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Abstract

We review a class of online planning algorithms for deterministic and stochastic

optimal control problems, modeled as Markov decision processes. At each discrete

time step, these algorithms maximize the predicted value of planning policies from the

current state, and apply the first action of the best policy found. An overall receding-

horizon algorithm results, which can also be seen as a type of model-predictive control.

The space of planning policies is explored optimistically, focusing on areas with

largest upper bounds on the value – or upper confidence bounds, in the stochastic case.

The resulting optimistic planning framework integrates several types of optimism

previously used in planning, optimization, and reinforcement learning, in order to

obtain several intuitive algorithms with good performance guarantees. We describe

in detail three recent such algorithms, outline the theoretical guarantees on their

performance, and illustrate their behavior in a numerical example.
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22.1 INTRODUCTION

This chapter considers online algorithms for problems in which a nonlinear, possibly

stochastic dynamic system must be optimally controlled in discrete time. Optimality is

measured by a cumulative reward signal which must be maximized: the return. Such

problems arise in many fields, including artificial intelligence, automatic control,

operations research, economics, medicine, etc. They are often modeled as Markov

decision processes (MDPs).

In an MDP, the system is described by a state signal x varying in the state space

X , and can be influenced by actions u in the action space U . For the simplicity

of notation, X will be considered countable here, but uncountable (e.g. continuous)

spaces can easily be handled. Most of the algorithms that will be described in this

chapter require that U consists of a small number of discrete actions. The probability

that next state x′ is reached after action u is taken in state x is f(x, u, x′), where

f : X ×U ×X → [0, 1] is a transition probability function describing the dynamics

of the system. After the transition to x′, a reward r′ = ρ(x, u, x′) is received, where

ρ : X × U ×X → R is the reward function. A control policy π : X → U indicates

how the controller should choose actions to interact with the system. Denoting by

k the discrete time index, the expected infinite-horizon discounted return of state x
under a policy π is:

V π(x) = Exk+1∼f(xk,π(xk),·)

{

∞
∑

k=0

γkrk+1

}

(22.1)

where x0 = x, rk+1 = ρ(xk, π(xk), xk+1), γ ∈ (0, 1) is the discount factor, and

the notation xk+1 ∼ f(xk, π(xk), ·) means that xk+1 is drawn from the distribution

f(xk, π(xk), ·) over next states.1 Other types of return can also be used, such as

finite-horizon or averaged over time. We call V π : X → R a value function. The

goal is to control the system using an optimal policy π∗, so that the value function

is maximized for every x ∈ X . This maximal, optimal value function is denoted

by V ∗ and is unique, so it does not depend on the particular optimal policy. It

is also useful to consider an action-dependent optimal value function, the optimal

Q-function: Q∗(x, u) = Ex′∼f(x,u,·) {ρ(x, u, x′) + γV ∗(x′)}. Note that optimal

control problems are often stated so that a cost is minimized, rather than a return

being maximized – but the two formulations are equivalent.

We consider a class of online model-based algorithms that, at each step of in-

teraction, look at the current system state xk and employ the model to predict the

system’s response to various planning policies – which may be e.g. simple open-

loop sequences of actions or more complex, closed-loop selection rules. Note that

a planning policy is a different object from the interaction policy π. Exploiting the

predictions, an action uk that is as good as possible is applied, which results in a

new state xk+1. The entire cycle then repeats, in a receding-horizon fashion. In

1Note the “prime” notation, as in e.g. x
′, is used to generically indicate variables at the next step,

whereas if the actual time step is important, it is included as a subscript, e.g. xk+1.
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systems and control, such algorithms are known as model-predictive control [15],

while in computer science they are called planning [14]. In this chapter, we mainly

draw inspiration from the computer science literature, and to emphasize that we mean

the online, feedback control over trajectories consisting of many steps, we call the

algorithms online planning.

The quality of action uk returned at step k by the planning algorithm is measured

by the simple regret, defined as follows:

R(xk) = max
u∈U

Q∗(xk, u)−Q∗(xk, uk) (22.2)

that is, the loss incurred by choosing uk and then acting optimally, with respect to

acting optimally immediately, from step k. Note the regret is always nonnegative,

and an optimal action choice attains a regret of 0. Theoretical guarantees for planning

algorithms are usually given in terms of the regret at any state, independently of k.

Then, if an algorithm achieves a regret of ε for every state, the overall suboptimality

in terms of discounted return is at most ε
1−γ [11]. This property motivates the use of

the simple regret as a performance measure.

The online planning approach is very different from the standard methods for

solving MDPs considered in dynamic programming and reinforcement learning. The

latter methods usually seek a global solution, whereas online planning finds actions

on demand, locally for each state where they are needed. Online planning is therefore

much less dependent on the state space size. It is generally suboptimal, but useful

bounds can be placed on its suboptimality, as will be outlined later in the chapter.

While global methods do achieve optimality in some restricted settings, in realistic

problems they must also use approximation, thereby sacrificing optimality, as seen

elsewhere in this book and specifically reviewed in [4].

