
Optimistic Planning for Continuous-Action

Deterministic Systems

Lucian Buşoniu1,2, Alexander Daniels3, Rémi Munos4, Robert Babuška3

1 Université de Lorraine, CRAN, UMR 7039 and CNRS, CRAN, UMR 7039, France
2 Automation Department, Technical University of Cluj-Napoca, Romania

lucian@busoniu.net

3 Delft Center for Systems and Control, Delft University of Technology, the Netherlands

alexanderdaniels87@gmail.com, r.babuska@tudelft.nl

4 Team SequeL, INRIA Lille-Nord Europe, France

remi.munos@inria.fr

Abstract : We consider the optimal control of systems with deterministic dynamics, continuous, pos-

sibly large-scale state spaces, and continuous, low-dimensional action spaces. We describe an online

planning algorithm called SOOP, which like other algorithms in its class has no direct dependence on

the state space structure. Unlike previous algorithms, SOOP explores the true solution space, consisting

of infinite sequences of continuous actions, without requiring knowledge about the smoothness of the

system. To this end, it borrows the principle of the simultaneous optimistic optimization method, and

develops a nontrivial adaptation of this principle to the planning problem. Experiments on four prob-

lems show SOOP reliably ranks among the best algorithms, fully dominating competing methods when

the problem requires both long horizons and fine discretization.

Keywords : optimal control, online planning, simultaneous optimistic optimization, continuous actions.

1 Introduction

Optimal control problems arise in numerous areas of technology. They can be modeled as Markov decision

processes, in which optimality is measured by a cumulative reward signal that must be maximized (the

return). Standard model-based techniques for this problem are called (approximate) dynamic programming

(Bertsekas, 2007; Szepesvári, 2010; Powell, 2012), and because they search for a global solution, their

complexity grows fast with problem dimensionality. Furthermore, to be feasible in practice these methods

often require discretized actions.

This paper is concerned with a different, online planning class of techniques, which work in a local

fashion by finding actions on demand for each encountered state. We propose a novel planning technique

that works for deterministic systems and continuous (though still low-dimensional) actions.

The local nature of planning methods reduces their dependence on state dimensionality in comparison

to dynamic programming, and allows most methods—including ours—to naturally deal with continuous

state spaces. At each step, an explorative search is made through the space of possible action sequences

from the current state, after which the best first action found is applied; the process then repeats at the

next step. Planning techniques are thus a very general type of model-predictive control. Since computation

is limited in the online setting, the search must be efficient, and a good way to achieve this is optimistic

search, which explores the most promising regions first. Such optimistic planning (OP) algorithms are

better developed in the discrete-action case (Kocsis & Szepesvári, 2006; Hren & Munos, 2008; Bubeck

& Munos, 2010; Walsh et al., 2010; Buşoniu & Munos, 2012), with Upper Confidence Trees perhaps the

most widely known technique (Kocsis & Szepesvári, 2006). Classical planning algorithms (La Valle, 2006;

Nilsson, 1980) are also related, and so are their applications to Markov decision processes (Kearns et al.,

2002; Likhachev et al., 2004; Péret & Garcia, 2010). Our method is closer to OP for deterministic (Hren &

Munos, 2008) and discrete stochastic systems (Buşoniu & Munos, 2012).

Several OP methods also exist for continuous actions. HOOT (Mansley et al., 2011) and SP (Hren,

2012, Ch. 5) rely on the principle of Upper Confidence Trees: they explore the space of sequences of a

JFPDA 2013

given length (planning horizon) K, optimizing for the kth action the return obtained over subsequent steps.

HOLOP1 (Weinstein & Littman, 2012) optimizes directly the K-horizon return relative to the initial state

(at k = 0). All three methods are limited by searching for a sequence that is only optimal over horizon K,

whereas the control problem is infinite-horizon. In principle, K can be taken sufficiently large, but this will

waste computation, while a too small K may be insufficient to solve the problem. Thus, in practice K is a

problem-dependent parameter.

The actual space that should be explored is that of infinitely long continuous-action sequences. To our

knowledge, the only existing OP algorithm that does this is Lipschitzian planning (LP) (Hren, 2012, Chapter

5). LP iteratively splits the infinite-dimensional space into hyperboxes of increasing dimensionality, guided

by upper bounds on the return of all sequences within a hyperbox. To compute the bounds, LP requires

globally Lipschitz dynamics and rewards, with a known Lipschitz constant. However, the system may not

be Lipschitz, or even if it is, its smoothness will usually vary across the state-action space. In the latter case,

the Lipschitz constant will be conservative (too large) in smoother regions, leading to poor performance in

these regions.

We describe here a method that does not rely on the restrictive assumption of a known, global Lipschitz

constant. Simultaneous optimistic optimization (SOO) is exploited, an algorithm that only requires local

smoothness around an optimum, without knowing the Lipschitz constant or indeed even the metric (Munos,

2011). We develop a nontrivial extension of SOO to the optimization of return over infinitely long action

sequences, and call the resulting algorithm SOO for planning (SOOP). The idea is to select at every iteration

all hyperboxes that are potentially optimal for any metric – rather than the box with the largest upper bound

in the given metric, like LP. Then for each selected box, a choice is made on the dimension to split further,

guided by a tuning parameter (a parameter-free variant that expands all dimensions is also possible but is

computationally less efficient).

Compared to SOO, the main novelty introduced by SOOP is a relaxed selection procedure for potentially

optimal boxes. This is because (roughly speaking) SOO sorts all boxes by their diameter in the unknown

metric, which requires a global ordering over diameters – something that is impossible to define in the

planning problem. The relaxation we introduce works under a weaker assumption that only requires a

partial ordering of the diameters. Due to this difference and other particularities of planning, the analysis of

SOOP is currently open. However, we expect good performance on the basis of the analysis of SOO, which

guarantees convergence to an optimum at the most favorable rate given by any valid metric.

