationally powerful. Instead of the buffer from Figure 2,
a second, local controller is introduced, which is directly
connected to the system but is computationally much simpler
and does not perform any optimization. The local controller
applies the tree policy in closed loop, starting from the root
statexk . At each step, it applies the action the policy indicates,
measures the resulting realization of the next state, compares
it to all the children states of the applied action, and moves
the pointer in the tree to the matching child. This local loop
only costsO(N ) computation, to compare with theN children
states. It is executed until reaching a leaf state, at which point
the local controller signals that the higher-level loop must be
closed via the network. The memory required by the local
controller to store the tree policy varies up toO(n), since it
is at worst proportional to the size of the entire OP-MDP tree
developed.

network

System

OP-MDP

Tree-based
local controller

Fig. 12. NCS architecture in the stochastic case.

The second novelty is that the sequence actually applied
has a random length, which must be probabilistically charac-
terized. To this end, we de�ne theeffective lengthof a policy
h, the valued so that:


 d

1 � 

= E s2L h

�

 d(s)

1 � 


�
= diam( h) (9)

Note thatd is different from theexpected valueof the length.
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Finally, it will also be interesting to apply shorter subpoli-
cies so as to close the loop more often, e.g. to reduce the
size of data packets transmitted and the memory required at
the local controller. Formally, from a policy with diameter
� , one can obtain subpolicies with larger diameters� 0; this
is equivalent to changing the effective length from the initial
d = log � (1 � 
 )

log 
 to the smallerd0 = log � 0(1 � 
 )
log 
 . Our analysis

is largely independent on the actual procedure to �nd the
subpolicy, but Algorithm 5 shows one possibility. The diameter
of the output policyh0 will be close to, and smaller than,� 0.

Algorithm 5 Tree policy truncation
Input: Th , desired diameter� 0

1: repeat starting fromTh0 = f rootg
2: add toTh0 all children ofsy 2 arg maxs2L h 0;s=2L h

c(s)
3: until diam(Th0) � � 0

Output: Th0

B. Algorithms

There are two ways to adapt Algorithm 4 for NCS. A
counterpart to COP is obtained by setting at every transmission
a desired near-optimality� , which is equivalent to setting a
diameter and, through (9), an effective lengthd. Either the full
policy, or a subpolicy with diameter� 0 is sent via the network,
and the local controller takes over. The larger� 0 corresponds
to a smaller effective lengthd0, but the actual length of the
applied sequence is random and may be different fromd0, so
this scheme is no longer clock-triggered. It is more accurately
called Diameter-triggered OP for Stochastic systems (DOPS),
and shown in Algorithm 6.

Algorithm 6 DOPS
Input: initial statex0, target diam.� , subpolicy diam.� 0

1: loop
2: measure current statexk

3: apply OP-MDP(xk ; � ), obtaining policyh
4: truncateh to � 0 (e.g. with Algorithm 5), obtainingh0

5: sendh0 to plant
6: wait until policy exhausted
7: end loop

The second alternative is to call OP-MDP as usual, with
a �xed computation budgetn, but then apply either the full
policy or a subpolicy with a larger diameter. The length of the
applied sequence depends stochastically on the complexityat
the current state, via the diameter, see (9). We have therefore
obtained Self-Triggerred OP for Stochastic systems, STOPS,
see Algorithm 7. Parameter� 2 (0; 1] controls the truncation,
and is chosen to give an� -times smaller effective depth of the
subpolicy, leading to the diameter formula on line 4.

C. Analysis

We begin by analyzing DOPS. An algorithm is called"-
optimal if in closed-loop it generates an in�nite policyh1

satisfyingV � (x0) � V h1 (x0) � " .
Theorem 6:Take any� > 0 and � 0 < � . (a) DOPS is� -

optimal if the full policies are applied, and �
1� � 0(1 � 
 ) -optimal

Algorithm 7 STOPS
Input: initial statex0, budgetn, diameter fraction�

1: loop
2: measure current statexk

3: apply OP-MDP(xk ; n), obtaining policyh
4: truncateh to diameter[diam( h)(1 � 
 )] �

1� 
 , obtainingh0

5: sendh0 to plant
6: wait until policy exhausted
7: end loop

if subpolicies are applied. (b) For small� , at every statex
where it runs planning, DOPS requires:� n(x) = ~O(� � � (x ) )
expansions if� (x) > 0; � n(x) = O((log 1=� )b(x ) ) expan-
sions if � (x) = 0 , whereb(x) is a constant. �

Proof: The computation bounds follow directly from
Theorem 4, (iii). From part (i),V � (x0) � `x 0 (h0) � � , where
h0 is the policy found at initial statex0. Since`x 0 (h0) is a
lower-bound on the value ofanypolicy afterh0, fully applying
h0 followed by any actions maintains the bound.