We focus on a class of online planning algorithms based on the principle of opti-

mism in the face of uncertainty: given the choice between planning policies having

uncertain values, more promising policies are explored first. This optimistic prin-

ciple has applications in many fields, among which those closest to our focus are

optimization, where a representative optimistic method is branch-and-bound; clas-

sical planning, with algorithms such as A* [14]; and the exploration-exploitation

dilemma in reinforcement learning [19]. In classical planning, optimism relies on

deterministic upper bounds on the values of incomplete action sequences, whereas

in exploration-exploitation, upper confidence bounds on stochastic values are used to

guide action choices [1]. Upper confidence bounds have also been recently applied to

planning [13, 10], but typically without making the connection with the deterministic

optimism of classical planning. In this chapter, we integrate both types of optimism

into a single framework, in the context of MDPs. To this end, planning is cast as

the problem of optimizing returns over planning policies from the current state. This

interpretation leads to several intuitive planning algorithms with strong performance

guarantees, which have been developed over the last few years [11, 2, 7] and which

we review in detail.

Next, Section 22.2 describes the foundations of optimism in online optimization.

Section 22.3 forms the core of the chapter, and exploits the ideas of Section 22.2 to

introduce the family of optimistic planning algorithms. Methods for three types of
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system dynamics are reviewed: deterministic, general stochastic, and stochastic but

where each transition can only end up in a finite number of states. Related algorithms

from the literature are discussed in relation to optimistic planning in Section 22.4. The

behavior of the three methods is illustrated in a numerical example in Section 22.5.

22.2 OPTIMISTIC ONLINE OPTIMIZATION

The idea of optimism can be understood by looking at the problem of maximizing an

unknown function v : H → R online, while observing possibly noisy values of this

function at chosen points. At every round t = 1, 2, . . . , the algorithm chooses a point

ht ∈ H, and is provided with a random sample ṽt = v(ht)+wt where w is zero-mean

noise, drawn independently for each t. The goal is not just to find an optimal point

h∗ ∈ arg maxh∈H v(h), but due to the online setting, to find it while sampling points

of as high a quality as possible. We will not provide formal guarantees for optimistic

optimization in terms of this requirement (although they are available), because we

are only interested in these methods as stepping stones for optimistic planning. In

that context, a different requirement will be sufficient, which only asks the algorithm

to return the best point possible after expending some number of samples, without

looking directly at the quality of these samples.

We first consider two special cases: noisy evaluations but small discrete set H;

and infinite setH but deterministic evaluations. We then proceed to the general case.

22.2.1 Bandit problems

In the case of bandit problems, the observed values are noisy, but H is small and

discrete: H =
{

h1, . . . , hM
}

. The name comes from the fact that this case models

the optimization of the payoff achieved by pulling the arms of an M -armed slot

machine (“bandit”), where each hj is an arm. Online optimization is a way to solve

the exploration-exploitation dilemma: given the information available so far, should

the algorithm exploit the arm that seems the best (has the best average observed

value), or should another arm be explored to achieve better confidence in its value?

This formalism is used, for example, in reinforcement learning algorithms.

There are many ways to solve bandit problems, and here we will only consider the

upper confidence bound (UCB) algorithm. At every round t, this algorithm defines a

b-value for every hj :

b(hj) =

∑n(hj)
i=1 ṽj

i

n(hj)
+

√

2 log t

n(hj)
(22.3)

where n(hj) is the number of instances hj has been chosen up to round t, and ṽj
i is the

random value (sample) observed at the ith such instance (the b-values of unsampled

points, for which n(hj) = 0, are by convention positive infinite). Each b-value is an

UCB on v(hj), that is, with high probability it is an upper bound. Then the algorithm

simply makes an optimistic choice arg maxhj b(hj) for the next sample. It must be

emphasized that the count n(hj) and thus the b-value b(hj) depend of course on the
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round t. Throughout the chapter, we leave such dependencies on the current round

implicit in order to avoid cluttering the notation.

Such an algorithm is optimistic because it always explores further the point with

the largest UCB. The optimistic principle has strong theoretical support in bandit

problems [1].

22.2.2 Lipschitz functions and deterministic samples

When the setH is infinite (or just very large), it is impossible to sample every point.

Consider the deterministic case, where the algorithm is given the exact value v(h) for

each point h it chooses. Let ℓ(h, h̄) be a metric overH, and assume v is Lipschitz:
∣

∣v(h)− v(h̄)
∣

∣ ≤ ℓ(h, h̄) ∀h, h̄ ∈ H
where for convenience we do not make the Lipschitz constant explicit. Then for any

set of points H ⊂ H and any point h ∈ H we have the following upper bound on the

supremum of v over H (i.e. this upper bound is larger than v(h̄) for any h̄ ∈ H):

v(h) + diam(H)

where diam(H) = suph,h̄∈H ℓ(h, h̄) denotes the diameter of the set. If multiple

samples are available in H , say their number is n(H), then the bound is refined to:

binit(H) = min
i=1,...,n(H)

[v(hi) + diam(H)] (22.4)

Using this property, a tree-based algorithm for optimizing v can be derived: Algo-

rithm 22.1, called optimistic optimization for deterministic functions (OOD). This

method builds a tree T of policy sets, where each node contains some set H and its

children correspond to a partition of H . No difference is made between the notation

of a node and its corresponding set, and the children of some H are denoted by C(H).
OOD starts building the tree from a root node containing the entire space H, and

at each step, chooses an optimistic leaf by navigating the tree along the maximum-

b-value path. The optimistic leaf is expanded, i.e., the corresponding set is split

(partitioned) into several child subsets, and an arbitrary point is sampled in each sub-

set. The node splitting procedure must ensure that the diameter decreases with the

depth. For example, if each node corresponds to a hyperbox in a Euclidean space,

then the optimistic leaf could be split halfway along the longest edge.

