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Abstract— This paper presents a discrete-time Takagi-Sugeno
fuzzy observer design approach for a class of nonlinear systems.
Instead of including all the nonlinear terms in the membership
functions, some of them are kept as nonlinear consequents,
and they need to fulfill a global Lipschitz condition. The
form considered permits nonlinear consequents that depend
on nonscalar inputs. The design conditions are defined in
terms of linear matrix inequalities, and they are less restrictive
than previous conditions from the literature. Two numerical
examples highlight the advantages obtained.

I. INTRODUCTION

For systems where direct measurements of relevant state
variables are not physically possible or the sensors are too
expensive, estimation is used. This research field has started
with the seminal works [1] and [2], and has been explored
in depth for both linear and nonlinear systems.

An influential nonlinear observer design approach is pre-
sented in [3], where a slope-bound condition is used to
handle the nonlinearities, assuming that each nonlinearity is
a function of a given linear combination of the states. A
generalization of this approach is given in [4], where less
conservative design conditions are developed. Furthermore,
in [5], the restriction that the nonlinearities must be a func-
tion of the same linear combination of the states is removed.
They define a more general form of the nonlinearities that
may depend on nonlinear combinations of the states, for
example, nonlinearities like cos(x1x2). Several extensions
of this work can be found, see e.g. [6], [7], [8], [9], [10].

In particular, the discrete-time observer design problem
when the dynamics of the system contain such nonlinearities
is presented in [10], which is the starting point of our paper.
From the structural point of view, we consider a similar
model to the one in [10]. There, the models used are Linear
Parameter Varying (LPV), which are in direct analogy to the
Takagi-Sugeno (TS) fuzzy models that we consider.

Specifically, we present in this paper nonlinear observer
design approaches for a class of nonlinear systems repre-
sented as TS models with nonscalar-input nonlinear conse-
quents. We provide the following improvements compared
to the results in [10].

First, we decouple the direct dependency of the observer
gains on the Lyapunov function by adding an extra degree
of freedom with a non-symmetric fuzzy matrix, Qz . Second,

The authors are with the Department of Automation, Technical Uni-
versity of Cluj-Napoca, Romania. E-mail: {zoltan.nagy, zsofia.lendek, lu-
cian.busoniu}@aut.utcluj.ro. This work was supported by a grant of the Ro-
manian National Authority for Scientific Research and Innovation, CNCS –
UEFISCDI, project number PN-III-P1-1.1-TE-2016-1265, contract number
11/2018.

to further relax the design conditions, we consider a fuzzy
Lyapunov function instead of a quadratic one. Finally, in [10]
the design conditions in the main theorem are presented as
bilinear matrix inequalities (BMIs). There, two options are
presented to obtain sufficient LMI conditions. In this paper,
next to the two options of [10], we propose an alternative
approach to obtain LMIs. The design conditions in this
approach are in certain cases less restrictive than in the other
two approaches.

On the other hand, there are also related works in the
TS fuzzy literature, see e.g. [11], [12], [13], [14], [15]. For
example, in [11] the following Lipschitz condition is used
for observer design: ‖φi(x(k))−φi(x̂(k))‖ ≤ θi‖Ri(x(k)−
x̂(k))‖. The above inequality uses the norm of the nonlinear-
ity, and an upper bound is defined for this norm, while the
present results are based on the mean-value theorem and are
less restrictive. Moreover, our approach handles each state
dependency separately for every nonlinearity, and for each
such state dependency a different upper bound is defined,
which adds flexibility to the design conditions. In [13] the
nonlinear consequents can handle only scalar inputs, while
the present work can tackle multiple inputs in the nonlinear
consequents.

In the sequel, following some notations, the TS fuzzy sys-
tem with nonlinear consequents and the estimation problem
are introduced in Section II. Section III presents the main
theoretical results. To highlight the novelty of the paper
two numerical examples are provided in Section IV. Finally,
conclusions and future directions are presented in Section V.