Note that HOOT and HOLOP also work in stochastic problems, whereas SOOP only works in determin-

istic ones.

An interesting connection can be identified between continuous-action planning and adaptive action dis-

cretization in global value-function methods (e.g. Pazis & Lagoudakis, 2009). There, the search is only

performed over the action space at the current step (rather than over infinite sequences); and the infinite-

horizon performance is represented by the global value function. A fundamental relationship also exists

with the field of exploration in reinforcement learning (Munos, 2012), where Lipschitz assumptions on the

value function are sometimes used (Pazis & Parr, 2013).

This material was first published in (Buşoniu et al., 2013). Compared to that paper, here the relationship

between SOO and SOOP is further clarified, additional experiments are performed for a resonating robot

arm, and the examples are discussed in more detail.

Next, Section 2 provides background about the planning problem, SOO, and LP, making some minor

improvements to LP along the way. Section 3 introduces SOOP, and Section 4 empirically compares it with

LP, with HOLOP, which is selected as a state-of-the-art finite-horizon method, and with OP for deterministic

systems (Hren & Munos, 2008), selected to provide a discrete-action baseline. Section 5 concludes the

paper.

2 Background

2.1 Problem setting

We consider discrete-time, deterministic optimal control problems with continuous state spaces X and

continuous action spaces U . The system state changes according to x′ = f(x, u), where f : X × U → X

1The acronyms stand for: hierarchical optimistic optimization applied to trees (HOOT), hierarchical open-loop optimistic planning

(HOLOP), and sequential planning (SP).

is the transition function, and the quality of transitions is measured by the bounded reward function r(x, u),
where r : X × U → R. All the algorithms we consider work locally for a given state of the system, so

throughout the development we focus on such a state. Denote this state by x0, after setting by convention

the current time to 0. Keeping in mind that the entire optimization problem depends on x0, for notation

simplicity we keep this dependence implicit in the sequel.

Define a sequence of K actions uK = (u0, u1, . . . , uK−1) ∈ UK , and u∞ ∈ U∞ an infinitely-long

action sequence. The space of solutions that our method will explore is U∞. The discounted value of a

sequence u∞ is:

v(u∞) =

∞
∑

k=0

γkr(xk, uk) (1)

where xk+1 = f(xk, uk), and γ ∈ (0, 1) is the discount factor. The optimal value is:

v∗ = sup
u∞

v(u∞) (2)

The truncated return of a sequence with finite length K is:

R(uK) =

K−1
∑

k=0

γkr(xk, uk) (3)

The following assumptions are imposed on the problem.

Assumption 1

(i) The action is scalar. (ii) The action space is U = [0, 1]. (iii) Rewards are bounded in the interval [0, 1].

Part (i) is for convenience only, as it allows us to introduce the derivations and the algorithm in a simple

fashion. Part (ii) allows any closed interval by translation and scaling, but noncompact action spaces are

forbidden. Part (iii) is not restrictive for problems that do not have terminal states2; in these problems the

rewards can be normalized to [0, 1] without changing the optimal solutions.

In the scalar case, U∞ can be visualized as an infinite dimensional hypercube on which each dimension

represents the action space at that step. The goal of continuous-action planning is to explore U∞ in such

a way that after a computational budget is exhausted, a near-optimal action sequence u is returned. The

method we develop explores U∞ by iteratively splitting it into hyperboxes (boxes, for short). Such a box

Ui ⊆ U∞ is the cross-product of a sequence of subspaces (µi
0, . . . , µ

i
Ki−1, U, U, . . .) where µi

k ⊆ U and

Ki − 1 is the deepest discretized dimension; for all further dimensions µi
k = U . Thus Ki is the number

of discretized dimensions, and might be seen as a “length” of Ui. A box is further explored by trisecting

either the subspace of an already discretized dimension, or the space U for the first undiscretized dimension,

Ki. Thus trisecting dimension k corresponds to discretizing the action at step k. In Figure 1 an example

exploration of U∞ is shown.

7

7

7

7

k = 0

k = 2

k = 1

Figure 1: Example partition of U∞ after 3 trisections. Dimensions 4 and higher are left out of the figure.

Define δi
k to be the size of subspace µi

k along a discretized dimension k in box Ui:

δi
k = max

u∈µi
k

|ui
k − u| for 0 ≤ k < Ki (4)

2Terminal states can be used to represent e.g. “goal achieved” and “failure” situations. Whatever the action applied in a terminal

state, the system cannot escape it and the reward is always zero.

JFPDA 2013

where ui
k is the action at the center of µi

k.

2.2 Optimistic optimization

SOOP is based on simultaneous optimistic optimization (SOO), while the closest related planning method,

LP, is based on deterministic optimistic optimization (DOO). Next, DOO and SOO are introduced, follow-

ing Munos (2011).

The problem is to maximize some function f : X → R, assumed locally Lipschitz around an optimum

x∗:3

f(x∗)− f(x) ≤ l(x, x∗) ∀x ∈ X (5)

where x∗ ∈ arg maxx∈X f(x) and l : X×X → [0,∞) is a semimetric (which for convenience incorporates

the Lipschitz constant). The optimization proceeds by hierarchically partitioning the domain X . This

partitioning is represented by a tree structure T in which each node (d, i) is labeled by a point xd,i and

represents a subset of X denoted Xd,i ∋ xd,i. Here, d ≥ 0 is the depth in the tree and i is the node index at

a given depth. The root of the tree represents the entire domain X , and the tree is defined so that the children

of a node form a partition of the set represented by their parent. The partitioning procedure must ensure,

roughly speaking, that the diameters of all sets at a certain depth are equal, and that the diameter sequence

∆(d) = supx∈Xd,i
l(xd,i, x),∀i is decreasing with the depth, e.g. exponentially.4 Furthermore, from a

computational perspective the partitioning should be easy to generate and set diameters easy to compute.