B-values binit at the leaves are computed with (22.4) and propagated upwards in

the tree, where each parent node gets the largest bound from its children. The mini-

mization in (22.4) is useful because samples inherited by the leaf from its parents may

provide a better bound than its own, newly obtained sample. Due to the propagation

rule, navigating the tree along the optimistic path is equivalent to directly choosing

the leaf with the largest b-value. The optimistic path is nevertheless made explicit to

emphasize the connection with later algorithms.

Note the similarity of this algorithm with branch-and-bound optimization. One

difference is that branch-and-bound also uses lower bounds to eliminate some nodes

from consideration. In Algorithm 22.1, all the nodes remain candidates for expansion,

but the algorithm always focuses on the most promising node.
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Algorithm 22.1 Optimistic optimization of deterministic functions

1: initialize tree: T ← {H}
2: for t = 1, 2, . . . do

3: H ← rootH; while H is not leaf do H ← arg maxH′∈C(H) b(H ′) end while

4: optimistic leaf found: H† ← H
5: expand H† into several child subsets H ′, adding them to T
6: sample a point in every new child H ′

7: update b-values upwards in the tree, starting from the leaves:

b(H)←
{

binit(H) from (22.4) if H is leaf

maxH′∈C(H) b(H ′) otherwise

8: end for

22.2.3 Lipschitz functions and random samples

A general algorithm, which works for the noisy optimization of Lipschitz functions de-

fined over arbitrary metric spaces, will combine the two types of optimism highlighted

above: upper confidence bounds due to the stochastic samples, with diameter-related

bounds due to the non-zero size of the sets considered. In particular, at round t, a

high-probability upper bound on the supremum of v over some set H is:

binit(H) =

∑n(H)
i=1 ṽi

n(H)
+

√

2 log(t)

n(H)
+ diam(H) (22.5)

where n(H) is as before the number of samples falling inside set H , and ṽi are the

random values of these samples.

The resulting algorithm is called hierarchical optimistic optimization (HOO) [3]

and is shown in Algorithm 22.2. Like for OOD, the splitting procedure should de-

crease the diameter. The only difference from OOD is that a parent either inherits the

b-value from one of its children, or it uses its own b-value binit if it is better (smaller).

The latter situation could not arise in OOD, because the diameters decrease with the

depth and sample values are deterministic. Figure 22.1 illustrates how HOO develops

the tree and computes the b-values.

22.3 OPTIMISTIC PLANNING ALGORITHMS

In this section, the ideas of optimistic optimization are applied to planning. As already

outlined in the introduction, the planning algorithms we consider work online, in a

receding-horizon fashion, and use a model of the MDP in the form of the functions

f and ρ. At each step k, the model is employed to predict possible behaviors of the

system (specifically, state trajectories and ensuing rewards) starting from the current

state xk and responding to various planning policies. Using these predictions, the

algorithm returns an action uk that is as close to optimal as possible, where near-

optimality is measured by the simple regret (22.2). This action is applied, the system

transits to xk+1, and the cycle repeats.
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Algorithm 22.2 Hierarchical optimistic optimization

1: initialize tree: T ← {H}
2: for t = 1, 2, . . . do

3: H ← rootH; while H is not leaf do H ← arg maxH′∈C(H) b(H ′) end while

4: optimistic leaf found: H† ← H
5: expand H† into several child subsets H ′, adding them to T
6: sample a point in every new child H ′

7: update b-values upwards in the tree, starting from the leaves:

b(H) =

{

binit(H) from (22.5) if H is leaf

min
{

binit(H),maxH′∈C(H) b(H ′)
}

otherwise

8: end for

average

diameter

confidence
interval

b-value

subset

} h

v(h)

Figure 22.1 Illustration of HOO. Each tree node corresponds to a subset along the horizontal

axis. For each leaf subset H , the b-value is computed as the sum of the average of the observed

samples
Pn(H)

i=1 ṽi

n(H)
, the confidence interval

q

2 log(t)
n(H)

, and the subset diameter diam(H).

To place this problem in the context of optimistic optimization, let us isolate one

such step of interaction with the system, and by convention, relabel the current time

from k to 0, so that the system state is x0. Planning should then maximize the expected

return starting from x0:

v(h) = Exd+1∼f(xd,h(d,xd),·)

{

∞
∑

d=0

γdrd+1

}

(22.6)

where h is a rule describing how actions are chosen for each state occurring along

future trajectories. This equation immediately clarifies the link with the optimization

problem discussed in Section 22.2: the function v to optimize is the expected return,

and the spaceH over which we optimize consists of all possible h for x0.
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The time step along planned trajectories is denoted d instead of k, for two reasons:

to emphasize the difference between planned and real interaction with the system,

and because d will be related to the depth in certain trees considered later. The rule

h is different from the policy π used while interacting with the system, which is

the overall result of applying the planning algorithm at each step. That is why we

call h a planning policy. Since in the sequel we are mostly interested in planning

policies, they will often simply be called “policies” for the sake of brevity. When

planning policies are discussed together with interaction policies, we will use the

long, explicit names of both, to make things clear. Note it is not strictly necessary to

have a dependence on time d in the planning policy, since for the discounted infinite-

horizon MDPs considered in this chapter, a policy that only depends on the state is

sufficient to obtain optimal behavior. Nevertheless, this is the general form of the

policy sought by planning algorithms.