Notations. Let F = FT ∈ Rn×n be a real symmetric
matrix; F > 0 and F < 0 mean that F is positive definite and
negative definite, respectively. I denotes the identity matrix
and 0 the zero matrix of appropriate dimensions. The symbol
∗ in a matrix indicates a transposed quantity in the symmetric

position, for instance
(
P ∗
A P

)
=

(
P AT

A P

)
, A+∗ = A+

AT , and AP ∗ = APAT . The notation bdiag(f1, ..., fm),
where fi ∈ Rni for all i = 1, ...,m, stands for the block
diagonal matrix, whose diagonal components are f1, ..., fm
matrices. The set Co(x, y) = {λx + (1 − λ)y, 0 ≤ λ ≤ 1}
is the convex hull of {x, y}. The notation en(i) ∈ Rn refers
to a column vector, whose elements are zero, except the i-th
one:

en(i) = [0 ... 0

i−th︷︸︸︷
1 0 ... 0]T︸ ︷︷ ︸

n elements



II. PRELIMINARIES AND PROBLEM STATEMENT

The classic discrete-time TS fuzzy model is a convex
combination of linear models, having the form:

x(k + 1) =

s∑
l=1

hl(z(k))(Alx(k) +Blu(k))

y(k) =

s∑
l=1

hl(z(k))Clx(k),

(1)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the
control input, y(k) ∈ Rny is the measured output vector, s
is the number of rules, z(k) ∈ Rnz is the premise vector,
and hl, l = 1, ..., s are nonlinear functions with the property

hl ∈ [0, 1], l = 1, ..., s,

s∑
l=1

hl(z) = 1. (2)

These nonlinear functions are called the membership func-
tions. Matrices Al, Bl, and Cl represent the l-th local model.
Throughout this paper, the following shorthand notations are
used to represent convex sums of matrix expressions:

Fz =

s∑
l=1

hl(z(k))Fl, Fz+ =

s∑
l=1

hl(z(k + 1))Fl. (3)

Based on this notation, (1) can be rewritten as

x(k + 1) =Azx(k) +Bzu(k)

y(k) =Czx(k).
(4)

A. Lemmas and properties

In order to develop our results we will use the following
properties and lemmas.

Property 1 ([16]): Let T and R be matrices of appropri-
ate dimensions and ranks, with R = RT > 0. Then
−TTR−1T ≤ −T − TT +R.
Property 2 ([16]): (Schur complement). Let M =

MT =

[
M11 M12

MT
12 M22

]
, with M11 and M22 square matrices

of appropriate dimensions. Then:

M < 0⇔

{
M22 < 0

M11 −M12M
−1
22 M

T
12 < 0

(5)

Lemma 1 ([16]): (Congruence) Given matrix P = PT

and a full column rank matrix Q, it holds that
P > 0 ⇒ QPQT > 0.

Estimation and control problems are often defined as triple-
sum negativity problems having the form

Fzzz+ =

s∑
l1=1

s∑
l2=1

s∑
l3=1

hl1(z)hl2(z)hl3(z+)Fl1l2l3 < 0,

(6)
with symmetric matrices Fl1l2l3 and nonlinear functions hl
satisfying the convex sum property in (2).

Lemma 2 ([17]): Equation (6) is satisfied if the following
conditions hold

Fl1l1l3 <0

2

s− 1
Fl1l1l3 + Fl1l2l3 + Fl2l1l3 <0,

for all l1, l2, l3 = 1, ..., s, l1 6= l2.
A useful inequality was presented in [8], which provides a
powerful condition for the LMI problem.

Lemma 3 ([8]): Let X and Y be two given matrices of
appropriate dimensions. Then, for any symmetric positive
definite matrix S of appropriate dimension, the following
inequality holds:

XTY + Y TX ≤ 1

2

(
X + SY

)T
S−1

(
X + SY

)
. (7)

We also use a slightly different form of (7):

XTY + Y TX ≤ 1

2

(
S−1X + Y

)T
S
(
S−1X + Y

)
. (8)

For globally Lipschitz functions we use the following lemma.
Lemma 4 ([10]): Let φ : Rn → Rq be a differentiable

function on Rn. Then the following items are equivalent:

• φ is globally Lipschitz
• there exist finite scalar constants aij and bij , so that for

all v, r ∈ Rn there exist ζi ∈ Co(v, r), ζi 6= v, ζi 6= r
and functions ψij : Rn → R satisfying the following:

φ(v)− φ(r) =

q∑
i=1

n∑
j=1

ψij(ζi)Hij(v − r)

aij ≤ ψij(ζi) ≤ bij

ψij =
∂φi
∂vj

(ζi), Hij = eq(i) en(j)T ,

where vj refers to the j-th element in the v vector, and

en(i) = [0 ... 0

i−th︷︸︸︷
1 0 ... 0]T︸ ︷︷ ︸

n elements

, eq(j) = [0 ... 0

j−th︷︸︸︷
1 0 ... 0]T︸ ︷︷ ︸

q elements

.

B. Problem statement

The model considered has the following structure:

x(k + 1) =Azx(k) +Gγ(x(k)) + g(y(k), u(k)) + Ew(k)

y(k) =Czx(k) +Dw(k),
(9)

where Az and Cz have the same meaning as in (1). The
disturbance term is denoted with w(k) ∈ Rnw , with E and D
the corresponding matrices. The vector g(y(k), u(k)) ∈ Rnx

contains the terms that depend on the input and the output.
It is assumed that the premise vector z(k) depends only

on measured states and inputs. The nonlinear terms that
depend on unmeasured states are handled by the nonlinear
consequents. The quantity γ(x(k)) ∈ Rm contains the
nonlinear consequents. It is an m-dimensional column vector,
and the following can be written:

Gγ(x(k)) =

m∑
i=1

Giγi(

νi︷ ︸︸ ︷
Hix(k)), (10)

where γi(·) is the i-th nonlinear function from the γ(·)
vector, and Gi denotes the i-th column of G. Moreover,
Hi ∈ Rni×nx , where ni denotes the number of inputs of



the i-th nonlinearity, and νi = Hix(k). The observer we
propose has the following structure:

x̂(k + 1) =Azx̂(k) +

m∑
i=1

Giγi(ν̂i) + g(y(k), u(k))

+Q−1z Lz(y(k)− Czx̂(k)),

ν̂i=Hix̂(k)+Kiz

(
y(k)−Czx̂(k)

)
, Lz=

s∑
l=1

hl(z(k))Ll,

Qz =

s∑
l=1

hl(z(k))Ql, Kiz =

s∑
l=1

hl(z(k))Kil.

(11)
An extra degree of freedom is added via the term Qz . It is
assumed that γ(·) is globally Lipschitz. Based on Lemma 4
the following can be written:

G
(
γ(x(k))− γ(x̂(k))

)
=

m∑
i=1

ni∑
j=1

Φij(ζi)Hij(νi − ν̂i)

Hij = Gieni
(j)T , Φij(ζi) =

∂γi
∂νij

(ζi)

aij ≤ Φij(ζi) ≤ bij ,
(12)

where νij denotes the j-th element from the vector νi. Note
that in (12) the G matrix is included inHij , so a simpler form
is obtained. The model defined in (9) can be reformulated
so that aij = 0, for all i = 1, ...,m, j = 1, ..., ni. For more
details on these modifications we refer the reader to [3], [7].
In what follows we denote: Φij := Φij(ζi) and we consider
aij = 0, for all i = 1, ...,m, j = 1, ..., ni. We denote the
error with e(k) := x(k) − x̂(k), and based on (9)-(11) we
have the following error dynamics:

e(k+1)=Azx(k)+Gγ(x(k))+g(y(k), u(k))+Ew(k)

−Azx̂(k)−Gγ(x̂(k))− g(y(k), u(k))

−Q−1z Lz(y(k)− Czx̂(k))

=(Az −Q−1z LzCz)e(k)+G
(
γ(x(k))− γ(x̂(k))

)
+ (E −Q−1z LzD)w(k).

(13)
Using (12), we can rewrite

G
(
γ(x(k))−γ(x̂(k))

)
=

m∑
i=1

ni∑
j=1

ΦijHij(νi−ν̂i)

=

m∑
i=1

ni∑
j=1

ΦijHij
(

(Hi −KizCz)e(k)−KizDw(k)
)
.

