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Experience Replay for Real-Time Reinforcement Learning Control

Sander Adam, Lucian Buşoniu, and Robert Babuška

Abstract—Reinforcement learning (RL) algorithms can auto-
matically learn optimal control strategies for nonlinear, possibly
stochastic systems. A promising approach for RL control is expe-
rience replay (ER), which quickly learns from a limited amount
of data by repeatedly presenting these data to an underlying
RL algorithm. Despite its benefits, ER RL has been studied only
sporadically in the literature, and its applications have largely
been confined to simulated systems. Therefore, in this paper we
evaluate ER RL on real-time control experiments involving a
pendulum swing-up problem and the vision-based control of a
goalkeeper robot. These real-time experiments are complemented
by simulation studies and comparisons with traditional RL. As
a preliminary, we develop a general ER framework that can
be combined with essentially any incremental RL technique,
and instantiate this framework for the approximate Q-learning
and SARSA algorithms. The successful real-time learning results
presented here are highly encouraging for the applicability of ER
RL in practice.

Index Terms—reinforcement learning, experience replay, real-
time control, robotics, Q-learning, SARSA.

I. INTRODUCTION

Reinforcement learning (RL) can be applied to problems for

which it is difficult or impossible to design the controller in

advance, for instance because a process model is not available.

This technique pertains to a broad class of dynamic systems,

including nonlinear deterministic and stochastic processes

[3], [32] and is therefore applicable in many domains [2],

[12], [13], [24]. Compact, approximate representations of the

solution [5], [6] are needed in control problems, to deal

with the continuous variables appearing in such problems. In

practical real-time applications, algorithms for online approxi-

mate RL must satisfy two somewhat conflicting requirements.

First, they need to be data efficient to achieve acceptable

performance after only a brief interaction with the system.

A controller that performs poorly for a long period will never

be accepted in practice, even if it is believed to eventually

yield an optimal strategy. Second, online RL algorithms must

be computationally efficient, so that they work in real time.

Most online RL approaches are based on the classical Q-

learning [36] and SARSA [25] algorithms, which are indeed

computationally efficient, but are data inefficient: they use

every sample once, to incrementally improve the solution, after

which they discard the sample, see e.g., [20], [27], [34].

A promising approach for practical RL is experience replay

(ER), in which the data acquired during the online learning

process are stored and presented repeatedly to the underlying

RL algorithm. This increases data efficiency, while exploiting
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the computational efficiency of the underlying algorithm. ER

was introduced by Lin [19], in the context of RL with neural

network approximation. Later on, [16] illustrated using simu-

lations that reusing data in Q-learning leads to a performance

similar to that of batch RL algorithms, and [37] showed

that ER can be added to actor-critic RL algorithms without

endangering their convergence properties. Despite such en-

couraging results, ER has been studied only sporadically in

the RL literature, and only a few real-time applications have

been presented [9], [29]. In fact, applications of RL have so

far largely been restricted to simulated systems. In order to

improve the visibility of this field and to stimulate real-world

applications, it is necessary to go beyond simulations and

demonstrate that RL methods can be effectively used in the

real-time control of physical systems.

Therefore, in this paper we contribute a thorough experi-

mental evaluation of ER RL, which includes real-time results.

We first introduce a general ER framework, which can be com-

bined with any incremental RL algorithm. This framework is

instantiated for approximate Q-learning and SARSA, yielding

ER-Q-learning and ER-SARSA. We then evaluate these ER

algorithms on a series of increasingly complex problems. We

first consider simulation studies of the well-known pendulum

swing-up and of robotic manipulator control. In the swing-up

problem, the ER algorithms are compared with the original

approximate Q-learning and SARSA, as well as with a batch

RL method that we augment with online data collection. We

present real-time experimental results on two physical systems:

the real inverted pendulum and a robotic soccer goalkeeper.

An approach related to ER is to indirectly reuse the data,

by first building a model of the system and then exploiting

it to generate new data. This is done in the so-called Dyna

or model-learning approaches [21], [31], [33]. Building a

model will generally take less memory than storing the raw

data, and can diminish the effects of noise by ‘filtering’ the

data into the model parameters. However, model learning will

incur additional computational costs and, more importantly,

will introduce modeling errors that can significantly decrease

performance [33], a problem that does not affect ER. A

different way to look at ER is as a bridge between incremental

and batch RL algorithms [11], [17], allowing for tradeoffs that

are not possible with either type of algorithm. We finally note

a related thread of research that exploits the data efficiency of

batch algorithms in an online setting [7], [18].

The remainder of the paper is organized as follows. Sec-

tion II presents the necessary background in exact and ap-

proximate RL. In Section III, we introduce and discuss our ER

framework. In Section IV, the performance of the ER algo-

rithms is evaluated in an extensive simulation and experimental

study. Section V concludes the paper.



2

II. REINFORCEMENT LEARNING PRELIMINARIES

This section first introduces the RL problem in the frame-

work of Markov decision processes (MDPs). Then, exact and

approximate variants of the Q-learning and SARSA algorithms

are described.

A. Markov decision processes

An MDP is defined by its state space X , its action space

U , its transition probability function f : X ×U ×X → [0,∞),
and its reward function ρ : X ×U ×X → R. At each discrete

time step k, given the state xk, the controller takes an action

uk according to a control policy h : X →U . The probability

that the next state xk+1 belongs to a region Xk+1 ⊂ X of

the state space is then
∫

Xk+1
f (xk,uk,x

′)dx′. For any x and u,

f (x,u, ·) is assumed to define a valid density of the argument

“·”. After the transition to xk+1, a reward rk+1 is provided

according to the reward function ρ: rk+1 = ρ(xk,uk,xk+1).
For deterministic MDPs, the transition probability function f

is replaced by the transition function, f : X ×U → X , and

the reward is completely determined by the current state and

action: rk+1 = ρ(xk,uk), ρ : X×U → R.