Figure 2 exemplifies such a partitioning. Finally, the set of leaves of the currently explored tree is denoted

by L.

x

x

x

x

x

Figure 2: Illustration of the tree structure that is used by optimistic optimization. In this example, X is an

interval and binary partitions are used.

DOO works by partitioning a set that may contain the optimum of f . It does this by assigning upper

bounds to all leaf sets Xd,i, (d, i) ∈ L:

b(Xd,i) = f(xd,i) + ∆(d) (6)

so that b(Xd,i) ≥ f(x), ∀x ∈ Xd,i. Then at each iteration, an optimistic leaf set, which maximizes the

upper bound, is further partitioned. At the end, the point with the largest value in the tree is returned. DOO

is summarized in Algorithm 1.

DOO assumes knowledge of l by using ∆(d) in the upper bounds. The alternative, SOO, does not require

this knowledge. Instead, at each round, SOO simultaneously expands all potentially optimal leaf sets: those

for which the upper bound could be largest under any semimetric l satisfying the conditions. With a little

thought, a set can only contain a largest upper bound if its sample value is at least as good as the values

of all sets with diameters larger than its own; we say that the set is not dominated by larger sets. Since

further, ∆(d) decreases with d, we only have to compare with leaves higher up the tree. At each iteration t,

3For the duration of Section 2.2 only, we reuse notations f , X , and x to mean the optimized function, function domain, and a point

in the domain.
4More precisely, the diameters at any depth d are only required to be upper-bounded by ∆(d) and lower-bounded by ν∆(d) where

ν is a constant. Nevertheless, since the idea is similar, here we explain things more simply by taking the diameters at d equal. Note

further that for the optimization to work well, the sets must also be well-shaped, which is formalized by requiring each set to include

a ball defined in the semimetric l and having a radius proportional to ∆(d).

Algorithm 1 Deterministic Optimistic Optimization

Input: function f , computation budget n, partitioning of X
1: initialize T with root X0,0

2: for t = 1 to n do

3: (d∗, i∗)← arg max(d,i)∈L b(Xd,i)
4: expand (d∗, i∗) (partition Xd∗,i∗), add children to T
5: end for

Output: x∗ = arg max(d,i)∈T f(xd,i)

the algorithm expands at most one leaf set at each depth. If we define L≤d as the set of leaf nodes having

depths d′ ≤ d, then a leaf (d, i) is only expanded if f(xd,i) = max(d′,i′)∈L≤d
f(xd′,i′); if there are several

such leaves one is chosen arbitrarily. This selection procedure is illustrated in Figure 3. SOO additionally

limits the tree depth at each iteration t with a function dmax(t), a parameter of the algorithm that controls

the tradeoff between deeper or more uniform exploration. A typical choice for dmax(t) is t1/a with a a

positive constant. Algorithm 2 summarizes SOO. Note that in the form given here, SOO may take more

than the budget n to finish the last iteration.5

x
x
x
x

x

x
x

x

x
x

x
x

x

x

x
x

x
x
x
x

f x()

Δ
d

Figure 3: Illustration of set selection in SOO. Depth d increases to the left, while set diameter ∆ increases

to the right. Samples are shown as ’x’, and the samples of sets selected for expansion are circled and colored

red.

Algorithm 2 Simultaneous Optimistic Optimization

Input: function f , depth function dmax(·), budget n, partitioning of X
1: initialize T with root X0,0; t← 1
2: while t ≤ n do

3: fmax ← −∞
4: for d = 0 to min(depth(T), dmax(t)) do

5: if no leaves at depth d, continue with the next depth end if

6: i∗ ← arg maxi s.t. (d,i)∈L f(xd,i)
7: if f(xd,i∗) ≥ fmax then

8: expand (d, i∗), add children to T
9: fmax ← f(xd,i∗)

10: t← t + 1
11: end if

12: end for

13: end while

Output: x∗ = arg max(d,i)∈T f(xd,i)

DOO and SOO have similar guarantees, converging to near-optimal solutions at rates depending on how

“peaky” the function is around the optimum in the semimetric l. Of course, SOO pays a price for not

knowing the semimetric by expanding several sets at each iteration. But not requiring the semimetric also

5This theoretical form of the algorithm may also be unsuitable in certain problems. Specifically, if after some number of expansions

t all the nodes at depth dmax(t + 1) have been expanded, then the algorithm cannot proceed further. To avoid this, dmax(n) can be

directly used instead of dmax(t), from the start of the algorithm, without changing its asymptotic properties.

JFPDA 2013

has a surprising advantage: SOO converges at the fastest rate allowed by any semimetric. The difficult issue

is, as the planning setting below will illustrate, to define the hierarchical partitioning in such a way that the

diameters nicely decrease in the unknown semimetric.

2.3 Lipschitzian planning

LP (Hren, 2012) applies DOO to optimize the return (1) over the space U∞ of infinite action sequences.