This leads to

e(k + 1) =

(
AL +

m∑
i=1

ni∑
j=1

ΦijHijHKi

)
e(k)

+

(
EL +

m∑
i=1

ni∑
j=1

ΦijHijDKi

)
w(k),

(14)

where

AL =Az −Q−1z LzCz, HKi
= Hi −KizCz,

EL =E −Q−1z LzD, DKi
= KizD.

(15)

We consider the following fuzzy Lyapunov function

V (e(k)) := e(k)TPze(k), (16)

for which the difference across time steps is:

∆V := e(k + 1)TPz+e(k + 1)− e(k)TPze(k). (17)

We add an H∞ performance signal: c(k) = Je(k), µ > 0,
and formulate the following criterion:

Wk := ∆V + ‖c(k)‖2 − µ‖w(k)‖2 ≤ 0. (18)

Now we are ready to present the main results of this paper.

III. MAIN RESULTS

Theorem 1 presents the improvements we provide on
Theorem 2 of [10]. Afterwards, Corollaries 1 and 2 give
sufficient LMI conditions to satisfy Theorem 1 following
the lines of conditions in [10], while Theorem 2 provides
another approach to obtain sufficient LMI conditions.

Theorem 1: Consider the error dynamics in (14), and the
H∞ performance index formulated in (18). If there exist
matrices Pl1 = PTl1 > 0, Ql2 , Sij = STij > 0, and Kil2 ,
Ll2 , for i = 1, ...,m, j = 1, ..., ni and l1, l2, l3 = 1, ..., s,
such that Lemma 2 holds with

Fl1l2l3 =

[
Ml1l2l3 [Ω1l2 ...Ωml2 ]
∗ −ΛS

]
(19)

where

Ml1l2l3 =


−Pl1 +JTJ 0 ATl1Q

T
l2
− CTl1L

T
l2

∗ −µI ETQTl2 −D
TLTl2

∗ ∗ Pl3−Ql2−QTl2



Ωil2 =
[
Πi1l2 ... Πinil2

]
, Πijl2 =


(
HT
i −CTl1K

T
il2

)
Sij(

DTKT
il2

)
Sij

Ql2Hij


Λ=bdiag(Λ1, ...,Λm), Λi=bdiag

(
2

bi1
I, ...,

2

bini

I

)
S =bdiag

(
S1, ...,Sm

)
, Si = bdiag

(
Si1, ...,Sini

)
,

then the H∞ performance condition defined in (18) is
satisfied.

Proof: By calculatingWk along the trajectories of e(k),
we obtain:

Wk = e(k)T
[(
AL+M

)T
Pz+

(
AL+M

)
−Pz+JTJ

]
e(k)

+w(k)T
[(
EL+N

)T
Pz+

(
AL+N

)
−µI

]
w(k)

+2e(k)T
[(
AL+M

)T
Pz+

(
EL+N

)]
w(k)

(20)
where

M =

m∑
i=1

ni∑
j=1

ΦijHijHKi , N =

m∑
i=1

ni∑
j=1

ΦijHijDKi . (21)

This can be written as

Wk =

[
e(k)
w(k)

]T
Σ

[
e(k)
w(k)

]
,



where

Σ =

[
−Pz+JTJ 0

0 −µI

]
+

[(
AL + M

)T(
EL + N

)T
]
Pz+

[
AL + M EL + N)

] (22)

Since Σ < 0 implies Wk < 0, in what follows we consider
only Σ. By applying the Schur complement on (22) and
congruence with bdiag[I I Qz] the following condition is
obtained:−Pz+JTJ 0

(
AL + M

)T
QTz

∗ −µI
(
EL + N

)T
QTz

∗ ∗ −QzP−1z+Q
T
z

 < 0. (23)

Using Property 1 on QzPz+QTz , we have:−Pz+JTJ 0
(
AL + M

)T
QTz

∗ −µI
(
EL + N

)T
QTz

∗ ∗ Pz+ −Qz −QTz

 < 0. (24)

Next, by following the steps in the proof of [10] we can
separate (24) as:−Pz+JTJ 0 ATL QTz

∗ −µI ETL QTz
∗ ∗ Pz+−Qz−QTz


+

m∑
i=1

ni∑
j=1

Φij

( 0
0

QzHij

 [HKi DKi 0
]