The expected infinite-horizon discounted return for an initial

state x0 under a policy h is:1

Rh(x0) = lim
K→∞

Exk+1∼ f (xk,h(xk),·)

{

K

∑
k=0

γkρ(xk,h(xk),xk+1)

}

(1)

where γ ∈ [0,1) is the discount factor. The notation a ∼ p(·)
means that the random variable a is drawn from the density

p. The goal is to find an optimal policy h∗ that maximizes the

expected return (1) for every initial state x0. So, the long-term

performance (return) must be maximized using only feedback

about the immediate, one-step performance (reward). For any

MDP, there exists a deterministic optimal policy.

Every policy h is characterized by its state-action value

function (Q-function), Qh : X×U→R, which gives the return

when starting in a given state, applying a given action, and

following h thereafter. For any h, Qh is unique and can be

found by solving the Bellman equation:

Qh(x,u) = Ex′∼ f (x,u,·)

{

ρ(x,u,x′)+ γQh(x′,h(x′))
}

(2)

The optimal Q-function is defined as Q∗(x,u) =
maxh Qh(x,u), and satisfies the Bellman optimality equation:

Q∗(x,u) = Ex′∼ f (x,u,·)

{

ρ(x,u,x′)+ γ max
u′

Q∗(x′,u′)

}

(3)

A policy h∗ that selects for every state an action with the best

optimal Q-value, i.e., that satisfies:

h∗(x) ∈ argmax
u

Q∗(x,u) (4)

is optimal (it maximizes the return). A policy that maximizes a

Q-function in this way is said to be greedy in that Q-function.

So, finding an optimal policy can be done by finding Q∗ and

taking actions with a greedy policy in Q∗.

1We assume that the MDP and the policies h have suitable properties such
that the expected return and the Bellman equations in the remainder of this
section are well-defined. See, e.g., Ch. 9 of [4] and App. A of [3] for a
discussion of these properties.

B. Exact reinforcement learning

Two classical algorithms for discrete RL problems are Q-

learning [36] and SARSA [25]. They are online and model-

free, i.e., they estimate a solution while actually controlling

the process, without requiring the knowledge of the transition

and reward functions f and ρ . The Q-learning algorithm

starts with an arbitrary Q-function Q0, observes transitions

(xk,uk,rk+1,xk+1), and after each transition updates the Q-

function with:

Qk+1(xk,uk) = Qk(xk,uk)+

αk[rk+1 + γ max
u′

Qk(xk+1,u
′)−Qk(xk,uk)] (5)

where αk ∈ (0,1) is the learning rate. The term between

square brackets is the temporal difference, i.e., the difference

between the current estimate Qk(xk,uk) of the optimal Q-value

of (xk,uk) and the updated estimate rk+1 +γ maxu′Qk(xk+1,u
′).

This updated estimate is in fact a sample of the random

quantity on the right hand side of the Bellman equation (3),

computed for the state-action pair (xk,uk). The Q-learning

temporal difference at time step k is denoted by δ Q
k .

The SARSA algorithm starts with an arbitrary Q-function

Q0 and updates it using tuples (xk,uk,rk+1,xk+1,uk+1), as

follows:

Qk+1(xk,uk) = Qk(xk,uk)+

αk [rk+1 + γQk(xk+1,uk+1)−Qk(xk,uk)] (6)

The term between square brackets is the temporal difference

between the current estimate Qk(xk,uk) of the Q-value of

(xk,uk) under the current policy, and the updated estimate

rk+1 + γQk(xk+1,uk+1), which is a sample of the right hand

side of the Bellman equation (2). The SARSA temporal

difference is denoted by δ S
k .

Q-learning is off-policy: regardless of the policy being fol-

lowed, it always estimates the optimal Q-function. In contrast,

SARSA is on-policy: at every update, it aims to estimate the

Q-function of the policy being followed.

Q-learning converges to Q∗ as k→ ∞ if ∑∞
k=0 α2

k is finite,

∑∞
k=0 αk is infinite, and all the state-action pairs are visited

infinitely often as the number of transitions approaches infinity

[14], [36]. The latter condition can be satisfied if, among

others, the probability of choosing any action is non-zero

in every encountered state; this is called exploration. The

controller also has to exploit its current knowledge in order

to perform well, e.g., by selecting greedy actions in the

current Q-function. A classical way to balance exploration

with exploitation is the ε-greedy policy:

uk←

{

u ∈ argmaxū Q(xk, ū) w.p. 1− εk

a uniform random action in U w.p. εk

(7)

where “w.p.” stands for “with probability”, and εk ∈ (0,1) is

the exploration probability. In order to converge to Q∗, in

addition to the conditions required by Q-learning, SARSA

further requires that the policy being followed converges to

the greedy policy. This can be satisfied by using (7) with a

decreasing εk, such that limk→∞ εk = 0.
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C. Approximate reinforcement learning

The algorithms of Section II-B require that the Q-functions

are represented exactly. When the state or action spaces of

the MDP contain a large or infinite number of elements, Q-

functions cannot be represented exactly, but must be approxi-

mated. We consider linearly parameterized approximators:

Q̂(x,u) =
n

∑
i=1

φi(x,u)θi = φ T(x,u)θ (8)

where θ ∈ R
n is the parameter vector and φ : X ×U → R

n

is the vector of basis functions (BFs), [φ1(x,u), . . . ,φn(x,u)]T.

Such representations simplify the theoretical analysis of the

resulting algorithms, see, e.g., [5] and Ch. 6 of [3]. Hence,

they are widely used in approximate RL, under various names

such as “interpolative representations” [34], “soft aggregation”

[27], and “fuzzy approximation” [15].

Q-learning and SARSA can be combined with linear ap-

proximation by using gradient-based updates. Such a gradient-

based algorithm updates the parameters with:

θk+1 = θk +αkδ̂k

∂

∂θk

Q̂k(xk,uk) = θk +αkδ̂kφ(xk,uk) (9)

where δ̂k is a generic approximate temporal difference. To

obtain approximate Q-learning, δ̂k is replaced by the following

approximation of the Q-learning temporal difference:

δ̂ Q
k = rk+1 + γ max

u′
φ(xk+1,u

′)Tθk−φ(xk,uk)
Tθk

Similarly, to obtain approximate SARSA, δ̂k is replaced by:

δ̂ S
k = rk+1 + γφ(xk+1,uk+1)

Tθk−φ(xk,uk)
Tθk

Approximate Q-learning does not converge in general [1],

but it does converge (under mild assumptions on the approxi-

mator) if the policy used to choose actions is fixed [20], [34].