Usually, an amountnof computational resources will be specified, and the planning

algorithm must return a u0 with the smallest simple regret given this constraint. The

computational units can be number of evaluations of the model functions, number of

basic arithmetic operations, etc. In practice, n may often not be specified in advance

but may depend e.g. on real-time constraints. This motivates an anytime behavior,

which returns the best action possible after any amount n of units spent, without

using the actual value of n. The exploration-exploitation tradeoff still appears in the

weaker sense of judiciously prioritizing the sampling of planning policies in order to

minimize the final, simple regret.

Three planning algorithms will be considered in detail in this section: optimistic

planning for deterministic systems (OPD) [11], open loop optimistic planning (OLOP)

[2], and optimistic planning for sparsely stochastic systems (OPSS) [7]; the latter two

algorithms work for stochastic systems.

All these algorithms require discrete actions, so that U =
{

u1, ..., uM
}

. OPSS

also requires that each random transition ends up in one of a finite number of next

states. Thus it works for finite-state MDPs, as well as infinite-state MDPs that satisfy

the condition, which we call “sparsely stochastic”. Furthermore, for all algorithms

it is assumed the rewards are bounded in the interval [0, 1], i.e., ρ(x, u, x′) ∈ [0, 1]
for any x, u, x′. This assumption is not overly restrictive since, at least for problems

that do not have terminal states,2 any bounded reward function can be normalized to

[0, 1] by translation and scaling, without changing the optimal policies.

22.3.1 Optimistic planning for deterministic systems

In the deterministic case, the planning policy is sufficiently specified by an infinite

sequence of actions h = [u0, u1, . . . , ud, . . . ] with ud ∈ U , since this sequence

completely determines the system trajectory. Thus H is the infinitely-dimensional

2A terminal state is one from which the system can no longer escape, and from which all actions always

obtain zero rewards. Such states can be used to represent e.g. “goal achieved” and “failure” situations.
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space U∞. The value (return) of a policy h is:

v(h) =
∞
∑

d=0

γdrd+1 =
∞
∑

d=0

γdρ(xd, ud, xd+1) (22.7)

Define the metric (distance between policies) overH:

ℓ(h, h̄) =
γδ(h,h̄)

1− γ

where δ(h, h̄) = min {d |ud 6= ūd }, that is, the smallest index where the two policies

are different. Intuitively, this distance is the largest difference between the returns

provided by the two policies in any possible MDP. Because the rewards are in [0, 1],

the returns can differ by at most
∑∞

d̄=δ(h,h̄) γd̄ · 1 = γδ(h,h̄)

1−γ .

Optimistic planning for deterministic systems (OPD) is built starting from OOD

(Algorithm 22.1). The sets considered are defined by incomplete sequences of length

d, so that each policy in the set matches the sequence up to index d− 1 and is free to

choose any action afterwards: Hd = {[u0, u1, . . . , ud−1, ⋆, ⋆, ...]} with ‘⋆’ taken to

mean “any action”. Note H0 = H since it imposes no constraints on the policy. A

set Hd is split by making the choices for ud definite, so that we obtain M different

children sets Hd+1, one for every value of ud ∈
{

u1, ..., uM
}

. Note that, under the

chosen metric, the diameter of each such set is γd

1−γ since any two policies in Hd can

differ at the earliest at index d; thus also diam(H) = 1/1−γ.

We have not specified how to sample a value in a leaf set Hd. In fact, since this

value is an infinite sum of rewards, it is not possible to obtain an exact sample. This

is fortunately not a problem, since an upper bound on the values of policies in some

leaf set Hd can still be obtained from the sequence of rewards simulated so far:

binit(Hd) = ν(Hd) + diam(Hd) = ν(Hd) +
γd

1− γ

where ν(Hd) =
d−1
∑

d̄=0

γd̄ρ(xd̄, ud̄, xd̄+1)

Note that ν(Hd) is a lower bound on the values of all policies in Hd. These bounds

hold because the rewards that each policy in Hd obtains up to depth d are fixed,

producing the partial return ν(Hd), while the rewards below d are all between 0 and

1. So, expanding a node and computing the rewards obtained for reaching each of its

children replaces the usual sampling process.

After performing n expansions, OPD chooses the set that maximizes ν(Hd)
amongst all the sets considered so far, and returns the action u0 for this set. No-

tice that in contrast to the optimistic criterion used to build the tree, at the end OPD

makes a safe choice, based on lower bounds. With this, the instantiation of OPD as a

variant of Algorithm 22.1 is complete. Rather than making this instantiation explicit,

we choose to present the algorithm in an alternative, equivalent way that contributes

additional intuition and helps in understanding OPSS later.
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A one-to-one mapping exists between the tree of sets Hd and a corresponding

tree of states, Figure 22.2. A node sd at depth d in this latter tree is labeled by an

actual state x(sd), with the root s0 labeled by the initial state x0. An arc (sd, sd+1)
corresponds to a transition from x(sd) to x(sd+1) and is labeled by the associated

action ud and reward rd+1 = ρ(x(sd), ud, x(sd+1)). A path through the tree gives

the state trajectory obtained by applying a corresponding sequence u0, u1, . . . , ud−1;

thus each node sd corresponds to a set Hd. It is important to note that a certain state

x may appear several times in the tree; the variant of OPD presented here does not

merge information from these duplicates.

x0

u
1

0 u0

2

x
1

1 x
2

1

Figure 22.2 Illustration of an OPD tree. Nodes are labeled by states, and arcs correspond to

transitions. Subscripts are depths, superscripts index the M possible actions/transitions from

each node (M = 2 in this example). The dashed outline encloses a possible optimistic path.