The form of LP we introduce makes some mild changes to the version of Hren (2012), which we point out

later. The dynamics f and rewards r are assumed to be Lipschitz with a known constant L:

‖f(x, u)− f(x′, u′)‖ ≤ L(‖x− x′‖+ |u− u′|)

|r(x, u)− r(x′, u′)| ≤ L(‖x− x′‖+ |u− u′|)
(7)

To apply DOO, first a semimetric l is needed. After some simple calculations that exploit the Lipschitz

property, the difference between the rewards obtained at step k by two sequences u∞,u′
∞ is bounded as

follows:

|r(xk, uk)− r(x′
k, u′

k)| ≤

k
∑

j=0

Lk−j+1|uj − u′
j |

Using this, we construct the semimetric as the following upper bound on the difference between the returns

of the sequences:

l(u∞,u′
∞) =

∞
∑

k=0

γk min{1,

k
∑

j=0

Lk−j+1|uj − u′
j |} (8)

where the reward difference bounds are additionally capped by 1 (recall that the rewards are bounded in

[0, 1]).
The partitioning scheme is trisection-based, as explained in Section 2.1. Since the samples are infinite

action sequences, the algorithm never has access to a complete sample or its value (the infinite-horizon

return). Fortunately this is not a problem, because the metric l can still be used to provide an upper bound

on the returns of sequences in a box discretized only up to some finite dimension Ki − 1:

b(Ui) =

Ki−1
∑

k=0

γk min{1, ri
k +

k
∑

j=0

Lk−j+1δi
j}+

γKi

1− γ
(9)

where ri
k is the reward obtained at step k by applying the (finite) sequence u

i
Ki

at the center of the box,

and δi
k are the subspace sizes. Each term of the outer sum bounds the reward attainable at step k by any

sequence in the box, while the fraction covers the reward attainable from step Ki onwards. The difference

b(Ui)−R(ui
Ki

), see (3), can be informally thought of as the diameter of Ui .

LP works by following the principle of DOO: at each iteration, it selects an optimistic box Ui∗ that has

the largest upper bound b(Ui), and further refines this box by trisecting one of its dimensions. To complete

the algorithm, we only have to specify the dimension selection procedure. Each dimension k < Ki∗ in turn

is assumed trisected, and the upper bound for the resulting middle box is computed, which will be smaller

due to the reduced subspace size δi∗

k /3. To rank the first undiscretized dimension Ki∗ , the center reward is

assumed to be 0, and the subspace size will be 0.5/3. Finally, the selected dimension is one that reduces

the bound the most.

Once an imposed budget n of calls to the model (f, r) has been depleted, the algorithm returns a center

sequence with the largest return among all the boxes.

The original LP variant of Hren (2012) is different in the following ways. (i) The semimetric (8) and

upper bound (9) are changed to cap individual reward bounds to 1 only after reaching the last k for which

the reward bound is smaller than 1 (denote it by K ′); thus (8) and (9) are tighter. (ii) If K ′ < Ki∗ − 1
for the optimistic box, only dimensions up to K ′ are considered for trisection, whereas we still consider

all dimensions including Ki∗ . This avoids some pathological behavior such as when the first-step rewards

r0 are always 1, in which case the original LP would keep refining the first action dimension without ever

going deeper. Finally, (iii) when a dimension k < Ki∗ − 1 is trisected, we compute all the rewards up to

Ki∗ − 1 for the left and right center action sequences, whereas original LP only computes the kth rewards.

This allows a fair comparison with SOOP, which trisects in the same way. It may either increase or decrease

performance with respect to the original LP (increase because the initial upper bounds of the left and right

boxes are tighter, decrease because more model calls are spent).

3 SOOP

Determining the Lipschitz L constant is hard, and, in fact, it must usually be treated as a tuning parameter of

LP. Even so, f or r may simply not be Lipschitz. If they are, a global Lipschitz constant may underestimate

their smoothness in large parts of the domain, leading to inefficient partitioning. Conversely, overestimating

the smoothness (taking L too small) is dangerous because the upper bounds become invalid and the DOO

guarantees are lost.

Therefore, we now propose an optimistic planning method that does not require a Lipschitz constant or

knowing the semimetric, by exploiting the principles of SOO. Since the trisection scheme of LP is also

used, many of the building blocks for the new method are already available. We still have to introduce the

crucial insight that connects the pieces together into the overall, novel algorithm. We call this algorithm

SOOP (Simultaneous Optimistic Optimization for Planning).

3.1 Potentially optimal boxes. Generic SOOP algorithm

The main step in SOO is selecting potentially optimal sets. This is ideally done by sorting the sets by their

diameters, and then only selecting sets with values undominated by the values of larger-diameter sets. Note

that the diameters themselves need not be known, only their ordering; in Algorithm 2, because diameter

decreases with increasing depth, the depth d acts as a proxy for the ordering. Moreover, recall from Section

2.2 that the relationship of the set diameters can be made weaker, by only requiring them, at every depth d, to

be upper bounded by ∆(d) and lower bounded by ν∆(d). Nevertheless, up to this proportionality constant,

any two sets on the tree must be comparable – or in other words, a total ordering between diameters must

be known. Unfortunately, such a total ordering is very difficult to define for the planning problem.

As a sidenote, one could easily define a total ordering with respect to a “naive” metric that only depends

on the actions, such as lu(u∞,u′
∞) =

∑∞
k=0 γk|uk − u′

k| (in fact, then the diameters would be readily

available and DOO could be applied). However, a useful semimetric must be defined in terms of the

returns, like the Lipschitz semimetric (8), and the relation between diameters in such a semimetric versus

an action-only metric like lu is unknown.

To address these difficulties, we relax the SOO set selection procedure to only require a weaker, more

easily found partial ordering.

First, because depth no longer translates into a diameter ranking, we stop looking at the sets as being

organized into a tree. Instead, the algorithm just works with a collection of sets (boxes in the planning

context), which does not affect its validity. We define a notion of partial ordering on these boxes, and

impose an assumption. For any box Ui, denote by sk
i ≥ 0 the number of times the box has been trisected

along dimension k.

Definition 2

A box Uj is said to be partially greater than Ui, denoted Uj � Ui, iff ∀k ≥ 0, sk
j ≤ sk

i .

Assumption 3

If Uj � Ui, then diameters ∆(Uj) ≥ ∆(Ui), where ∆(U) = sup
u∞,u′

∞∈U l(u∞,u′
∞) is the box diameter

in the unknown semimetric l.