[20] showed that SARSA converges w.p. 1 to a fixed point, if

the dependence of the policy on the parameter vector satisfies

a certain Lipschitz continuity condition.

The algorithms above only use the latest transition in every

update. Learning can be sped up by using the fact that this

latest transition is the causal result of an entire trajectory. To

this end, recently visited state-action pairs are made eligible

for updating by using an eligibility trace e∈R
n. In this paper,

we use replacing traces [26], which are initialized to 0 and

updated with:

ek = min(λek−1 +φ(xk,uk),1) (10)

where λ ∈ [0,1) is the trace decay rate and the minimum

operation is applied element-wise. Eligibility traces are used

in Q-learning and SARSA by changing the update (9) to:

θk+1 = θk +αkδ̂kek (11)

For λ = 0, the original algorithms are recovered. Note that

in Q-learning, whenever an exploratory action is taken, the

causality of the sequence of state-action pairs is broken and

the eligibility trace should be reset to 0. This is not the case

for SARSA, because SARSA always estimates the Q-function

of the current policy, which includes the exploration.

III. EXPERIENCE REPLAY

This section presents our approach to using experience

replay (ER) with reinforcement learning. The proposed ER

procedure stores transition samples and repeatedly presents

them to a gradient-based, incremental RL algorithm. Thus,

the computational efficiency of the underlying gradient-based

algorithm is exploited, while a high data efficiency is achieved

by reusing the samples. As approximation is necessary in

most control problems (and also in most realistic RL problems

outside the field of control), we only consider the approximate

case, in particular, linearly parameterized Q-functions (8).

A. ER framework

Algorithm 1 presents the general ER framework. At every

time step k, a transition sample (xk,uk,rk+1,xk+1) is observed

and stored in the sample database D (lines 5–8). To choose

actions, a greedy policy in the current Q-function is used

together with exploration (line 5). In this paper, the classical

ε-greedy exploration strategy (7) is used; many other strategies

are possible. Once every T steps, the data in the sample

database are used N times to update the Q-function parameters

θ with the underlying RL algorithm (line 11). This implicitly

performs a large, one-step update of the policy. In the interval

between consecutive updates, the approximate Q-function and

therefore the greedy policy remain constant. We use the term

trajectory to refer to every sequence of T samples collected

in-between two consecutive updates. Trajectories are distin-

guished by their index l, and discrete time within a trajectory

is denoted by τ = 0, . . . ,T−1. Note that Algorithm 1 can easily

use a time-varying learning rate and exploration probability.

Next, we instantiate Algorithm 1 using approximate Q-

learning and SARSA. For each of the two algorithms, we fur-

Algorithm 1 Experience replay RL

Input: underlying RL algorithm LEARN,

number of replays N, length of each trajectory T ,

BFs φ1, . . . ,φn, discount factor γ , learning rate α ,

exploration probability ε
1: initialize θ arbitrarily (e.g., identically 0)

2: D← /0; l← 1; k← 0

3: observe initial state x0

4: for every time step k do

5: uk←

{

u ∈ argmaxū φ T(xk, ū)θ w.p. 1− ε

a uniform random action in U w.p. ε
6: apply uk, observe resulting xk+1 and reward rk+1

7: compute transition index within current trajectory:

τ ← k− (l−1)T
8: add transition sample to the database:

D← D∪{(k, l,τ,xk,uk,xk+1,rk+1)}
9: k← k +1

10: if k = lT (a T -step trajectory was collected) then

11: update Q-function parameters:

θ ← LEARN(θ ,D,N,T, l,α,γ)
12: l← l +1

13: end if

14: end for
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Algorithm 2 Q-LEARN-SAMPLES(θ ,D,N,T, l,α,γ)

1: loop NlT times

2: retrieve a random sample (k, l′,τ,x,u,x′,r) from D,

using a uniform distribution

3: θ ← θ +α[r+γ maxu′ φ(x′,u′)Tθ −φ(x,u)Tθ ] ·φ(x,u)
4: end loop

Output: θ

Algorithm 3 Q-LEARN-TRAJECTORIES(θ ,D,N,T, l,α,γ)

1: loop Nl times

2: select a random trajectory l′ using a

uniform distribution over {1, . . . , l}
3: for τ = 0, . . . ,T −1 do

4: retrieve from D the sample (k, l′,τ,x,u,x′,r)
corresponding to l′ and τ

5: θ ← θ+
α[r + γ maxu′ φ(x′,u′)Tθ −φ(x,u)Tθ ] ·φ(x,u)

6: end for

7: end loop

Output: θ

ther differentiate two ways of reusing the samples. In the first

way, samples are independently and randomly chosen from D.

In the second way, trajectories are randomly chosen from D,

and for every chosen trajectory, the samples are presented in

their causal order. So, a total of four algorithms is obtained:

(i) ER-Q-learning on separate samples, (ii) ER-Q-learning on

trajectories, (iii) ER-SARSA on separate samples, and (iv)

ER-SARSA on trajectories. For instance, to obtain ER-Q-

learning on separate samples, the generic procedure LEARN of

Algorithm 1 is replaced by the procedure Q-LEARN-SAMPLES

from Algorithm 2. To obtain ER-Q-learning on trajectories,

Q-LEARN-TRAJECTORIES (Algorithm 3) should be used in-

stead. ER-SARSA on separate samples and trajectories can be

obtained in an entirely similar fashion.

Recall from Section II-C that approximate Q-learning may

not converge in general, but can be guaranteed to converge

when it employs a fixed policy [20]. While the ER-Q-learning

policy is not fixed throughout the learning process, it is

fixed along the intervals between consecutive updates, which

may increase the stability of ER-Q-learning compared to

the original Q-learning. A useful special case is identified

in Section 6.5 of [10]: for a piecewise constant Q-function

approximator, the ER procedure in Algorithm 2 asymptotically

converges to a well-defined solution, given by a certain model-

learning algorithm based on the same samples. Approximate

SARSA converges—under appropriate conditions—both when

the policy is changed after every sample [20], and when

it is changed only after a large number of updates [23].