The case of subpolicies is more involved. Instead of apply-
ing h0, a subpolicyh0

0 is used, and upon reaching any leaf
s0 2 L 0

0 of h0
0, OP-MDP is applied again to �nd a new policy

h1(s0); see Figure 13 for a graphical illustration. For now
consider that the full new policy is applied, and denote by
h1 the policy resulting from joiningh0

0 with the new policies
h1(s0) at all s0. Then:

V � (x0) � vx 0 (h1) =

= V � (x0) �
X

s02L 0
0

P(s0)
h
R(s0) + 
 d(s0) vx (s0) (h1(s0))

i

= V � (x0) �
X

s02L 0
0

P(s0)
h
R(s0) + 
 d(s0) V � (x(s0))

i

+
X

s02L 0
0

P(s0) 
 d(s0) �
V � (x(s0)) � vx (s0) (h1(s0))

�

� � +
X

s02L 0
0

P(s0) 
 d(s0) � = � + 
 d0
� (10)

whered0 is the effective length corresponding to� 0. The �rst
equality follows from the de�nition ofv-values, the second is
obtained by adding and subtracting the optimal values ats0,
and the third step is due to the near-optimality of OP-MDP at
both the root state and anys0.

T0

. . .h!0 h s1( !)

T1( !)s

h0

L!0

h0( !)ss!

Fig. 13. Using OP-MDP with subpolicies. The full trees developed are also
shown in gray outline. Note the new planning tree and policy from s0 are
shown displaced from their roots0 for readability.

Now, if every h1(s0) is truncated at� 0, a similar inequality
holds for each such truncated policy; and combining this with
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the derivation above, the bound� + 
 d0
� + 
 2d0

� is obtained
for the overall policy. Continuing recursively like this, in the
limit we obtain �

1� 
 d 0 = �
1� � 0(1 � 
 ) .

Thus, computation depends on planning complexity, as
expressed by the near-optimality exponent� (x). The desired�
bounds the closed-loop near-optimality when full policiesare
applied. For subpolicies, an extra denominator1 � 
 d0

arises
from the proof. Nevertheless, a strong intuition con�rmed in
experiments indicates this extra term is conservative and� will
always bound the closed-loop performance. A similar property
can actually be proven for STOPS, as described next.

Theorem 7:Take any largen and any� 2 (0; 1]. (a) The
near-optimality of STOPS is:� ~O(n� 1

� ( x 0 ) ) if � (x0) > 1,
and � O(exp[� (n=a(x0))1=b(x 0 ) ]) if � (x0) = 0 . (b) at
every statex where it is called, STOPS returns a policy of
diameter:� � (x) = ~O(n� 1

� ( x ) ) if � (x) > 1, and � � (x) =
O(exp[� (n=a(x))1=b(x ) ]) if � (x) = 0 . Here, a and b are
problem- and state-speci�c constants. �

Proof: The second part follows from Theorem 5(iii).
When h0 is fully applied (� = 1 ), the �rst part holds as in
Theorem 6.

Otherwise, examine the case when the �rst policyh0 is
truncated at diameter� 0 > diam(h0); and consider again the
composite policyh1, see again Figure 13. Its`-value satis�es:

`x 0 (h1) =
X

s02L 0
0

P(s0)
h
R(s0) + 
 d(s0) `x (s0) (h1(s0))

i

�
X

s02L 0
0

P(s0)
h
R(s0) + 
 d(s0) `x (s0) (h0(s0))

i
= `x 0 (h0)

whereh0(s0) is the part ofh0 belows0, which gets replaced by
h1(s0). The crucial relation is̀ x (s0) (h1(s0)) � `x (s0) (h0(s0)) ,
which holds because OP-MDP expands nodes in the same
order in the subtree ofs0. Since its budget is stilln, when
called ats0 it will expand at least all the nodes onh0(s0) and
in the end choose a policy with at least as large an`-value.
We can get a similar inequality for anyh1(s0) that is truncated
instead of being fully applied, and recursively repeating this
we get in the limit thatV h1 (x0) � `x 0 (h0), whereh1 is
the complete policy that would be applied in closed loop.
Hence, this policy is near-optimal at least to the extent of
h0, completing the proof.