Expanding a node s is done by simulating the transitions from x(s) for all M
actions, and adding nodes for all the resulting next states x′ as children C(s) to the

tree. The b-value of a leaf node is:

binit(s) = ν(s) +
γd(s)

1− γ
(22.8)

where ν(s) is the return along the path from the root s0 to s. Algorithm 22.3 sum-

marizes OPD using this second type of tree.

22.3.2 Open-loop optimistic planning

In the stochastic case, there are multiple state outcomes for a given action at some

step, so a simple sequence of actions is no longer sufficient to represent a full planning

policy. Such a policy would need to depend on the state, having e.g. the form h(d, sd)
in (22.6), which specifies an action choice for each possible state outcome sd at every

step d. Representing such a policy is unfortunately impossible in general, since there

can be an infinite number of outcomes. Instead, the open-loop optimistic planning

(OLOP) algorithm chooses to still optimize only over plain sequences of actions,

without explicitly considering the underlying state outcomes – hence its “open-loop”

nature.3

3Instead of the theoretical OLOP algorithm of [2], we present here a variant more directly related to

the HOO template, and also more amenable to practical implementation.
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Algorithm 22.3 Optimistic planning for deterministic systems

1: initialize tree: T ← {s0}
2: for t = 0, . . . , n do

3: s← root s0; while s is not leaf do s← arg maxs′∈C(s) b(s′) end while

4: optimistic leaf found: s† ← s
5: expand s†: simulate all M transitions from x(s†),

add to T nodes s′ containing the resulting states x′

6: update b-values upwards in the tree, starting from the leaves:

b(s) =

{

binit(s) from (22.8) if s is leaf

maxs′∈C(s) b(s′) otherwise

7: end for

8: output u0, the first action along path with largest ν

OLOP will be described using the tree-of-sets formalism, since a tree of states does

not exist in this case. The space H and metric are the same as in the deterministic

case, and splitting has the same meaning of initializing all action choices for the next

step. However, the value of a policy h is now the expected return:

v(h) = Exd+1∼f(xd,ud,·)

{

∞
∑

d=0

γdρ(xd, ud, xd+1)

}

(22.9)

so we are dealing with a noisy optimization problem: summing up the rewards

along some simulated trajectory only gives a sample return. Moreover, to obtain

independent return samples, whenever traveling down the optimistic action path in

the tree a new trajectory must be simulated, rather than relying on the already ex-

isting reward samples as in OPD. Formally, each set (tree node) Hd is associated

with a cumulative reward r(Hd) and a count n(Hd) of how many reward samples

are available for it, with both quantities initialized to 0. Simulating a trajectory

(xd̄, ud̄, xd̄+1, rd̄+1) for d̄ = 0, . . . , d − 1 provides new reward samples for all the

sets Hd̄+1 = {[u0, u1, . . . , ud̄, ⋆, ⋆, . . . ]}:
r(Hd̄+1)← r(Hd̄+1) + rd̄+1

n(Hd̄+1)← n(Hd̄+1) + 1

OLOP can be seen as a variant of HOO (Algorithm 22.2) that uses the b-values:

binit(Hd) =
d−1
∑

d̄=0

γd̄

[

r(Hd̄+1)

n(Hd̄+1)
+

√

2 log(t)

n(Hd̄+1)

]

+
γd

1− γ
(22.10)

for some set Hd, where t is the number of trajectories simulated so far. These b-

values are different from what the “vanilla” application of HOO would give, see

(22.5): they cleverly exploit the additive structure of the value (return) to compute

separate UCBs at each step, whereas vanilla HOO would compute a single UCB

for the entire trajectory. The diameter component γd

1−γ remains the same as in the

deterministic case.
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Algorithm 22.4 summarizes OLOP, in a variant where the computational unit

consists of simulating a single transition (rather than M as in OPD), and the final

action choice is based on the most-often sampled first action (rather than the largest

ν). There is a clear parallel between OLOP as an application of HOO, and OPD as an

application of OOD. For instance, OLOP requires a minimum with the b-value binit

of the current node when propagating b-values up the tree.

Algorithm 22.4 Open-loop optimistic planning

1: initialize tree: T ← {H}
2: for t = 1, 2, ..., stopping when n transitions have been exceeded do

3: H ← rootH; while H is not leaf do H ← arg maxH′∈C(H) b(H ′) end while

4: optimistic leaf found: H† ← H
5: expand H† into M child subsets H ′, one for each action, adding them to T
6: simulate a trajectory from x0, using all the actions in H†, reaching some xd

7: from xd, simulate a transition for each action

8: update b-values upwards in the tree, starting from the leaves:

b(H) =

{

binit(H) from (22.10) if H is leaf

min
{

binit(H),maxH′∈C(H) b(H ′)
}

otherwise

9: end for

10: output u0, a first action that was sampled most often

22.3.3 Optimistic planning for sparsely stochastic systems

When each random state transition can only end up in a small number N of next states,

it is in fact possible to represent full, closed-loop planning policies h(d, sd), which

also depend on the state node and hence on the underlying state. More specifically, a

policy can be represented as a vector:

h = [u0, u
1
1, . . . , u

N
1 , u1,1

2 , . . . , uN,N
2 , . . . . . . ]

because at step 1 it must provide an action for each of the possible N outcomes; at

step 2, for each of the N2 outcomes, and so on. Exploiting this idea, a deterministic

algorithm can be built on the foundations of OOD, even though the system is stochas-

tic. We call systems with the property above sparsely stochastic, so the algorithm

is optimistic planning for sparsely stochastic systems (OPSS). This class includes

all finite-state MDPs (where good performance can be expected when N is small),

as well as important classes of continuous-state MDPs such as those that arise by

combining deterministic dynamics with discrete random variables, or by discretizing

in time some continuous-time stochastic systems.