This indicates that the convergence properties of ER-SARSA

should be similar to those of SARSA. Note that convergence

often relies on processing the samples in the order they are

obtained from the system, which points toward using ER

on trajectories. Nevertheless, replaying samples in a different

order may propagate information more efficiently, see also

Section III-B below.2

An important feature of these ER algorithms is their ability

to trade off computational complexity for learning speed. This

is achieved by tuning N, the number of experience replays at

every update. A low value of N increases the computational

efficiency, while a high value of N accelerates learning. In

order to best exploit the available data, we have chosen to

perform, at every update stage, a number of updates that is

N times the size of the sample database. However, this is

in general not a requirement, and the algorithms could also

perform a fixed number of updates, which would allow a finer-

grained control of their computational expenses during the

update stages. With the exception of possible slower learning,

such an algorithm should perform similarly to Algorithm 1.

If the current update scheme is used, the sample database

must be prevented from growing indefinitely by periodical

pruning, which could be done e.g., by removing old samples

or by clustering the samples into representative prototypes.

The former option is more suitable if the system is slowly

changing, as then old transition samples are less representative

of the current behavior of the system. The experiments we

present in the sequel are short enough to not require pruning.

Finally, note that Algorithm 1 can easily be extended to work

in episodic problems, i.e., problems in which the process

eventually reaches a terminal state that it can no longer leave.

An episode is a trajectory started in any state and ending

in a terminal state. The variable-length episodes can be used

instead of fixed-length trajectories in Algorithm 1.

B. Indirect benefits of ER

While the efficient reutilization of data is its central motiva-

tion, ER also provides other, less obvious benefits. To illustrate

these benefits, we use the simple maze problem shown in

Figure 1(a), in which an agent must find the shortest path

from the start state S to the goal state G, while only receiving

a positive reward upon reaching the goal state; all the other

rewards are zero. Although the maze problem has discrete

variables, the analysis extends directly to the approximate,

continuous-variable case.

One benefit of ER is that it asymptotically has similar

effects with eligibility traces, because it propagates similar

information to that transmitted by the eligibility traces. Con-

sider that the agent has traveled the trajectory in Figure 1(a),

and that it learns with an incremental algorithm relying on

temporal differences, e.g., Q-learning or SARSA. To propagate

the maximum amount of information, set the learning rate to

α = 1. If no eligibility traces are used, the reward received

upon reaching G is propagated only to the state just before G,

see Figure 1(b). If eligibility traces with λ < 1 are used, the

reward is propagated to all the states along the trajectory, but

with an eligibility that decreases exponentially while moving

back along the trajectory, see Figure 1(c). When λ = 1 is

used, the reward fully propagates to all the states along the

trajectory (properly discounted, of course), see Figure 1(d).

2This entire analysis is only cautiously suggested because, so far, all
convergence proofs rely on sufficient conditions, and any or all of these
conditions may, in fact, not be necessary.
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(a) Trajectory followed.

G

S

(b) Incremental updates without
eligibility traces.

G

S

(c) Incremental updates with el-
igibility traces, λ < 1.

G

S

(d) ER updates; and incremen-
tal updates with eligibility traces,
λ = 1.

Fig. 1. ER can replace eligibility traces. The length of the arrows symbolizes
the amount of information propagated from the goal to each state along the
trajectory.

G
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(a) Trajectories.

G

S

(b) Incremental updates
with eligibility traces.

G

S

(c) ER updates.

Fig. 2. ER aggregates information from multiple trajectories. The gray square
receives information from the squares crossed by thick lines.

Consider now an ER algorithm, which replays the samples

along the trajectory several times. Sometimes, samples earlier

along the trajectory will be replayed after samples later in

the trajectory, which will propagate information back along

the trajectory despite the lack of an eligibility trace. As the

number of replays increases, the result becomes similar to that

obtained using eligibility traces with λ = 1. This feature of ER

is helpful because the user gets the benefits of an eligibility

trace without having to tune the additional parameter λ . A

similar effect was analyzed in [8].

Another beneficial effect in ER is the aggregation of

information from multiple trajectories. Consider again the

maze example, and assume the agent has traveled the two

trajectories in Figure 2(a). If an incremental algorithm with

eligibility traces is used, only the rewards encountered over

the dashed trajectory can be propagated back to the state in

the gray square, see Figure 2(b). In contrast, with an ER

algorithm, which interleaves samples from both trajectories,

the state in the gray square benefits from information along

both trajectories, see Figure 2(c).

C. Time complexity of ER algorithms

The most computationally complex (in an asymptotic sense)

component of the ER algorithms is the update of the parameter

vector, shown at line 11 of Algorithm 1. The routine operations

of computing the policy and saving the samples are cheaper

and will be ignored in the remainder of this section. Consider

a single update of the parameter vector with the Q-learning

algorithm:

θ ← θ +α[r + γ max
u′

φ(x′,u′)Tθ −φ(x,u)Tθ ] ·φ(x,u)

Here we only consider discrete-action approximation, in which

the action space U is discretized into a small number of values

Ud = {u1, . . . ,uM}. In this case, the maximization in the Q-

learning update can be solved by enumeration over the discrete

actions,3 so its complexity is O(n). The complexity of the en-

tire Q-learning update is also O(n). While the SARSA update

does not contain a maximization, its asymptotic complexity

is nevertheless also O(n). After each trajectory l, a number

of NlT samples are retrieved from the database and used

to incrementally update the parameter vector. Together, these

updates have a complexity of O(nNlT ). This is true whether

separate samples or entire trajectories are replayed. The entire

procedure is repeated as l increases to some maximum value

L. The total complexity is:

O(nNL2T ) (12)

This complexity holds for all the four ER algorithms consid-

ered (ER-Q-learning on separate samples or trajectories, and

ER-SARSA on separate samples or trajectories).