Like in the deterministic-case STOP, near-optimality de-
pends only on the planning complexity at the initial statex0.
The diameter shrinks like a power ofn when � (x) > 0, or
faster, exponentially, when� (x) = 0 , which implies a growth
rate similar to that in STOP of the effective lengthd and thus
of d0. More precisely,d is of the orderlog n

� (x ) , or (n=a(x))1=b(x )

when � (x) = 0 .
The closed-loop bound is independent of the subpolicy

diameter in STOPS, and has a dependence on this diameter that
is not believed to be very informative in DOPS, as explained
after Theorem 6. So a more direct characterization of the
values of subpolicies will be useful.

Theorem 8:Consider that OP-MDP returns a policyh0 with
diameter� , which is truncated to� 0 < � , and replanning is run

from any leaf of the subpolicy, obtaining a maximal diameter
� 1. Then, the value of the composite policyh1 satis�es:

vx 0 (h1) � vx 0 (h0) � � 0� 1(1 � 
 )

Furthermore, if the budget or target diameter are held constant
and Algorithm 5 is used to �nd the subpolicy, then the bound
is tight in a worst-case sense. �

Proof: The inequality is shown similarly to (10):

vx 0 (h1) =
X

s02L 0
0

P(s0)
h
R(s0) + 
 d(s0) vx (s0) (h1(s0))

i

=
X

s02L 0
0

P(s0)
h
R(s0) + 
 d(s0) V � (x(s0))

i

�
X

s02L 0
0

P(s0) 
 d(s0) �
V � (x(s0)) � vx (s0) (h1(s0))

�

� vx 0 (h0
0) �

X

s02L 0
0

P(s0) 
 d(s0) � 1

� vx 0 (h0) � 
 d0
� 1 = vx 0 (h0) � � 0� 1(1 � 
 )

with the difference thath1(s0) can stop at a different diameter
� 1, and exploiting the fact that thev-value of a policy can only
increase by truncation, since optimal choices are made earlier,
at s0. Here,d0 is again the effective depth for� 0.

h s1( !)h!0
s! h0( !)s rewards=1

d!+dd!
d!+d

d

Fig. 14. Worst-case example in the stochastic case. Notationand styles are
reused from Figure 13.

To construct a worst-case example, the deterministic exam-
ple of Figure 5 is extended by changing all action sequences
into policy trees with uniform probabilities,~f (x; u; x 0) =
1=N. Choose some lengthd and take� 1 = � = 
 d

1� 
 , or, if n

is used,n =
P d� 1

i =0 (NM ) i , so as to fully expand up to depth

d in a uniform tree; and take� 0 = 
 d 0

1� 
 , d0 < d . Construct
the problem in Figure 14, where all rewards are0 except on
certain subtrees at depthd0 + d, as explained below. Due to
the 0 rewards and uniform probabilities, atx0 as well as any
s0 the algorithm will expand a uniform tree up to depthd,
and since all policies havè-value0, it will arbitrarily choose
the output policies. Then, below the composite policyh1 we
assign zero rewards, so that its overall value is 0. For eachs0,
we pick the partsh0(s0) of arbitrary policyh0 to be different
from h1(s0), and �nally we assign rewards of1 at all nodes
below depthd0 + d downstream ofh0(s0). This is done for
all s0, and so replanning at any leaf node ofh0 will surely
discover the rewards of1, leading to an overall closed-loop
value of 
 d 0+ d

1� 
 . The example is complete.