+ ∗

)
< 0

(25)
We denote

Xij =
[
0 0 HTijQTz

]
, Yi =

[
HKi

DKi
0
]
, (26)

based on Lemma 4 the following inequality holds:

XTijYi+XijYTi ≤
1

2

(
Xij+SijYi

)TS−1ij (Xij+SijYi
)

(27)

Since 0 ≤ Φij ≤ bij , see (12), (25) holds if:−Pz+JTJ 0 ATL QTz
∗ −µI ETL QTz
∗ ∗ Pz+−Qz−QTz


+

m∑
i=1

ni∑
j=1

(
Xij+SijYi

)T( 2

bij
Sij
)−1(

Xij+SijYi
)
< 0

(28)
Next, by applying the Schur complement on (28) we get:[

Mzzz+ [Ω1z ...Ωmz]
∗ −ΛS

]
< 0

Mzzz+ =


−Pz+JTJ 0 ATz Q

T
z − CTz LTz

∗ −µI ETQTz −DTLTz

∗ ∗ Pz+−Qz−QTz

 (29)

By applying Lemma 2 we obtain (19).
To highlight the advantages of the presented approach, first
we focus on Xij in (26). In [10] the term Xij depends
on HTijPT , where P must be a positive definite symmetric

matrix, and Hij is a nx × ni matrix, in which the j-th
column is Gi and the rest of the columns are 0. Since P has
to be symmetric, the Xij term makes the design conditions
restrictive.

This restrictive form is relaxed in our design. We use a
non-symmetric fuzzy matrix Qz =

∑s
l=1 hl(z(k))Ql, which

introduces unconstrained decision variables in Xij . Matrix
Qz also helps in Mzzz+ in (29), since the observer is
completely decoupled from the Lyapunov function, while
in Theorem 2 in [10] the observer gains are computed as
Lz = P−1Xz , where P is from the Lyapunov function.

On the other hand, in the Lyapunov synthesis, instead
of the quadratic Lyapunov function e(k)TPe(k) we use a
fuzzy Lyapunov function, having the form: eT (k)Pze(k).
This makes the design conditions less restrictive, see [18].
In Theorem 1, if we take a quadratic Lyapunov function, so
Pl = P for all l = 1, ..., s, and constant Q, with Q = P ,
then we obtain Theorem 2 of [10]. We can conclude that the
design condition presented in Theorem 2 of [10] is a special
case of Theorem 1.

Although the conditions defined in (19) are less restrictive
than those in Theorem 2 in [10], they are still bilinear due
to the terms Kil2Sij for all i = 1, ...,m, j = 1, ..., ni.
The change of variables, like X = Kil2Sij , is not possible
since Sij depends on both i and j. Two solutions are
proposed in [10] to obtain sufficient LMI conditions in form
of corollaries. The first corollary imposes Sij = Si, so that
a variable change can be used: Yi = KT

i Si, while the
second corollary considers Ki = 0. In what follows we also
formulate two corollaries for the options mentioned above.

Corollary 1: Consider the error dynamics in (14), and the
H∞ performance index formulated in (18). If there exist
matrices Pl1 = PTl1 > 0, Ql2 , Si = STi > 0, and Yil2 , Ll2 ,
for i = 1, ...,m and l1, l2, l3 = 1, ..., s, such that Lemma 2
holds with (19), where

Si = bdiag
(
Si, ...,Si︸ ︷︷ ︸

ni

)
then the H∞ performance condition defined in (18) is

satisfied, and the observer gains can be recovered from
Kil1 = S−1i YTil1 .

Proof: The proof is the same as that of Theorem 1 with
Sij = Si.

Corollary 2: Consider the error dynamics in (14), and the
H∞ performance index formulated in (18). If there exist
matrices Pl1 = PTl1 > 0, Ql2 , Sij = STij > 0, for i = 1, ...,m,
j = 1, ..., ni and l1, l2, l3 = 1, ..., s, such that Lemma 2 holds
with (19), then the H∞ performance condition defined in
(18) is satisfied.