IV. EXPERIMENTAL AND SIMULATION STUDIES

In the sequel, extensive simulation and real-life experiments

are carried out to assess the performance of the ER algorithms:

they are used to swing up an inverted pendulum in Sec-

tion IV-A, to stabilize a robotic manipulator in Section IV-B,

and to control a robotic goalkeeper in Section IV-C.

A. Inverted pendulum swing-up

The first example involves the swing-up of an under-

actuated, inverted pendulum. First, using simulation, ER-Q-

learning and ER-SARSA are compared with the classical Q-

learning and SARSA algorithms, as well as with a batch RL

algorithm. Then, the ER algorithms are applied to the real

pendulum system.

1) Inverted pendulum swing-up problem: The inverted pen-

dulum consists of a weight attached to a disk that is actuated

by a DC motor and rotates in a vertical plane, see Figure 3.

The pendulum must be stabilized in the unstable equilibrium

(pointing up), but the motor’s power is insufficient to push

the pendulum up in a single rotation from every initial state.

Instead, from certain states (e.g., pointing down), the pendu-

lum needs to be swung back and forth (destabilized) to gather

energy, prior to being pushed up and stabilized.

The dynamics of the pendulum are:

ϑ̈ =
(

mgl sin(ϑ)−bϑ̇ −K2ϑ̇/R+Ku/R
)

/J

where J = 1.91 · 10−4 kgm2, m = 0.055 kg, g = 9.81 m/s2,

l = 0.042 m, b = 3 · 10−6 Nms/rad, K = 0.0536 Nm/A, R =

3For continuous-action Q-function approximators, the maximization over
the action variable is a potentially difficult nonlinear optimization problem.
The cost of solving it is dependent on the particular approximator considered.
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Fig. 3. A schematic representation of the inverted pendulum (left), and the
real system (right).

9.5 Ω. The state vector is x = [ϑ , ϑ̇ ]T. The angle ϑ varies

in the interval [−π,π) rad, with ϑ = 0 pointing up, and

“wraps around” so that, e.g., a rotation of 3π/2 corresponds

to ϑ =−π/2. The control action u is constrained to [−3,3] V,

and the velocity ϑ̇ is restricted to [−15π,15π] rad/s, using

saturation. The sampling time is Ts = 0.005 s. The stabilization

goal is expressed by the reward function:

ρ(x,u) =−xTQrewx−Rrewu2,

with Qrew = diag[5,0.1], Rrew = 1

with a discount factor of γ = 0.98, which is sufficiently large

to obtain a good control policy.

To approximate the Q-function, an equidistant 11×11 grid

of Gaussian radial BFs (RBFs) is defined over the state space,

and the action space is discretized into 3 discrete values:

Ud = {−3,0,3}. The RBFs are normalized, axis-parallel, and

have identical radii. The value of the RBF radius along each

dimension is identical to the distance between two adjacent

RBFs along that dimension (the grid step). To obtain the

n = 3 ·112 = 363 state-action BFs, the RBFs are replicated for

every discrete action, and all the BFs that do not correspond

to the current discrete action are taken equal to 0. So, if the

vector of RBFs is φ̄(x) = [φ̄1(x), . . . , φ̄121(x)]
T, then the vector

of state-action BFs is φ(x,u) = [I (u = −3) · φ̄ T(x),I (u =
0) · φ̄ T(x),I (u = 3) · φ̄ T(x)]T, where the indicator function I

is 1 when its argument is true, and 0 otherwise.

After each experiment is completed, snapshots of the current

policy at increasing moments of time are evaluated. This

produces a curve recording the performance of the policy as it

evolves over time. During performance evaluation, learning

and exploration are turned off. Policies are evaluated by

estimating their average return over a set X0 of representative

initial states. The discounted infinite-horizon return of any

state is approximated by simulating a sufficiently long, but

finite trajectory.

2) Simulation results. Comparison with Q-learning, SARSA,

and LSPI: To apply the ER algorithms, trajectories with a

length of 1.5 s are used, leading to T = 300 samples along

each trajectory. Each trajectory (learning trial) is started in

a random state chosen from a uniform distribution over X .

At the end of each trajectory, real-time control is temporarily

suspended while all the available samples are presented to

the underlying RL algorithm N = 10 times, using a fixed

learning rate α = 0.1. The exploration probability is ini-

tialized at 1, is kept constant along each trajectory, and

decays exponentially with a rate of 0.9886 at the end of

each trajectory, so that after 200 trajectories, the explo-

ration rate is 0.1.4 The learning performance is evaluated

using the set of initial states X0 = {−π,−π/2,0,π/2} ×
{−10π,−5π, ,−2π,−π,0,π,2π,5π,10π}, which evenly cov-

ers the state space in order to obtain a representative perfor-

mance measurement (note that ϑ =−π has the same physical

meaning as ϑ = π , so the latter value is omitted from X0).

Figure 4 shows the learning performance of the four ER

algorithms (ER-Q-learning on separate samples and trajecto-

ries, and ER-SARSA on separate samples and trajectories).

All the ER algorithms reliably lead to a good performance

after collecting samples for only 60s. The ER-Q-learning

variants are better than the ER-SARSA variants by slight, but

statistically significant margins.

Note that in Figure 4, as well as in similar figures in the

sequel, the time axis only measures the time spent interacting

with the system. The time spent executing the underlying RL

algorithm on the samples collected (11 of Algorithm 1), in-

between trajectories, is not included. Initially, when only a few

samples are available, this latter execution time is short, but

it grows as more samples are collected, and eventually it may

exceed the length of a sampling interval. This is not a problem

in our experiments because updates are only performed in-

between learning trials, when the system does not have to be

controlled. When updates must be performed while controlling

the system, steps must be taken to ensure that the real-time

constraints are satisfied – e.g., by performing only a fixed

number of updates, as discussed in Section III-A.