D. Simulation results for the inverted pendulum swingup

DOPS and STOPS are applied to swing up and balance an
underactuated inverted pendulum. The states are� (angle) and
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_� , while the input voltageu is limited to [� 3; 3]V, insuf�cient
to push up the pendulum in one go; instead, the pendulum
needs to be swung back and forth to gather energy. Rewards
are quadratic (4) withQ = diag[1; 0:001] andR = 0 :01, and

 = 0 :95. The pendulum is a relevant problem due to its highly
nonlinear solution and large depths to which the swings must
be planned. Actions are discretized intof� 3; 0; 3g, and an
unreliable actuator is modeled that only applies the intended
action u with probability 0:7, and with probability 0:3 it
applies only0:6u (when the intended action is0 it stays0).
This leads to a discrete uncertainty withN = 2 values.

We apply DOPS withd = 8 and STOPS withn = 2000,
from the pointing down state. We state results in terms of
effective lengths, to make them easy to compare with the
deterministic case. Figure 15 shows the returns for varying
subpolicy lengths, illustrating the bounds of Theorems 6(a)
and 7(a). Shorter subpolicies are usually better.
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Fig. 15. Returns obtained by DOPS (top) and STOPS (bottom). The shaded
area is the95% con�dence interval on the mean, from 10 experiments.

Figure 16 shows a trajectory for STOPS with� = 0 :4. The
swingup is achieved, and in the bottom graph we notice that
states close to the start, where the swingup must be planned,
are dif�cult and lead to short policies/large diameters, as
characterized by Theorem 7(b). The graph also illustrates the
practical effects of the probabilistic relationship (9) between
effective lengthd0 and the (random) length of the actually
applied sequence. The two are usually different, butd0 may
still be useful as a qualitative prediction of the length.

Before moving on, it is important to discuss some compu-
tational implications of discretization, in the deterministic as
well as the stochastic case. When the actions are originally
continuous, their discretization will usually contain a number
of pointsM exponential in the action dimension, and similarly
for the uncertainty withN discretized points. Recalling that
each node expansion has complexityM or NM , OP suffers
in this sense from the curse of dimensionality. This is the
price to pay for the high generality of the method, recalling
that it works for nonlinear, nonsmooth dynamics and general
rewards. A crucial point of OP analysis is that thenumberof
expansions does not directly depend onNM – but only on the
complexity measures� (x) or � (x). Finally, in some problems
the actions or uncertainties might be natively discrete, coming
e.g. from discrete phenomena in the network. We detail such
a case in the next section.
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Fig. 16. Top: a controlled trajectory. Bottom: effective length of full policies
(� ), of subpolicies (� ), and real length of the applied sequences (� ).

VI. RANDOM DELAYS IN THE CONTROL CHANNEL

This section shows how our stochastic framework in Fig-
ure 12 can be applied to deal with a type of network effects:
random delays in the transmission channel for control packets.
Packets must arrive in the order they were sent, and the
measurement channel should still be delay-free to accurately
signal when OP must be rerun. Receipt of the control packets
does not have to be acknowledged, since the local tree-based
controller has all the information needed to react to the delay,
as explained below. The delays must be a multiple of the
sampling time, and are modeled by a probability distribution
p : f 0; 1; 2; : : : g ! [0; 1], wherep(j ) is the probability that
the packet is received with a delay ofj steps. The delay is at
mostJ steps, and any delay up toJ has nonzero probability:

Assumption 3:The distribution p is known and time-
invariant. Further,9J; p(j ) = 0 8j > J andp(j ) > 0 8j � J .

This is related to the setting of [48], which also applies
predictive control under random delays; while that approach
additionally allows delays on the measurement channel, it
is limited to linear dynamics. In our setting, the controlled
system is taken deterministic with dynamicsf and rewards
� , and we aim to maximize theexpected return under the
random delays. This return is usually smaller than the original
optimal value under the deterministic dynamics. We consider
STOPS with fully applied tree policies, and characterize its
performance relative to the maximal expected return, as well
as the transmission intervals.