We expect that many useful semimetrics will satisfy Assumption 3. For instance, it can be shown that

the Lipschitz semimetric (8) satisfies it. Under Assumption 3, we modify the box selection procedure as

follows: a box Ui is potentially optimal and will be expanded if it is undominated by any Uj � Ui; that

is, if for all Uj � Ui, R(ui
Ki

) ≥ R(uj
Kj

). So, Ui will be compared only with some of the boxes with

larger diameters: those that are partially greater than it. It will still be expanded if it is dominated by some

larger box that is not partially greater. Thus the new criterion is safe (all boxes that should be expanded

are indeed expanded) but conservative (some boxes that ideally should not be expanded perhaps will be).

Conservativeness implies the algorithm requires more samples than an ideal application of SOO.

The final step is specifying how to select the dimension (action step) for trisection. Ideally, the dimension

that leads to the largest decrease of the diameter in l should be trisected, but of course finding this decrease

is not possible since l is unknown. We leave this procedure open in the general method, summarized as

Algorithm 3, and discuss alternatives below. Note that the algorithm may take more than n transitions to

complete the last iteration (expand the last batch of potentially optimal boxes).

JFPDA 2013

Algorithm 3 SOO for Planning

Input: state x0, model (f, r), budget of model calls n
1: initialize collection of boxes with U1 = U∞

2: repeat

3: select potentially optimal boxes:

I∗ = {i | ∀ j s.t. Uj � Ui, R(ui
Ki

) ≥ R(uj
Kj

)}
4: for i ∈ I∗ do

5: select dimensions κ ⊆ {0,Ki} to trisect

6: for k ∈ κ do

7: trisect dimension k,

add resulting boxes to the collection

8: end for

9: remove parent Ui from the collection

10: end for

11: until budget n has been depleted

Output: best sequence found u
i∗

Ki∗
, i∗ ∈ arg maxi R(uKi

i)

3.2 Dimension selection

Several alternatives for dimension selection are possible. (i) The simplest is to just trisect all dimensions

{0,Ki}. This is safe, but costly in terms of model calls and computation.

Otherwise, one can conjecture that due to the discounting, which makes earlier actions more important,

these actions should be discretized more finely. Thus a second alternative is to (ii) trisect those dimensions

for which the resulting boxes are discretized more finely for smaller k, formally: si
k ≥ si

k+1 ∀k ≥ 0. Then

by induction, all boxes created by the algorithm satisfy the property. (iii) With the same conjecture, an even

less costly heuristic may be derived that only selects one dimension. This is done by ranking dimensions

with a new discount factor α ∈ (0, 1):

κ = min{arg max
k∈{0,Ki}

αk(1/3)sk
i } (10)

breaking ties in favor of smaller k. The tuning parameter α trades off discretization accuracy and planning

depth: small values will lead to finer discretizations close to the root, while with a larger value larger

planning horizons are reached. In this sense, α is similar to the depth function dmax in SOO. With this

criterion as well, all boxes produced are discretized more finely for smaller k.

Since in preliminary experiments trisecting many dimensions greatly increased computational costs with-

out large performance benefits, we use (iii) in the sequel.

To extend the algorithm to multiple action variables, the partial ordering and the dimension selection must

be changed. Denoting the action variable index by m, the partial ordering can be changed by requiring

that all variables m at every step k are split at most as many times in Uj as in Ui. Dimension selection

can be performed by extending (10) to compare also between the variables at each k. So, a pair (k,m)
that maximizes the discounted size would be selected, breaking ties in favor of smaller values of k and

arbitrarily among m.

3.3 Computational requirements of trisection

Finally, we discuss the amount of model calls required for trisections. Trisecting a box U of depth K along

dimension k requires 3 model calls when k = K, and 2(K−k) if k < K. This is because in the former case

all three new boxes inherit the entire center sequence uK of U , with the associated rewards, and must only

simulate the next action (step K). When k < K, the center box retains again the complete information,

whereas the left and right boxes only inherit the subsequence and rewards up to k − 1, and the tails from k
to K − 1 must be simulated.

4 Experiments

To determine the practical effectiveness of SOOP, it will be tested on four problems, in which it will be

compared with three other state-of-the-art OP algorithms.

The first algorithm is OP for deterministic systems (OPD) (Hren & Munos, 2008), which serves as a

discrete-action baseline. OPD applies DOO to search the space of infinite sequences of M discrete actions.

The metric is l(u∞,u′
∞) = γk(u∞,u′

∞)/(1−γ), where k(u∞,u′
∞) is the first step where the two sequences

are different. The hierarchical partition splits at each depth d the considered box along dimension k = d,

into M subboxes: one for each discrete action. So, for OPD the depth in the tree is equal to the time step.

The other two algorithms support continuous actions: they are LP, the closest relative of SOOP, already

described in Section 2.3; and HOLOP (Weinstein & Littman, 2012). HOLOP solves an optimization prob-

lem over K-step action sequences, using the optimization algorithm HOO (Bubeck et al., 2009), a stochastic

extension of DOO. HOLOP is selected as a representative of the class of finite-horizon planning algorithms,

which also includes HOOT (Mansley et al., 2011) and SP (Hren, 2012). HOOT and SP heuristically op-

timize for each k the return obtained over subsequent steps, using a solver that assumes a time-invariant

problem (HOO and SOO, respectively). However, the optimization problem at k varies in time, depending

on the returns obtained by at instances k + 1 and larger. In contrast, the optimization problem solved by

HOLOP is well-defined.

For each problem, the algorithms are executed for several values of the budget n of model calls. Like for

SOOP above, the algorithms are not stopped mid-iteration, so they may take more than n calls to complete.

For each value of n, the other algorithm parameters are optimized over a grid, and the best performance

is reported. The parameters are: for SOOP, the discount factor α for dimension selection; for OPD, the

number of discrete actions M (for every M , a uniform grid of actions is generated, covering the whole

action space); for LP, the Lipschitz constant L; and for HOLOP, the horizon K. Since HOLOP generates

solutions randomly, it is run 10 times for each experiment and a 95% confidence interval on the mean

performance is computed. The best experiment is the one with the largest upper confidence bound.