For comparison purposes, classical Q-learning and SARSA

(without ER) are applied to the same problem. The (fixed)

learning rate is α = 0.1, and an eligibility trace with λ = 0.9
is used to speed up learning. These values have been hand-

tuned to give the best performance. Trajectories are generated

in the same way as for the ER algorithms. The results for

SARSA are shown in Figure 5. The results for Q-learning

are not shown because Q-learning diverges – even though

ER-Q-learning has worked well. This may be because ER-

Q-learning holds the policy constant along each trajectory,

which increases learning stability (see Section III).5 SARSA

achieves its maximum performance in approximately 800s, a

much longer interval than required by the ER algorithms in

Figure 4. This illustrates the poor data efficiency of SARSA.

Additionally, SARSA has a worse final performance than the

ER algorithms.

Since ER RL can be seen as bridging incremental and batch

RL algorithms, an interesting question is how it compares

with a batch algorithm; we select least-squares policy iteration

(LSPI) [17] to perform this comparison. At every iteration,

LSPI uses a batch of samples to compute the Q-function

under the current policy (policy evaluation), and then finds an

improved, greedy policy (4) in this Q-function. Exploiting the

4Exponential decay does not asymptotically lead to infinite exploration,
which is in principle required by Q-learning and SARSA (see Section II-B).
Nevertheless, for an experiment having a finite duration, εd can be chosen
large enough to provide any desired amount of exploration.

5Thus, in future work it may also be interesting to perform an experiment
where (non-ER) Q-learning updates the policy only at the end of each
trajectory, like the ER variant.
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(a) ER-Q-learning on separate samples.
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(b) ER-Q-learning on trajectories.
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(c) ER-SARSA on separate samples.
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(d) ER-SARSA on trajectories.

Fig. 4. Performance of ER-Q-learning and ER-SARSA in simulation. The thick line is the mean, thin lines show the minimal and maximal performance
obtained over 20 independent runs, and the shaded region shows the 95% confidence interval of the mean.
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Fig. 5. Performance of classical SARSA in simulation.

fact that different batches of samples can be used at different

iterations, we interleave LSPI with episodes of online sample

collection, in a similar way to how the ER algorithms work. In

particular, a T -steps long trajectory is generated online, using

the current policy combined with exploration, and added to

the database. Then, one iteration of LSPI (policy evaluation

and improvement) is performed using the data collected thus

far, and the whole cycle repeats.

LSPI is applied to the inverted pendulum using the same Q-

function approximator as in the other algorithms. As shown

in Figure 6, LSPI reaches a near-optimal performance after

collecting samples for approximately 300s, longer than re-

quired by the ER algorithms. Furthermore, note that LSPI must

solve a linear system in n variables at each iteration; hence, its

computational complexity is at least quadratic in n, whereas

the complexity of the ER algorithms is linear in n, see (12).

To illustrate the quality of the ER solution, Figure 7 shows

a trajectory starting in the stable equilibrium (pointing down)
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Fig. 6. Performance of LSPI in simulation.

and controlled with the policy found by ER-Q-learning on

separate samples. The pendulum is successfully swung up and

stabilized in around 1 s. Note that the control action chatters;

this is necessary because the pendulum must be stabilized

around its unstable equilibrium using only discrete actions.

3) Results for the real inverted pendulum: Next, the ER al-

gorithms are applied to the real inverted pendulum system. The

parameters α , N, and the exploration schedule are the same as

in simulation. While the initial states for every trajectory were

uniformly random in simulation, obtaining such initial states

is nontrivial for the real system. Instead, to obtain random

(but not uniformly distributed) initial states, u1 = ±umax is

applied for a random interval of time. The choice of the sign

is also random. Then, u2 =−u1 is applied for another random

interval. To evaluate the performance, a heuristic controller

(approximately) brings the system to every state in the set

X0 =
{

[−π/2,0]T, [0,−2π]T, [π/2,0]T, [0,2π]T
}

, the system is
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Fig. 7. A trajectory of the inverted pendulum from x0 = [−π,0]T, controlled
by a policy found with ER-Q-learning. An exact multiple of 2π is added to
the initial angle to account for full rotations made during the trajectory.

controlled with the current policy from every such state, and

finally, the returns obtained are averaged across the set X0.

The learning performance of the ER algorithms on the real

system is shown in Figure 8.6 All ER algorithms effectively

learn to swing up and stabilize the real pendulum. Note that the

6See also http://www.youtube.com/watch?v=b1c0N Fs9wc for a movie
showing how ER-Q-learning on trajectories learns to swing up the pendulum.

experimental results of Figure 8 cannot be directly compared

to the simulation results of Figure 4, since the set X0 is

different from the one used to evaluate the simulation results.

Moreover, the dynamics of the real system are close, but

not identical to the simulation model (for instance, Coulomb

friction and stiction were not simulated). All the ER algorithms

obtain a similar final performance, but ER-Q-learning on

trajectories learns significantly slower than the other three

algorithms – unlike in simulation where it performed equally

well. This performance degradation might be due to sensitivity

to the noise present in the real system, or to the nonuniform

distribution of the starting states. Compared to the simulation

results of Figure 4, the variance in the performance of all

the ER algorithms is larger, due to noise during learning and

performance evaluation. Also, in order to converge, ER-Q-

learning on samples and both variants of ER-SARSA require

more samples than they needed in simulation: they collect

samples for 100 s, compared to 60 s in simulation.

B. Two-link robotic manipulator

In this section, the ER algorithms are used to stabilize a

simulated two-link manipulator operating in a horizontal plane.

This illustrates how the ER algorithms scale up to a higher-

dimensional problem than the inverted pendulum: the robotic

manipulator has four state variables and two action variables.

1) Robotic manipulator problem: The robotic manipulator,

shown in Figure 9, is described by the model:

M(ϑ)ϑ̈ +C(ϑ , ϑ̇)ϑ̇ = τ (13)

where ϑ = [ϑ1,ϑ2]
T, τ = [τ1,τ2]

T. The state vector contains

the angles and angular velocities of the two links: x =
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(a) ER-Q-learning on separate samples.
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(b) ER-Q-learning on trajectories.
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(c) ER-SARSA on separate samples.
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(d) ER-SARSA on trajectories.