Rather than use the h notation which is cumbersome in this case, OPD is described

using a tree of states, like OPD earlier. This tree T is built starting from a root s0

labeled by x0 and iteratively expanding nodes. Each expansion consists of generating

and adding all the N one-step successor states of the node-to-expand, for all M
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actions, see Figure 22.3, left. The b-values of leaf nodes are computed with:

binit(s) = ν(s) +
γd(s)

1− γ
(22.11)

where ν(s) is the discounted sum of rewards along the path from s0 to s. The b-values

of nodes higher in the tree maximize expected b-values under the children’s probabil-

ities: b(s) = maxu∈U

∑

s′∈C(s,u) f(x(s), u, x(s′))b(s′). Here, C(s, u) denotes the

set of children reachable from s after performing action u.

Rather than an optimistic path as in OPD and OLOP, OPSS builds an optimistic

subtree T † by starting from the root and selecting at each node s all the children

associated to an optimistic action:

u†(s) = arg max
u∈U

∑

s′∈C(s,u)

f(x(s), u, x(s′))b(s′)

Among the leaves L† of this subtree, the node to expand is selected using:

s† = arg max
s∈L†

P(s)
γd(s)

1− γ
(22.12)

where P(s) is the probability to reach s, i.e. the product of all probabilities along the

path to s: P(s) =
∑d(s)−1

d=0 f(x(sd), ud, x(sd+1)). After n expansions, the algorithm

selects at the root an action:

u0 = arg max
u∈U

∑

s′∈C(s0,u)

f(x0, u, x(s′))ν(s′)

where ν-values are propagated up the tree just like b-values, starting from their defi-

nition at the leaves given above.

Algorithm 22.5 summarizes OPSS. The computational unit consists in this case of

generating all the NM children of a particular state.

Algorithm 22.5 Optimistic planning for sparsely stochastic systems

1: initialize tree: T ← {s0}
2: for t = 1, . . . , n do

3: build optimistic subtree T †

4: choose node to expand: s† ← arg maxs∈L† P(s) γd(s)

1−γ

5: expand s†: simulate all NM transitions from x(s†),
add to T nodes s′ containing the resulting states x′

6: update b-values upwards in the tree, starting from the leaves:

b(s) =

{

binit(s) from (22.11) if s is leaf

maxu∈U

∑

s′∈C(s,u) f(x(s), u, x(s′))b(s′) otherwise

7: end for

8: output u0 maximizing ν
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x
1

1

1 2

x0

1 2 1 2

x
2

1

[2,*, ...]

[1,*, ...]

[2,1,1,*, ...] [2,1,2,*, ...]

[2,2,1,*, ...] [2,2,2,*, ...]

[2,*,1,*, ...] [2,*,2,*, ...]

H

Figure 22.3 Left: illustration of an OPSS tree after three expansions (root, gray node, and

dashed node), for N = M = 2. The circles are state nodes, and the actions are explicitly

represented as square, choice nodes. Transition arcs to next states are labeled by probabilities

and rewards. The dashed outline encloses a possible optimistic subtree. Right: corresponding

partition of the policy space H. Expanding the root splits H in two sets containing

policies of the form [1, ⋆, . . . ] and [2, ⋆, . . . ] respectively (recall a policy has the structure

h = [u0, u
1
1, u

2
1, . . . ]). Next, expanding the gray node – which corresponds to the second

random outcome of action 2 – splits {[2, ⋆, . . . ]} into {[2, ⋆, 1, ⋆, . . . ]} and {[2, ⋆, 2, ⋆, . . . ]};

note the action for the first random outcome (dashed node) remains undefined. Expanding the

dashed node then makes the action definite, thereby splitting both sets {[2, ⋆, 1, ⋆, . . . ]} and

{[2, ⋆, 2, ⋆, . . . ]}, since the dashed node is reached with nonzero probability by both classes

of policies.

To better understand the choices made in OPSS, let us informally return to the

tree-of-policy-sets interpretation. To keep the parallel clear, we denote the tree of

sets by T in contrast to the tree of states T , and always specify to which tree each

entity belongs. Selecting the children of one particular action at each state node in T ,

recursively until reaching some set of leaves L̄ ∈ T , corresponds to selecting some

single leaf subset H ∈ T , with the b-value:

b(H) =
∑

s∈L̄

P(s) [ν(s) +
γd(s)

1− γ
]

=
∑

s∈L̄

P(s) ν(s) +
∑

s∈L̄

P(s)
γd(s)

1− γ
= ν(H) + diam(H)

the standard formula for the b-value. The lower bound ν(H) is the sum of truncated

returns up to the leaves in T , weighted by their probabilities. A similar weighted

formula holds for the diameter. Among all these leaf policy sets in T , the optimistic

action choices in T lead to the optimistic set H† ∈ T , which has the largest b-value,

and expanding the optimistic node s† ∈ T splits H† ∈ T into M children along the

longest edge, which corresponds to s†.