4.1 DC motor

The first problem concerns a DC motor with states: shaft angle x1 ∈ [−π, π] rad, angular velocity x2 ∈
[−15π, 15π] rad/s, and action: voltage u ∈ [−10, 10] V. The dynamics are linear:

f(x, u) = Ax + Bu, A ≈

[

1 0.0095
0 0.9100

]

, B ≈

[

0.0084
1.6618

]

The sampling time is Ts = 0.01 s. The goal is stabilizing both states at zero, and is described by the

unnormalized reward function:

r̃(x, u, x′) = −xT Qx− uT Ru, Q = diag(1, 0.001), R = 0.05 (11)

with discount factor γ = 0.95. Using the known variable bounds, the reward is normalized (scaled and

translated) into [0, 1], and for the sake of applying the continuous-action algorithms, the same is done for

the action.

This first problem is chosen because it is simple and can be solved with short planning horizons. Never-

theless, continuous (or finely discretized) actions are necessary for good performance, due to the quadratic

action penalty. The four planning algorithms are applied in receding horizon, from the initial state [−π, 0]T

and for a duration of 1 s (100 steps). Table 1 shows the parameters of the algorithms, where each row

corresponds to an algorithm, and each column to a budget value n. The header column shows all values

attempted for the algorithm’s parameter (these are the same for all other problems, as well, so they will not

be shown again), while the other columns show the best value for the corresponding n. Figure 4.1 shows

the best returns obtained.

SOOP is clearly better than OPD, as expected from the fact that coarse actions are not sufficient. An

interesting observation is that despite this, discretizing finely is not worth the additional price paid in terms

of model calls in OPD (since a larger tree must be explored), not even for larger budgets. Only for n = 5000
do we get better performance by taking M = 5 discrete actions.

SOOP and LP are performing similarly: LP is better for small budgets, while SOOP overtakes it for larger

ones. Apparently, a global Lipschitz assumption works in this problem, which is not surprising due to its

JFPDA 2013

Table 1: Algorithm parameters for the DC motor, with all attempted values as well as the best values for

each n.
n = 100 n = 500 n = 1000 n = 2500 n = 5000

SOOP, α ∈ {0.1, 0.2, . . . , 0.9} 0.8 0.7 0.8 0.7 0.7

OPD, M ∈ {3, 5, . . . , 15} 3 3 3 3 5

LP, L ∈ {0.1, 0.2, . . . , 1.5} 0.9 0.6 0.6 0.7 0.5

HOLOP, K ∈ {5, 10, . . . , 30, 40, 50, 75, 100} 5 5 5 5 5

0 1000 2000 3000 4000 5000
14.5

15

15.5

16

16.5

n

re
tu

rn

SOOP, return

OPD, return

LP, return

HOLOP, mean return

Figure 4: Performance for the DC motor. For HOLOP, the mean performance with its 95% confidence

interval is shown.

simplicity. HOLOP is doing worse than all others, and looking at controlled trajectories (not shown here)

this is due to very coarse actions which are not able to stabilize the system. Thus, for the budgets considered

here, HOLOP cannot sufficiently refine the solution.

4.2 Inverted pendulum swingup

m

motor

α

Figure 5: Inverted pendulum schematic.

The second problem is swinging up and stabilizing an underactuated inverted pendulum rotating in a

vertical plane, see Figure 5. Due to limited power, from certain states (e.g., pointing down) the pendulum

needs to be swung back and forth to gather energy, prior to being pushed up and stabilized. The first state

x1 = α is the angle and wraps around in the interval [−π, π) rad; the second state is the angular velocity

x2 = α̇ ∈ [−15π, 15π] rad/s. The action u ∈ [−3, 3] V is the motor voltage. The continuous-time dynamics

of the pendulum are:

α̈ = 1/J · [mgl sin(α)− bα̇−K2α̇/R + Ku/R]

where J = 1.91 · 10−4 kgm2, m = 0.055 kg, g = 9.81 m/s2, l = 0.042 m, b = 3 · 10−6 Nms/rad, K =
0.0536 Nm/A, R = 9.5 Ω. These dynamics are discretized in time with a sampling interval Ts = 0.05 s,

using numerical integration. The goal of stabilizing the pendulum pointing up is expressed by quadratic

rewards of the form (11) with Q = diag(1, 0), R = 0.3, and the discount factor is γ = 0.95. Like before,

rewards and actions are normalized into [0, 1].
While it is a standard benchmark in control and dynamic programming, this problem nevertheless supplies

an interesting challenge to planning algorithms: the solution must be planned over a longer horizon, and

solutions that seem good over a short horizon will not work, instead just pushing the pendulum in one

direction. Furthermore, continuous actions are necessary, firstly due to the action penalty, and secondly to

properly stabilize the pendulum in the unstable, pointing-up position. The planning algorithms are applied

from an initially pointing down position, x = [−π, 0]T , for a duration of 5 s (100 steps). Figure 6 shows

the algorithm parameters on the left, and a graph with the best returns on the right.

n = 500 1000 5000 10000 15000

SOOP, α = 0.9 0.8 0.7 0.7 0.7

OPD, M = 3 3 3 3 5

LP, L = 0.1 0.2 0.1 0.1 0.7

HOLOP, K = 10 10 10 10 10

0 5000 10000 15000
11

12

13

14

15

n

re
tu

rn

SOOP, return

OPD, return

LP, return

HOLOP, mean return

Figure 6: Inverted pendulum: parameter values (left) and performance (right).