Fig. 8. Performance of ER-Q-learning and ER-SARSA for the real pendulum.

http://www.youtube.com/watch?v=b1c0N_Fs9wc
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[ϑ1, ϑ̇1,ϑ2, ϑ̇2]
T, and the control vector is u = τ . The angles

“wrap around” in the interval [−π,π) rad, and the velocities

(measured in rad/s) and torques (measured in Nm) are bounded

as shown in Table I, which also collects the meaning and

values of other variables in the system. The sampling time

is Ts = 0.05 s. For the matrices M and C, see Sec. 4.5.2 of [6].

ϑ1, τ1

ϑ2, τ2

l1,m1

l2,m2

Fig. 9. A schematic representation of the robotic manipulator.

TABLE I
PARAMETERS OF THE TWO-LINK MANIPULATOR

Symbol Domain or value. Units Meaning

g 9.81 m/s2 gravitational acceleration
ϑ1; ϑ2 [−π,π); [−π,π) rad link angles

ϑ̇1; ϑ̇2 [−2π,2π]; [−2π,2π] rad/s link angular velocities
τ1; τ2 [−1.5,1.5]; [−1,1] Nm motor torques
l1; l2 0.4; 0.4 m link lengths
m1; m2 1.25; 0.8 kg link masses

I1; I2 0.066; 0.043 kg m2 link inertias
c1; c2 0.2; 0.2 m centers of mass
b1; b2 0.08; 0.02 kg/s dampings in the joints

The control goal is stabilizing the system around the equi-

librium ϑ = ϑ̇ = 0 and is expressed by the reward function:

ρ(x,u) =−xTQrewx, with Qrew = diag[1,0.05,1,0.05] (14)

The discount factor is γ = 0.98.

The Q-function approximator is similar to the one used

for the inverted pendulum of Section IV-A. A number of

54 identically-shaped RBFs are defined, distributed on an

equidistant grid with 5 points along each axis of the state

space. The action space is discretized in the set Ud =
{−1.5,0,1.5}×{−1,0,1}. This yields a total of 54 ·32 = 5625

state-action BFs. These BFs are chosen so that an accurate

enough approximator is obtained, without leading to excessive

computational costs. As in Section IV-A, the learning perfor-

mance is measured by estimating the average return over a set

X0 of representative initial states. For the robotic manipulator,

this set contains a regular grid of initial angles, while the initial

velocities are always zero:

X0 = {−π,−2π/3,−π/3,0,π/3,2π/3,π}×{0}

×{−π,−2π/3,−π/3,0,π/3,2π/3,π}×{0}

2) Results: To apply the ER algorithms, trajectories started

in uniformly random initial states and having a length of 5 s

are used. Each such trajectory contains T = 100 samples. After

each trajectory, the samples are presented to the underlying

RL algorithms N = 10 times, using a fixed learning rate

α = 0.3. The exploration probability is initialized at 1, and

decays exponentially with a rate of 0.9886 at the end of each

trajectory. Figure 10 shows the learning performance of the

four ER algorithms. The ER-SARSA algorithms converge to a

good performance more reliably than the ER-Q-learning vari-

ants. The performance of the ER-Q-learning variants reaches

a good value fast, but then degrades significantly before

recovering again. This leads to an undesirable “dip” in the

performance; the cause of this phenomenon is unclear. The

algorithms that replay entire trajectories learn faster than those

that replay separate samples. The ER algorithms reach a good

performance after collecting samples for 400 to 800 s, while

they required 60 s in the inverted pendulum problem. However,

the sampling time for the robotic manipulator is 10 times larger

than for the inverted pendulum (0.05 rather than 0.005 s), and

so 10 times fewer samples are obtained in a given interval of

time. This means that roughly as many samples are required

as for the inverted pendulum, despite the larger number of BFs

(5625, rather than 363). Overall, the ER algorithms scale up

well to the higher-dimensional robotic manipulator problem.

To illustrate the quality of the ER solutions, Figure 11

shows a trajectory controlled with the policy found by ER-Q-

learning on trajectories. In order to quickly reach the origin,

the controller pushes the two links in opposite directions and

then stabilizes them.

Note that we have also attempted to solve the robotic

manipulator problem with the original Q-learning and SARSA

algorithms, but they failed to reach a good solution.

C. Robotic soccer goalkeeper

In this section, ER RL is applied to control a real-life robotic

goalkeeper, illustrating the ability of ER RL to perform well

in a realistic application.

1) Robotic goalkeeping problem: Robotic soccer is a pop-

ular benchmark problem for RL [22], [30]. Robotic soccer

typically involves multiple robots that must navigate, catch

and shoot the ball, and, above all, cooperate with their team-

mates while competing with the opposing team. This is an

extremely difficult problem that cannot be fully solved using

only currently available RL algorithms. Therefore, obtaining

meaningful benchmark results for RL in robotic soccer is not

an easy task.

To address this issue, we have developed a simpler, but still

challenging sub-problem of robotic soccer. In this problem,

a fixed robotic goalkeeper must catch balls shot towards the

goal. The goalkeeper is a robotic arm that tracks the ball

using a camera, as shown in Figure 12. The dimensions of the

goalkeeper are based on the small-size robotic soccer league.

To be able to defend the entire goal, the main arm of the

goalkeeper is 0.2 m long. The main goal of the camera arm

is to point the camera towards the ball, so this arm is only

0.05 m long. The goalkeeper is designed to be light and stiff,

so that it can robustly endure many RL trials.

To fully describe the goalkeeper system, 8 state variables are

required: the angles and angular velocities of the two links;

and the angle, angular velocity, distance, and linear velocity

of the ball relative to the camera. The actions are the torques

of the two motors that rotate the links:

x = [ϑ1, ϑ̇1,ϑ2, ϑ̇2,ϑb, ϑ̇b,db, ḋb]
T, u = [τ1,τ2]

T

The high dimensionality of this problem, combined with

the very low number of samples that can be collected, pose
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(a) ER-Q-learning on separate samples.
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(b) ER-Q-learning on trajectories.
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(c) ER-SARSA on separate samples.
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(d) ER-SARSA on trajectories.