Proof: The proof is as above with Kil2 = 0.
Next, we provide a novel approach as an alternative to obtain
sufficient LMI conditions.

Theorem 2: Consider the error dynamics in (14), and the
H∞ performance index formulated in (18). If there exist
matrices Pl1 = PTl1 > 0, Ql2 , Sij = STij > 0, where the

j-th column of Sij is [0 ... 0

j−th︷︸︸︷
αij 0 ... 0]T︸ ︷︷ ︸

ni elements

, with constants



αij , and Kil2 , Ll2 , for i = 1, ...,m, j = 1, ..., ni and
l1, l2, l3 = 1, ..., s, such that Lemma 2 holds with

Fl1l2l3 =

[
Ml1l2l3 [Ω1l2 ...Ωml2 ]
∗ −ΛS

]
(30)

where

Ml1l2l3 =


−Pl1 +JTJ 0 ATl1Q

T
l2
− CTl1L

T
l2

∗ −µI ETQTl2 −D
TLTl2

∗ ∗ Pl3−Ql2−QTl2



Ωil2 =
[
Πi1 ... Πini

]
, Πij =


HT
i − CTl1K

T
il2

DTKT
il2

αijQl2Hij


Λ=bdiag(Λ1, ...,Λm), Λi=bdiag

(
2

bi1
I, ...,

2

bini

I

)
S =bdiag

(
S1, ...,Sm

)
, Si = bdiag

(
Si1, ...,Sini

)
,
(31)

then the H∞ performance condition in (18) is satisfied.
Proof: We follow the line of the proof of Theorem 1,

equations (20)-(26). After that, we consider inequality (8),
and the following is obtained:

XTijYi+XijYTi ≤
1

2

(
S̃−1ij Xij+Yi

)T S̃ij(S̃−1ij Xij+Yi
)
,

(32)
which leads to−Pz+JTJ 0 ATL QTz

∗ −µI ETL QTz
∗ ∗ Pz+−Qz−QTz


+

m∑
i=1

ni∑
j=1

(
S̃−1ij Xij+Yi

)T( 2

bij
S̃−1ij

)−1(
S̃−1ij Xij+Yi

)
< 0

(33)
We denote Sij := S̃−1ij . Now we examine

SijXij+Yi =
[
HKi

DKi
SijHTijQTz

]
(34)

The bilinear term is SijHTijQTz , which can be written as

SijHTijQTz = Sijeni(j)G
T
i Q

T
z , (35)

where the multiplication of Sijeni
(j) results in the j-th

column of Sij . The j-th column is αijeni(j), and we have:−Pz+JTJ 0 ATL QTz
∗ −µI ETL QTz
∗ ∗ Pz+−Qz−QTz



+

m∑
i=1

ni∑
j=1


HTKi

DTKi

αijQzHij

(2Sij
bij

)−1[
HKi DKi HTijQTz αij

]
<0

(36)
Using the Schur complement, we obtain:[
Mzzz+ [Ω1z ...Ωmz]
∗ −ΛS

]
< 0

Ωiz =
[
Πi1z ... Πiniz

]
, Πijz =

HT
i − CTz KT

iz

DTKT
iz

αijQzHij

 , (37)

and the rest of the elements are as in Theorem 1. Sufficient
LMI conditions are obtained applying Lemma 2.

The main advantage of Theorem 2 is that even if it
imposes a restrictive structure, still every Hij term has a
corresponding Sij matrix, and not a single Si for all the j-
s like in Corollary 1. If we have a good initial guess for
the parameters αij , the problem becomes a simple LMI.
Alternatively, we can search for αij in a logarithmically
spaced family of values αij ∈ {10−6, 10−5, ..., 105, 106}.
On the other hand, if we have many αij parameters the
problem can become computationally intractable.

IV. COMPARISON WITH THE STATE OF THE ART

In order to highlight the advantages obtained by our
approach, we compare Corollaries 1 and 2 from [10] with our
approaches presented in Corollaries 1 and 2, and Theorem 2
on a numerical example.