By convention, letk = 0 be the current step where the
control is sent, and denoteu� the previously applied action,
which will be maintained as long as the new control packet
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does not arrive. A stochastic MDP is de�ned with augmented
state ~x = [ x> ; j ]

>
2 X � f� 1; 0; : : : ; J g, ~x0 = [ x>

0 ; 0]
>

,
where j = � 1 means the packet has been received, while
j � 0 means a delay ofj has occurred so far. The state
evolves and rewards are assigned according to the previous
action, andj increases, until the packet arrives, modeled by
the following MDP dynamics and rewards:

~xk+1 =

8
><

>:

[f > (xk ; u� ); j k + 1]
>

w.p. 1 � q(j k ) if j k < J

[f > (xk ; uk ); � 1]
>

w.p. q(j k ) if j k < J

[f > (xk ; uk ); � 1]
>

w.p. 1 if j k 2 f� 1; J g

r k+1 =

(
� (xk ; u� ) if j k+1 � 0
� (xk ; uk ) if j k+1 = � 1

where q(j ) is the probability that the packet is received at
j < J given thatit was not received so far,q(j ) = p(j )=[1 �P j � 1

i =0 p(i )], 0 � j < J . The MDP de�ned in this way is
denotedm0 and depends on the state and default action at
the current step. The entire OP-MDP analysis in Section IV-B
carries through by replacing the dependence on the current
state by a dependence on the entire MDPm0 in quantities
V; v; `; b; S" , and � , e.g. the optimal value at~x0 is V �

m 0
(~x0).

This dependence is marked in subsequent notation.

1-step delay, P(s) = (1)p

d J=2=

x0

no delay, P(s) = (0)p

2 p-step delay, P(s) = (2)

Fig. 17. A tree policy for random delays. Only the state nodesare shown.

Actions are applied by near-optimally reacting to the de-
lay realization, using a tree policy with the structure from
Figure 17. At depth0, either the packet is received and the
intended action is applied, leading to the white node at depth
1, or a delay occurs (gray node at depth1). The branch
corresponding to the �rst case is deterministic, while the
second, delayed branch faces two similar outcomes; and so
on until depthJ , taken2 in the �gure. FromJ , all branches
are deterministic. Of course, all nodes on thej -step delay
branch have probabilityp(j ). The local controller determines
the delayj with which the packet was received, by comparing
the packet timestamp with the current time, and applies the
sequence on branchj starting at depthj , thereby reacting
in closed loop to the delay. The overall STOPS protocol is
obtained by applying OP-MDP to the augmented MDPm at
each step where it is called. At each such step, a tree policy
h is found and sent using the architecture of Figure 12.

While the results of Section V could be applied off-the-
shelf, the restriction to STOPS with full policies allows usto
show a stronger, interesting property: that STOPS behaves in a
certain sense like the deterministic STOP and so the effectsof
the delay are mild. Since the MDPm changes with the step
where OP-MDP is applied, the optimal value also changes,

and the notion of near-optimality must be reconsidered. We
therefore de�ne near-optimality with respect to the initial MDP
m0: an algorithm is"-optimal if its overall policy h1 it
applies in closed loop satis�esV �

m 0
(~x0) � V h1

m 0
(~x0) � " .

The upcoming Theorem 9 bounds this as well as the smallest
transmission interval.

Consider theentire OP-MDP treeT1 , which can be imag-
ined as in Figure 17 with an additional branching intoM
discrete actions at every node, see also Figure 11. Consider
also the subtreeT (x(sJ )) having as root some nodesJ at
depth J on T1 . The notation is justi�ed by the fact that
this subtree is, in fact, the deterministic OPD tree for state
x(sJ ), since downstream of the random delay the problem
is the time-invariant, deterministic one. Recall also branching
factor � (x(sJ )) of the near-optimal subtreeT � (x(sJ )) , see
Section II-C. The performance of STOPS will then be dictated
by � � (m0) := max sJ � (x(sJ )) , i.e. the most dif�cult deter-
ministic node encountered after any delay, which is intuitive
since STOPS must take into account all such states. To prove
this, the analysis of OP-MDP will be specialized to the
particular type of MDP for random delays. The key insight
is that asymptotically, for largen, the initial, stochastic tree is
fully expanded, and only the behavior along the deterministic
branches is important;� � (m0) dominates this behavior.