A subtle but essential property of OPSS is that, contrary to all algorithms so far,

this expansion also splits many additional sets: those corresponding to all policies

that reach s† with nonzero probability. Figure 22.3, right illustrates this effect, and

more generally how expanding leaves in T corresponds to splitting sets in T . Due

to this multiple-splitting property, there is no one-to-one mapping between T and T .
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22.3.4 Theoretical guarantees

The core theoretical question for optimistic planning algorithms concerns the quality

of the action they produce after expending the budget n, in terms of the simple regret

(22.2). Available guarantees rely on a measure of the complexity of the problem that

can best be understood in terms of a branching factor of some related trees.

For OPD, this tree consists of near-optimal policy sets H: T ∗ =
{

Hd

∣

∣v∗ −
ν(Hd) ≤ γd

1−γ

}

, where v∗ is the optimal return achievable from x0. So, T ∗ includes

at every level d the policy sets for which it is impossible to tell, from the rewards

achieved up that level, whether they contain an optimal policy. The larger the number

of such sets, the more difficult the problem is for planning. Denoting the asymptotic

(as d→∞) branching factor of T ∗ by κ, the simple regret of OPD is:

R(x0) =

{

O(n−
log 1/γ
log κ ) if κ > 1

O(γnc) if κ = 1

where c is a specific constant [11]. In the ideal case κ = 1, which means there is a

single near-optimal set at every level, and a single optimal planning policy. A regret

that decreases exponentially with n is obtained in this case. As κ grows to K, the

regret decreases more slowly with n.

OLOP defines the branching factor κ with a similar formula, but allows for tech-

nical reasons the sets to be suboptimal by up to 2γd

1−γ rather than γd

1−γ . Then, roughly

speaking (the actual technical statement is more involved) [2]:

R(x0) ≈
{

O(n−
log 1/γ
log κ ) if γ

√
κ > 1

O(n−1/2) if γ
√

κ ≤ 1

Remarkably, when γ
√

κ > 1 the regret has the same form as for OPD.

Similar guarantees hold for OPSS [6], but due to the additional intricacies caused by

the multiple-splitting property explained above, introducing these guarantees would

require extensive preliminaries that fall beyond the scope of this chapter.

22.4 RELATED PLANNING ALGORITHMS

A recent algorithm in the optimistic planning family is UCB applied to trees (UCT)

[13], which has made a great impact in the planning field due to its competitive

performance in games such as Go [10]. UCT basically applies UCB at every node

in a planning tree similar to that of Figure 22.3. It travels an optimistic path along

the tree choosing actions with maximal UCBs (22.3) on the returns obtained from

the current node, and sampling states independently. An issue with UCT is that

its b-values do not consider the size of the policy sets, which means they are not

true upper confidence bounds; equivalently, it can be said that UCT assumes infinite

smoothness of the value function it optimizes. A first attempt to address this problem,

by introducing a so-called smoothness coefficient in place of the set diameter, was
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made in [8]. This “bandit algorithm for smooth trees” can be considered a precursor

of OLOP. In [16] a continuous-action variant of UCT is introduced, which tackles

continuous actions by using HOO instead of UCB in the tree nodes. This still does

not introduce information about the size of policy sets.

On the other hand, optimistic planning has a strong relationship to classical plan-

ning algorithms such as A* and AO* [14, 17], which also expand planning trees by

optimistically prioritizing nodes. By using upper bounds on the values of incomplete

action sequences, A* and AO* do consider diameters of policy sets and obey the

principles of optimistic optimization (more specifically OOD). OPD can be seen as

an extension of A* from goal-based problems to more general, infinite-horizon dis-

counted MDPs, and OPSS as a similar extension of AO*, with the specific rule (22.12)

for choosing the particular node to expand. Exploiting UCBs is a strong innovation

brought by UCT and OLOP to classical planning.

The key observation here is that, in the context of MDPs, all these algorithms

belong to a general framework for optimistic optimization over planning policies.

This insight guides essential choices in the algorithms – for instance, the need to

always include diameters in the b-values, and the node expansion criterion (22.12)

in OPSS, intuitively seen as splitting a set along the longest edge. If these choices

are made correctly, strong theoretical guarantees on the performance are achieved in

terms of the simple regret, as outlined in Section 22.3.4.

An early, non-optimistic sample-based planning algorithm for MDPs was given

by [12]. This algorithm builds a uniform, symmetric planning tree by sampling a

fixed number of states for each action, at each depth up to some horizon. It is called

“sparse sampling” due to the finite number of outcomes sampled, so its sparseness is of

a different nature than in OPSS. Sparse sampling was extended by [18] to consider an

adaptive horizon. “Forward-search sparse sampling” [21] is an optimistic extension,

which does not expand the tree uniformly, but along paths obtained by choosing

maximum b-value actions, and then among the successors choosing the one with the

maximum gap between the b-value and a lower-bound on the state value. Disturbance

trees are very similar to the planning trees used here, and planning algorithms based

on them were given e.g. by [9].

22.5 NUMERICAL EXAMPLE

To understand the behavior of OPD, OLOP, and OPSS in practice, they will be applied

to the problem of swinging up an underactuated inverted pendulum – a rather simple

problem commonly used in the literature on solving MDPs.

The inverted pendulum consists of a mass attached to an actuated link (a rod)

that rotates in a vertical plane. The available power is taken insufficient to push the

pendulum up in a single rotation from every initial state. Instead, from certain states

(e.g., pointing down), the pendulum needs to be swung back and forth to gather energy,

prior to being pushed up and stabilized. Finding such a solution is challenging for

planning algorithms, because the swing-up must be planned over a longer horizon, and
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solutions that seem optimal over a short horizon will not work, instead just pushing

the pendulum in one direction.