Example 1: Consider model (9) with two local models
and the following matrices:

A1 =

[
1 0.008
0 0.29

]
, A2 =

[
1 0.008
0 0.96

]
, G =

[
0

0.1

]
C=

[
1 0

]
, H=

[
1 0
0 1

]
, E=

[
0

0.1

]
, D = 0.02,

(38)

Moreover, g(y(k), u(k)) = 0 and we consider one nonlin-
earity denoted with γ and it fulfills (12) with a11 = a12 = 0,
b12 = 0.5. This example is simple enough so standard LMI
solvers can easily handle, but has a nonlinearity that depends
on two states, so approaches in [19], [3], [4] are not suitable
for it.

TABLE I
MINIMUM VALUE OF µ FOR EXAMPLE 1

b11 Cor. 1 [10] Cor. 2 [10] Cor. 1 Cor. 2 Th. 2
2 1.0203 0.8754 0.8263 0.6544 0.5642

2.2 1.0581 0.9022 0.8517 0.6738 0.5644
2.4 1.0954 0.9287 0.8768 0.6931 0.5646
2.6 1.1324 0.9551 0.9019 0.7122 0.5648
2.8 1.1690 0.9814 0.9270 0.7314 0.5650
3 1.2053 1.0077 0.9520 0.7505 0.5652

We study the minimum µ what we can obtain based on
b11. To solve the LMI problem, the sedumi solver is used in
the Yalmip [20] framework. To fit in the framework of the
linear parameter varying models used in [10], we consider
the parameter ρ ∈ [0.03, 0.7], and matrices

A0 =

[
1 0.008
0 0.99

]
, A1 =

[
0 0
0 1

]
.

The results obtained are presented in Table I. It can be seen
that Corollaries 1-2 outperform the corollaries presented in
[10] in terms of the minimum value of µ. The best results are
obtained with Theorem 2, but with the added computational
complexity of finding a suitable α11 and α12. Regarding
the computational complexity of solving the LMI conditions,
according to [16], page 18, a realistic approximation of the
numerical complexity using the interior-point method used
by sedumi is O(N2.1

d N1.2
l ), where Nd is the number of

scalar decision variables and Nl is the row size of the LMI
problem. For the conditions in Corollary 1 we have Nd = 25,



for Corollary 2 this value is Nd = 24, and for Theorem 2 we
have Nd = 24, and for all the cases Nl = 56. To show the
advantage of using the fuzzy Qz matrix we provide another
example dedicated only to this purpose.

Example 2: We use (9) with the following matrices:

C1 =C3 =

[
1 0 0 0
0 0 1 0

]
, C2 =C4 =

[
1 0 0 0
0 0 ω1 0

]

A1 =A2 =


1 0.001 0 0

0.1 0.2 0.1 0.3
0 0 1 0.001

0.1 −0.3 0.2 ω2

 , G=


1 −2
−4 7
3 −1
−12 9



A3 =A4 =


1 0.001 0 0

0.1 0.2 0.1 0.3
0 0 1 0.001

0.1 −0.3 0.2 1.1

 ,
(39)

where ω1 and ω2 are two parameters. We consider the
following two cases:
1.) Corollary 1 with Pz = P , Qz = P , equivalent to [10].
2.) Corollary 1 with Pz = P .

We vary the values of ω1 and ω2 in the range ω1 =
[0.8, 2.2] and ω2 = [−0.2, 1.2], and we look for feasible
solutions with respect to the matrices in (39). The results
obtained can be seen on Fig. 1. We can see that a much
wider range of systems can be handled by adding the extra
degree of freedom with Qz .

Fig. 1. ’.’-Corollary 1 with Pz = P , Qz = P , ’o’-Corollary 1 with
Pz = P .

V. CONCLUSIONS AND FUTURE WORK

This paper presented a novel approach to observer design
for discrete-time nonlinear systems with nonlinear conse-
quents. The design exploits the TS fuzzy framework together
with globally Lipschitz nonlinearities. An H∞ performance
index was used, and the conditions were formulated so that
the effect of the disturbance was minimised. To highlight the
novelty of the paper two examples were presented.

There are many future directions, among which we will
focus on extending this work to observer-based controller

design. On the other hand we plan to consider a wider range
of models, for example by considering fuzzy terms also for
the G matrix.
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