Theorem 9:In the delayed case, for largen and � = 1 :

(a) STOPS near-optimality is� O(n� log 1 =

log � � ( m 0 ) ) if � � (m0) >

1, and � O(
 cn ) if � � (m0) = 1 . (b) When called for any
x and previous actionu� , which together give an MDPm,
STOPS applies a sequence of length:� d(m) = 
( log n

log � � (m ) )
if � � (m) > 1, and� d(m) = 
( n) if � � (m) = 1 . �

Proof: We start with proving near-optimality (a), as
follows. Take a generic MDPm0. To achieve near-optimality
" the algorithm only expands nodes inS" (m0), see (8),
so budgetn � j S" (m0)j. The main part is bounding the
cardinality jS" (m0)j as a function of" . Then the direct
relationship betweenn and near-optimality follows.

Quantity jS" (m0)j will be bound byexcludingnodes from
S" (m0), and then counting all the remaining nodes. Con-
sider the setSd(m0) =

�
s 2 T1

�
� d(s) � d;9h1 3

s s.t. V �
m 0

(~x0) � V h1
m 0

(~x0) � �� (s)
	

. We characterize the
impact �� (s) of node s – see again Section V-C for the
de�nition of impact – in the asymptotic regime, along the
deterministic branches. All tree policies have the structure
in Figure 17. The contribution of a nodesj

d, at depth d
on branchj , is c(sj

d) = p(j ) 
 d

1� 
 . The maximal-diameter
policy on which c(sj

d) is largest is obtained by picking for
any j 0 6= j a node s0 with c(s0) � c(sj

d). Therefore,
�� (sj

d) � Jc(sj
d) = Jp(j ) 
 d

1� 
 ; 8d; j .

De�ne for conveniencevm 0 (s) := sup h1 3 s V h1
m 0

(~x0).
Choose a nodesj

d, at depthe = d � J on the deterministic
subtreeT (x(sJ )) of somesJ , that doesnot belong to the near-
optimal subtreeT � (x(sJ )) . Denote byu e the deterministic
action sequence ofsj

d on T (x(sJ )) . Then, V � (x(sJ )) �
vx (sJ ) (u e) > 
 e

1� 
 , where V � and vx (sJ ) are values in the



14

underlying deterministic problem, not inm0. Therefore:

V �
m 0

(~x0) � vm 0 (sj
d) � vm 0 (sJ ) � vm 0 (sj

d)

� p(j )
 J [V � (x(sJ )) � vx (sJ ) (u e)] > p (j )

 d

1 � 


Take another nodesj
d+ d0 below sj

d; we know �� (sj
d+ d0) �

Jp(j ) 
 d + d 0

1� 
 . By choosingd0 =
l

log J
log 1 =


m
, we haveJ
 d0

� 1

and �� (sj
d+ d0) � p(j ) 
 d

1� 
 < V �
m 0

(~x0) � vm 0 (sj
d). Since

vm 0 (sj
d) � vm 0 (sj

d+ d0) and vm 0 (sj
d+ d0) is in turn larger than

the value of any policyh1 containing sj
d+ d0, there exists

no such policy so that the conditionV �
m 0

(~x0) � V h1
m 0

(~x0) �
�� (sj

d+ d0) in the de�nition of Sd+ d0(m0) can be satis�ed, and
so sj

d+ d0 =2 Sd+ d0(m0).
Henceforth,ca denotes for anya an appropriately chosen

constant whose value is not important to the asymptotic
analysis. To boundjSd(m0)j for any larged, we count nodes
that cannot be excluded as above, up tod. In particular,
applying the exclusion rule with a suboptimal nodes which
is a direct child of a near-optimal one, we �nd that only
nodes up tod0 + 1 levels below s must be counted. At
depth e = d � J in T (x(sJ )) , the count of such nodes is
denoted� e(sJ ) and upper bounded as follows:� e(sJ ) �
P d0+1

i =0 c1� (x(sJ ))e� i K i � c2� (x(sJ ))e, when � (x(sJ )) >
1, and� e(sJ ) �

P d0+1
i =0 c3K i = c4 when � (x(sJ )) = 1 .