A continuous-time model of the pendulum dynamics is:

α̈ = 1/J · [mgl sin(α)− bα̇−K2α̇/R + Ku/R]

where we have inertia J = 1.91 · 10−4 kgm2, mass m = 0.055 kg, gravitational

acceleration g = 9.81 m/s2, length l = 0.042 m, damping b = 3 · 10−6 Nms/rad,

torque constant K = 0.0536 Nm/A, and resistance R = 9.5 Ω. The angle α varies

in the interval [−π, π] rad, with α = 0 pointing up, and ‘wraps around’ so that e.g.

a rotation of 3π/2 corresponds to α = −π/2. The state is x = [α, α̇]
⊤

. The

velocity α̇ is restricted to [−15π, 15π] rad/s, using saturation. The control action

u ∈ [−3, 3] V may be affected by noise as described below. It is discretized into the

set U = {−3, 0, 3}, so that M = 3. The sampling time is Ts = 0.05 s.

The goal is to stabilize the pendulum in the unstable equilibrium x = 0 (pointing

up), and is expressed by the unnormalized quadratic rewards:

r = ρunnorm(x, u, x′) = −5α2 − 0.1α̇2 − u2

Using the known bounds on the state and action variables, the rewards are normalized

(scaled and translated) to the interval [0, 1]. The discount factor is γ = 0.95.

Two versions of the problem are considered. The first variant has deterministic

(noiseless) actions, and is used to exemplify the behavior of OPD. In the second

variant, an unreliable actuator is modeled that only applies the intended action u with

probability 0.6, and applies an action with smaller magnitude, 0.7u, with probability

0.4 (when the intended action is 0 it always remains 0). This corresponds to a sparsely

stochastic MDP with N = 2, a more difficult problem than the deterministic variant.

The results we will present for the stochastic inverted pendulum are similar to those

in [7].

To obtain a global performance measure, all algorithms are applied in an offline

fashion, to find actions for the states on the grid X0 =
{

−π, −150π
180 , −120π

180 , . . . , π
}

×
{−15π,−14π, . . . , 15π}. Since an exact optimal Q-function for the inverted pendu-

lum problem is not known, in order to approximate the simple regret a near-optimal

Q-function is computed instead using interpolation-based approximate value iteration

[20, 5] with an accurate approximator.

Baseline planning solutions are obtained using uniform planning, which always

expands a node having the smallest depth instead of an optimistic node, thus devel-

oping uniform, symmetric trees.

Results with OPD. Figure 22.4 shows the results obtained by OPD for the deter-

ministic inverted pendulum, in comparison to uniform planning. The budget n varies

in the set {50, 100, 200, 300, . . . , 900}. As expected, OPD works better (obtains

smaller regret) than uniform planning, since it expands the planning trees in a smart
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way, resulting in much deeper trees. The regret of OPD decreases with n but quickly

plateaus after n = 300, which indicates this budget is already sufficient. 4
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Figure 22.4 Results of OPD, compared to uniform planning: average regret over X0 (left),

average tree depth over X0 (right).

Results with OLOP and OPSS. For OLOP and OPSS, the sparsely stochastic

variant of the inverted pendulum is used. For OPSS, the computational budget n
varies in the set {50, 100, 200, 300, . . . , 900} like for OPD above. Each node ex-

pansion requires in principle NM = 6n transitions – in practice, since action 0 has

a deterministic outcome, the number is in fact 5n. Nevertheless, because the com-

putational unit of OLOP consists of simulating a single transition, it is allowed 6n
transitions (and may use slightly more to finish the last trajectory).

Figure 22.5 shows the results obtained, compared to the uniform planning baseline.

The relationship between OPSS and uniform planning mirrors that between OPD

and uniform planning in the deterministic case, although here the performance of

OPSS continues to improve as n increases, reflecting the more difficult nature of the

stochastic problem. Less expected is that OLOP works poorly, similarly to uniform

planning. This likely happens because the computational budgets considered do not

allow OLOP to decrease the upper confidence bounds on the returns to informative

levels; OLOP may work better with a larger budget.

To illustrate the online control performance of optimistic planning, OPSS is applied

in a receding-horizon fashion starting from the stable equilibrium of the pendulum

(pointing down), and n = 600. Figure 22.6 shows the resulting trajectory, compared

to that given by uniform planning. OPSS swings up the pendulum in one go, whereas

uniform planning manages it only after a few attempts.

4Note that the regret does not decrease monotonically with n. This is because regret can vary non-

monotonically with the planning horizon. For a concrete example, consider a deterministic MDP with

state space {1, 2, . . . , 6}, two actions −1, 1, and additive dynamics x
′ = max(1, min(6, x + u)). The

rewards obtained upon reaching one of the six states are, respectively, 4, 0, 0, 1,−10, 100, and the dis-

count factor is 0.5. Then, the optimal action for x = 3 is 1. If a fully expanded planning tree of depth

(horizon) 1 is used to compute ν-values and choose an action, the action returned will be 1. If the depth is

2, the action changes to −1 due to the −10 reward. For depths larger than 2, due to the 100 reward, the

action is again optimal, i.e., 1. The simple regret for x = 3 is thus clearly nonmonotonic with respect to

the depth.
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Figure 22.5 Comparison between OPSS and uniform planning: average regret over X0 (left),

average tree depth over X0 (right). As the results of OLOP depend on particular realizations

of stochastic trajectories, this algorithm is run 10 times and mean results are reported (the 95%
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Figure 22.6 Online control results of OPSS and uniform planning.
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