Fig. 10. Performance of ER-Q-learning and ER-SARSA for the robotic manipulator. The thick line is the mean of 20 independent runs, thin lines show the
minimal and maximal performance across these runs, and the shaded region shows the 95% confidence interval of the mean.
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Fig. 11. A trajectory of the manipulator from x0 = [π,0,π,0]T, controlled
by a policy found with ER-Q-learning on trajectories. Black lines correspond
to the first link, and gray lines to the second.

great challenges to RL. Since a ball shot at the goal takes

roughly one second, and using a camera frame rate of 25

frames per second, only 25 samples are generated during each

shot. We identify each shot with a learning trial. For practical

considerations, the goalkeeper is required to learn within at

most 50 trials, so the total number of samples available is

roughly 1250. Given the high dimensionality of the state-

ϑ1

ϑ2

ϑb
db

Fig. 12. A schematic representation of the robotic goalkeeper (left), and the
real system (right).

action space, this number of samples is clearly insufficient,

even if they are replayed using ER. Therefore, the problem will

have to be significantly simplified to make learning feasible.

The problem is simplified by eliminating some of the state

and action variables. Since the ball will always be in front

of the arm, it is intuitive to make the camera always point

forward (when the ball has passed the arm, useful samples

can no longer be collected). So, with a fast pre-designed

controller that only relies on internal sensors (and not on the

camera), τ2 is controlled so that ϑ2 follows −ϑ1. Therefore,

the RL controller only needs to learn to control τ1, and τ2 is

eliminated from its input variables. The settling time for this

control loop is smaller than the camera sampling time, so from

the point of view of the RL controller ϑ2 is always equal to

−ϑ1. So, ϑ2 can be eliminated as well. Moreover, since the
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image recognition signal is noisy, the estimates of ϑ̇b,db and

ḋb are limited in their use, and they are also not presented

to the controller. This essentially reduces the goalkeeping

problem to a tracking problem. To catch the ball, the angle

ϑb needs to be minimized. Since this tracking problem is

approximately the same for every angle ϑ1, the variable ϑ1 can

also be eliminated. The remaining state vector is denoted by

x̃ = [ϑb, ϑ̇1]
T, and the remaining action is ũ = τ1. The reward

function chosen to express the goal of tracking and catching

the ball is:

ρ(x̃, ũ) =−x̃TQrewx̃, with Qrew = diag[1,0.01]

The discount factor is γ = 0.8. As in Sections IV-A and IV-B,

the Q-function approximator uses state-dependent RBFs and

discrete actions. Identically-shaped RBFs are distributed on

an equidistant grid with 4 points along the domain of each

variable ϑb and ϑ̇1.

2) Results: To apply the ER algorithms, we use ball shot

trials instead of fixed-length trajectories in the ER framework

of Algorithm 1, see Section III. After each ball shot, the

samples are reused N = 10 times, using a fixed learning rate

α = 0.2. Two additional improvements are made to speed

up the learning, as described next. Many discretized-action

problems, including the goalkeeper, have the following useful

property: in optimal trajectories there exist long subsequences

of states along which the optimal action does not change

(for an example, see the pendulum swing-up trajectory of

Figure 7). To exploit this property, we use the dynamic ex-

ploration strategy proposed by [35], which modifies any basic

exploration strategy by introducing an inertia factor β ∈ [0,1].
The inertia factor encodes a tendency to select uk equal to

uk−1 at every step k. We set β = 0.5, and combine dynamic

exploration with soft-max exploration [32]. This increases the

learning speed compared to ε-greedy exploration. We also use

easy missions [28] to speed up learning. With easy missions,

each learning trial is split in two phases. In the first phase,

the process is led to a highly rewarding state by a heuristic

controller. In the second phase, the RL controller takes over.

The length of the first phase is reduced as learning progresses,

so that eventually the RL controller leads the entire trial.

For the first ball shot, the entire trajectory is guided by the

heuristic controller. The length of the guided phase decreases

with 0.08 s after each ball shot, so that the RL controller is

fully leading the system after 25 shots.

With these improvements, after learning for 50 trials, the

goalkeeper is able to reliably catch the ball. The performance

is still suboptimal at this point, and learning for a longer time

would improve the results further. Figure 13 shows the policy

obtained by ER-SARSA on separate samples.7

V. CONCLUSIONS AND FUTURE WORK

This paper has investigated the practical performance of a

class of experience replay reinforcement learning (ER RL)

methods. ER increases the data efficiency of an underlying RL

algorithm by repeatedly presenting the available data to this

7See also http://www.youtube.com/watch?v=CIF2SBVY-J0 for a movie of
the learning process.
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Fig. 13. Goalkeeper policy learned with ER-SARSA on separate samples.
Black represents the maximum negative action, white maximum positive
action, and the circles mark the locations of state samples obtained (only
10% of the samples are shown, to avoid cluttering the figure).

algorithm. We described a general framework that combines

ER with any incremental RL technique, and instantiated this

framework for approximate Q-learning and SARSA. ER-Q-

learning and ER-SARSA performed well in an extensive

evaluation on a range of real and simulated applications,

involving an inverted pendulum, a robot arm, and a goalkeeper

robot. Among other results, ER outperformed classical Q-

learning and SARSA, as well as the batch LSPI algorithm.

A first opportunity for further research is to further speed

up learning by replaying samples in backward temporal order,

instead of temporal or random order; alternatively, the most

promising samples could be replayed first using the so-called

prioritized sweeping [21]. Another important question is how

the database pruning mechanisms suggested in Section III-A

would affect the performance. It would also be interesting

to compare ER learning with other batch algorithms besides

LSPI, for instance, with fitted Q-iteration employing a non-

parametric approximator [11].

In order to stimulate real-world applications of RL, it is

necessary to demonstrate that RL methods can be effectively

used in the control of physical systems. The successful real-

time learning control results presented in this paper are in our

view an important step in this direction.
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Lucian Buşoniu received his PhD degree (cum
laude) in 2009 from the Delft University of Tech-
nology, and his MSc degree (valedictorian) in 2003
from the Technical University of Cluj-Napoca, Ro-
mania. His current research interests include re-
inforcement learning and dynamic programming
with function approximation, intelligent and learning
techniques for control problems, and multi-agent
learning.
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