0 1 2 3 4 5
−5

0

5

α
 [

ra
d

]

0 1 2 3 4 5
−10

0

10

20

α
’
[r

a
d

/s
]

0 1 2 3 4 5
−5

0

5

u
 [

V
]

0 1 2 3 4 5
0

0.5

1

r
[−

]

t [s]

0 1 2 3 4 5
−5

0

5
α

 [
ra

d
]

0 1 2 3 4 5
−20

0

20

α
’
[r

a
d

/s
]

0 1 2 3 4 5
−2

0

2

u
 [

V
]

0 1 2 3 4 5
0

0.5

1

r
[−

]

t [s]

Figure 7: Swing-ups of the inverted pendulum with SOOP and LP, for n = 5000 and optimized parameters.

The relationships between SOOP, OPD, and HOLOP mirror those in the DC motor problem. However,

LP now ranks as poorly as HOLOP. Figure 7 shows representative controlled trajectories with SOOP and

LP. LP applies very coarse actions, while SOOP uses fine discretization to behave near-optimally.6 The

reason is found in the small values of L: LP prefers to search longer-horizon solutions rather than discretize

finely. Unfortunately, even for this coarse discretization it does not manage a good swing-up. While the

reasons are not entirely clear, one hypothesis is that unlike for the DC motor, in the swing-up problem the

Lipschitz constant varies, with the system behaving differently around equilibria than around the critical

swing-up points; and that LP cannot deal with that.

Regarding α in SOOP, for tight budgets larger values are preferred, which means a longer horizon is

sought at the expense of discretization; as more samples become available and a sufficient horizon is en-

sured, the balance shifts back towards discretization. This behavior is intuitive, since for too short horizons

a good swing-up cannot be achieved, and fine actions become irrelevant. Figure 4.2 provides a more de-

tailed view of this relationship, and also illustrates the sensitivity of the performance to α. For large enough

budgets, the performance is stable for values of α around 0.7 (which are intermediate, considering the expo-

nential way α influences dimension selection). Based on this insight as well as results in other experiments,

6This is determined by comparing with near-optimal solutions found with dynamic programming, which is possible in this low-

dimensional problem.

JFPDA 2013

we suggest a default value of α around 0.7, which should be increased if the budget is small and large

planning horizons are required.

0 0.2 0.4 0.6 0.8 1
5

10

15

α

re
tu

rn

n=500, return

n=5000, return

n=15000, return

Figure 8: The influence of α on the return for the inverted pendulum, for some representative values of n.

Finally, we look at the computational cost of the algorithms, see Figure 4.2. The algorithms have similar

computational costs, with HOLOP being the fastest and LP the slowest overall. (We also notice that, in our

Matlab implementation, the algorithms are not yet ready for real-time control.)

0 5000 10000 15000
10

1

10
2

10
3

10
4

n

e
x
e
c
.
ti
m

e
 [
s
]

SOOP, exec. time

OPD, exec. time

LP, exec. time

HOLOP, mean exec. time

Figure 9: Execution time for the inverted pendulum, for optimized parameters.

4.3 Resonating arm

The resonating arm is a highly nonlinear system with two states and one action, designed to perform pick-

and-place tasks in an energy-efficient manner, see Figure 10, top. It is able to do so because of its nonlinear

construction, consisting of a large pulley and a small pulley connected by a belt and a spring; the latter

can store and release energy during the arm’s operation. Here the arm operates in an inclined plane, see

(Daniels, 2012), Chapter 4 for details on the model and task.

Figure 10, bottom shows the best parameters and the corresponding returns obtained by the planning

algorithms. From these results it appears that short planning horizons are sufficient here (α and K small,

L large) so that OPD affords to finely discretize the actions (M large) while still finding a good solution

within the budget. Note that in problems where discrete actions do well, SOOP cannot be expected to

outperform OPD, mainly because OPD searches the smaller space of discrete-action sequences, which still

contains a good solution. Nevertheless, here SOOP still manages to find a good solution in the larger,

continuous-action space, obtaining similar performance to OPD, and still overperforming LP and HOLOP,

which apparently search the larger space less efficiently.

Note that the performance of a planning algorithm may not increase monotonically with n. This is true in

general, but is most visible in this problem among our benchmarks. Such an effect may arise e.g. because as

the planning horizon grows, the algorithm can depart from, and then return to, a near-optimal action choice

(problems where this happens can easily be constructed).

motor

x

y

n = 500 1000 5000

SOOP, α = 0.2 0.2 0.7

OPD, M = 9 15 15

LP, L = 1.4 1.5 1.2

HOLOP, K = 5 5 5

0 1000 2000 3000 4000 5000
9.5

10

10.5

11

11.5

n

re

tu
rn

SOOP, return

OPD, return

LP, return

HOLOP, mean return

Figure 10: Resonating arm: schematic (top), parameter values (bottom-left) and performance (bottom-

right).

4.4 Two-link robot arm

Finally, we consider a two-link robot arm actuated only in the middle joint, which has 4 states (angles

θ1, θ2 of the joints plus their angular velocities) and 1 action u (motor torque). It can also be seen as a

horizontally-oriented acrobot. The model equations are found in (Buşoniu et al., 2010), Section 4.5.2. The

link lengths are 0.15 and 0.25 m, both masses are 1 kg and concentrated at the ends of the links, and there

is neither inertia nor friction. The task is stabilization to zero starting with both links at rest at angle −π,

and the reward is quadratic with Q = diag(1, 0, 1, 0) and no action penalty. Figure 11 shows that OPD and

discrete actions do well also in this problem, with SOOP trailing closely behind and doing better than LP

and HOLOP.

m1

l2

l1

motor

n = 500 1000 5000

SOOP, α = 0.5 0.6 0.5

OPD, M = 5 7 7

LP, L = 0.1 0.9 1.1

HOLOP, K = 5 5 5

0 1000 2000 3000 4000 5000
36

37

38

39

n

re
tu

rn

SOOP, return

OPD, return

LP, return

HOLOP, mean return

Figure 11: Two-link robot arm: schematic (top), parameter values (bottom-left), and performance (bottom-

right).