Thus, jSd(m0)j accumulates� e(sJ ) for all (�nitely many)
sJ and anye up to d � J , in addition to a constant number
c5 of nodes in the overall tree up toJ : jSd(m0)j � c5 +P

sJ

P d� J
e=0 � e(sJ ). With some calculation, we obtain:

jSd(m0)j �

(
c6� � (m0)d if � � (m0) > 1
c7d if � � (m0) = 1

(11)

Returning now toS" (m0), note that any nodes up tod in
this set belong toSd(m0). Then, takeD the smallest depth so
that J �p 
 D

1� 
 � " , where �p = max j p(j ). For anys at d > D ,
�� (s) � " and s =2 S" (m0), so thatS" (m0) � SD (m0). From
the condition onD, D � log J �p=["
 (1 � 
 )]

log 1 =
 , and replacing this
in jSD (m0)j from (11) we have:

jS" (m0)j �

(
c8" � log � � ( m 0 )

log 1 =
 if � � (m0) > 1
c9

log 1 ="
log 1 =
 if � � (m0) = 1

(12)

According to (8), this means� (m0) = log � � (m 0 )
log 1 =
 and at

this point we could directly apply the guarantees of OP-MDP
with this value of� (m0). However, we want stronger STOP-
like conditions, without the logarithmic term in~O. Hence, we
continue by recalling a crucial property of OP-MDP [9]: thatit
only expands nodes inS� (m0) where� is the smallest impact
among expanded nodes, see Algorithm 4.

Since only nodes inS� (m0) are expanded, we haven �
jS� (m0)j, and by using (12) for" = � :

� �

(
c10n� log 1 =


log � � ( m 0 ) if � � (m0) > 1

 n=c 9 if � � (m0) = 1

(13)

By Theorem 5(i)," (~x0) = V �
m 0

(~x0) � `m 0 (h) � � , whereh
is the initial policy. STOPS will work with different MDPsm

at the leaves ofh, and so on recursively, thus generatingh1 .
But sinceh is fully applied,V h1

m 0
(~x0) is at least as large as

`m 0 (h), so thatV �
m 0

(~x0) � V h1
m 0

(~x0) � � and the �rst part of
Theorem 9 is proven.

For the length guarantee (b), the shallowest branch of the
tree policyh gives the minimal sequence length. For any leaf
node s at d, we havec(s) = p(j ) 
 d

1� 
 � diam(h) � � . By
using (13) and solving ford, we have:

d �

(
c11

log n
log � � (m 0 ) if � � (m0) > 1

c12n if � � (m0) = 1

where the constants are chosen to cover for all valuesp(j ).
Since the derivation holds at anym where STOPS is executed,
the proof is complete.

VII. C ONCLUSIONS

We have developed a novel approach for the optimal control
of general nonlinear NCS, allowing for either time-triggered
or self-triggered strategies. The strategies are directlyimple-
mentable and have guaranteed near-optimality, which is placed
in a tight relationship with the transmission intervals andthe
computation invested. A class of stochastic uncertaintieswas
accommodated, and it was shown how this class can model
random network delays in the control channel. These results
were obtained by adapting optimistic planning (OP) algorithms
from arti�cial intelligence.

Analyzing the stability of the resulting control is the main
priority in future work. This will build on a general stability re-
sult for discounted optimal control, which we already achieved
in [40]. Stability of COP and STOP further requires dealing
with errors coming from quantization and sub-optimality.
Dealing with other network effects, such as packet losses, is
another interesting direction. Overall, we believe that such
syncretic combinations of arti�cial intelligence and control
ideas have a strong future.
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Lucian Buşoniu received the M.Sc. degree (vale-
dictorian) from the Technical University of Cluj-
Napoca, Romania, in 2003 and the Ph.D. degree
(cum laude) from the Delft University of Technol-
ogy, the Netherlands, in 2009. He is an associate
professor with the Department of Automation at
the Technical University of Cluj-Napoca, and has
previously held research positions in the Netherlands
and France. His research interests include planning
for nonlinear optimal control, reinforcement learning
and approximate dynamic programming, multiagent

systems, and robotics. He received the 2009 Andrew P. Sage Award for the
best paper in the IEEE Transactions on Systems, Man, and Cybernetics.



16

Romain Postoyan received the M.Sc. degree in
Electrical and Control Engineering from ENSEEIHT
(France) in 2005. He obtained the M.Sc. by Research
in Control Theory & Application from Coven-
try University (United Kingdom) in 2006 and the
Ph.D. in Control Theory from Université Paris-
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