JFPDA 2013

5 Conclusions

We introduced SOO for Planning, a novel planning algorithm for deterministic, continuous-action Markov

decision processes. In extensive experiments, SOOP consistently ranked among the best algorithms, fully

dominating competing methods when the problem requires both long horizons and fine discretization. In

problems where discrete actions do well, discrete-action planning starts at an advantage; nevertheless, in

our example that had this property, SOOP could still be applied with minimal loss of performance, unlike

its continuous-actions competitors.

The main open issue to address in future work is analyzing the performance of SOOP as a function of

the budget n of model calls, which should build on the analysis of SOO (Munos, 2011). In addition, more

experiments are required to better understand the effect of the various dimension selection criteria.

Acknowledgement: This work was supported by a grant of the Romanian National Authority for Scientific Research,

CNCS-UEFISCDI, project number PNII-RU-TE-2012-3-0040, contract number 58/30.04.2013.

References

BERTSEKAS D. P. (2007). Dynamic Programming and Optimal Control, volume 2. Athena Scientific, 3rd

edition.

BUBECK S. & MUNOS R. (2010). Open loop optimistic planning. In Proceedings 23rd Annual Conference

on Learning Theory (COLT-10), p. 477–489, Haifa, Israel.

BUBECK S., MUNOS R., STOLTZ G. & SZEPESVÁRI C. (2009). Online optimization in X-armed bandits.

In D. KOLLER, D. SCHUURMANS, Y. BENGIO & L. BOTTOU, Eds., Advances in Neural Information

Processing Systems 21, p. 201–208. MIT Press.

BUŞONIU L., BABUŠKA R., DE SCHUTTER B. & ERNST D. (2010). Reinforcement Learning and Dy-

namic Programming Using Function Approximators. Automation and Control Engineering. Taylor &

Francis CRC Press.

BUŞONIU L., DANIELS A., MUNOS R. & BABUŠKA R. (2013). Optimistic planning for continuous–action

deterministic systems. In 2013 IEEE International Symposium on Adaptive Dynamic Programming and

Reinforcement Learning (ADPRL-13), Singapore.

BUŞONIU L. & MUNOS R. (2012). Optimistic planning for Markov decision processes. In Proceedings

15th International Conference on Artificial Intelligence and Statistics (AISTATS-12), volume 22 of JMLR

Workshop and Conference Proceedings, p. 182–189, La Palma, Canary Islands, Spain.

DANIELS A. (2012). Optimistic planning and learning for control. Master’s thesis, Delft University of

Technology.

HREN J.-F. (2012). Planification Optimiste pour Systèmes Déterministes. PhD thesis, Lille 1 University -

Science and Technology.

HREN J.-F. & MUNOS R. (2008). Optimistic planning of deterministic systems. In Proceedings 8th

European Workshop on Reinforcement Learning (EWRL-08), p. 151–164, Villeneuve d’Ascq, France.

KEARNS M. J., MANSOUR Y. & NG A. Y. (2002). A sparse sampling algorithm for near-optimal planning

in large Markov decision processes. Machine Learning, 49(2-3), 193–208.

KOCSIS L. & SZEPESVÁRI C. (2006). Bandit based Monte-Carlo planning. In Proceedings 17th European

Conference on Machine Learning (ECML-06), p. 282–293, Berlin, Germany.

LA VALLE S. M. (2006). Planning Algorithms. Cambridge University Press.

LIKHACHEV M., GORDON G. J. & THRUN S. (2004). Planning for Markov decision processes with sparse

stochasticity. In Advances in Neural Information Processing Systems 17. MIT Press.

MANSLEY C., WEINSTEIN A. & LITTMAN M. L. (2011). Sample-based planning for continuous action

Markov decision processes. In Proceedings 21st International Conference on Automated Planning and

Scheduling, p. 335–338, Freiburg, Germany.

MUNOS R. (2011). Optimistic optimization of a deterministic function without the knowledge of its

smoothness. In J. SHAWE-TAYLOR, R. S. ZEMEL, P. L. BARTLETT, F. C. N. PEREIRA & K. Q.

WEINBERGER, Eds., Advances in Neural Information Processing Systems 24, p. 783–791.

MUNOS R. (2012). The optimistic principle applied to games, optimization and planning: Towards foun-

dations of Monte-Carlo tree search. Foundations and Trends in Machine Learning. Submitted.

NILSSON N. J. (1980). Principles of Artificial Intelligence. Tioga Publishing.

PAZIS J. & LAGOUDAKIS M. (2009). Binary action search for learning continuous-action control poli-

cies. In Proceedings of the 26th International Conference on Machine Learning (ICML-09), p. 793–800,

Montreal, Canada.

PAZIS J. & PARR R. (2013). PAC optimal exploration in continuous space Markov decision processes. In

Proceedings 27th AAAI Conference on Artificial Intelligence (AAAI-13), Bellevue, Washington, US.

PÉRET L. & GARCIA F. (2010). Online resolution techniques. In O. SIGAUD & O. BUFFET, Eds., Markov

Decision Processes in Artificial Intelligence, chapter 6, p. 153–183. Wiley.

POWELL W. B. (2012). Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley,

2 edition.

SZEPESVÁRI CS. (2010). Algorithms for Reinforcement Learning. Morgan & Claypool Publishers.

WALSH T. J., GOSCHIN S. & LITTMAN M. L. (2010). Integrating sample-based planning and model-

based reinforcement learning. In Proceedings 24th AAAI Conference on Artificial Intelligence (AAAI-10),

Atlanta, US.

WEINSTEIN A. & LITTMAN M. L. (2012). Bandit-based planning and learning in continuous-action

Markov decision processes. In Proceedings 22nd International Conference on Automated Planning and

Scheduling (ICAPS-12), São Paulo, Brazil.

