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Abstract—We propose two new actor–critic algorithms for re-
inforcement learning. Both algorithms use local linear regression
(LLR) to learn approximations of the functions involved. A cru-
cial feature of the algorithms is that they also learn a process
model, and this, in combination with LLR, provides an efficient
policy update for faster learning. The first algorithm uses a novel
model-based update rule for the actor parameters. The second
algorithm does not use an explicit actor but learns a reference
model which represents a desired behavior, from which desired
control actions can be calculated using the inverse of the learned
process model. The two novel methods and a standard actor–critic
algorithm are applied to the pendulum swing-up problem, in
which the novel methods achieve faster learning than the standard
algorithm.

Index Terms—Actor–critic, inverse model, local linear re-
gression (LLR), machine learning algorithms, reinforcement
learning (RL).

I. INTRODUCTION AND RELATED WORK

MANY processes in industry can potentially benefit from
control algorithms that learn to optimize a certain cost

function. Reinforcement learning (RL) is such a learning
method, based on ideas from animal learning psychology. The
user sets a certain goal by specifying a suitable reward function
for the RL controller, and the RL controller then learns to
maximize the cumulative reward received over time (the value
function) in order to reach that goal. However, the controller
typically starts learning without any knowledge and has to
improve through trial and error. Because of this, the process
goes through a long period of unpredictable and potentially
damaging behavior. This is usually unacceptable in industry,
particularly if a near-optimal controller is already available. The
long period of trial and error learning must be considerably
reduced for RL controllers to become useful in practice.
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In this paper, we introduce two novel algorithms that em-
ploy an efficient policy update which increases the learning
speed considerably compared to standard actor–critic methods.
Actor–critic techniques are a class of RL methods which learn
a critic function and a separate actor function. The critic is
the value function approximator, and the actor is the policy
approximator.

The first novel algorithm learns a process model and employs
it to update the actor. However, instead of using the process
model to generate simulated experiences as most model learn-
ing RL algorithms do [1]–[3], it uses the model to directly cal-
culate an accurate policy gradient, which accelerates learning
compared to other policy gradient methods.

The second novel algorithm learns not only a process model
but also a reference model which represents desired behavior
by mapping states to subsequent desired states. The reference
model and inverse process model are then coupled to serve as
an overall actor, which is used to calculate new inputs to the
system.

The novel algorithms introduced here use local linear regres-
sion (LLR) to approximate the actor, critic, process model, and
reference model. Memory-based learning methods have suc-
cessfully been applied to RL before, mostly as an approximator
for the value function [4], [5] and, in some cases, also for the
process model [6], [7]. Although not exploited in this paper,
one benefit of the memory-based function approximators is that
they can easily be initialized with samples of prior knowledge.
For example, the reference model memory could be initialized
with samples of desired closed-loop behavior.

The second algorithm is similar to “learning from relevant
trajectories” [8], in which LLR is used to learn the process
model of a robotic arm holding a pendulum which is then
employed to control the arm along a demonstrated trajectory
that effectively swings up the pendulum. The main difference is
that we do not make use of a demonstrated trajectory but use a
reference model which is learned and updated online. The use
of LLR and a reference model are the essential factors in the
new algorithms that speed up the learning.

II. REINFORCEMENT LEARNING

The RL problem can be described as a Markov decision
process (MDP). In this paper, we use RL in a deterministic
setting, and hence, we will introduce the deterministic MDP
description. The MDP is defined by the tuple M(X,U, f, ρ),
where X is the state space, U is the action space, f : X × U �→
X is the state transition function, and ρ : X × U �→ R is the
reward function.



The process to be controlled is described by the state transi-
tion function f : X × U �→ X , which returns the state xk that
the process reaches from state xk−1 after applying action uk−1.
After each transition, the controller receives a scalar reward
rk ∈ R, given by the reward function rk = ρ(xk−1, uk−1). The
actions are chosen according to the policy π : X �→ U . The goal
in RL is then to find a policy, such that a discounted sum of
future rewards is maximized. This sum (also called the return)
is stored in a value function V π : X �→ R, which is defined as

V π(x) =
∞∑

j=0

γjrk+j+1 with xk = x (1)

where γ ∈ [0, 1) is the discount factor.
This function satisfies the Bellman equation [9]

V π(x) = ρ (x, π(x)) + γV π(x′) (2)

where x′ is given by the state transition function while using
the policy π, i.e., x′ = f(x, π(x)). The Bellman equation is the
basis upon which RL can improve the policy π.

In continuous (or infinite discrete) state and action spaces, it
is necessary to approximate the exact value function V π and the
exact policy π with function approximators.

III. ACTOR–CRITIC RL

Actor–critic techniques were introduced in [10] and have
been investigated often since then (see, e.g., [11]–[20]). The
actor–critic method is characterized by learning separate func-
tions for the actor (the policy π) and the critic (the value
function V π). Actor–critic methods belong to the class of policy
gradient methods. In these methods, the policy is represented
by a differentiable parameterization, and gradient updates are
performed to find the parameters that lead to (locally) maximal
returns [21]. The critic takes the role of the value function and
evaluates the performance of the actor, hereby helping with the
estimation of the gradient to use for the actor’s updates. The use
of gradient-based policy updates makes actor–critic techniques
suitable for continuous action spaces [22].

In this paper, a temporal-difference-based actor–critic
method serves as a baseline to compare our new method to. We
will refer to this baseline as the standard actor–critic (S-AC)
algorithm. Denoting the approximate value function parameter-
ized by the vector θ with V (x, θ), the temporal difference error
is defined as [9]

δk = rk + γV (xk, θk−1) − V (xk−1, θk−1). (3)

This is the difference between the right-hand and left-hand
sides of the Bellman equation (2). The goal is to make the
approximation of the critic satisfy the Bellman equation. By
using the temporal difference, the gradient-descent update rule
for the critic parameter vector θ is

θk = θk−1 + αcδk
∂V (x, θ)

∂θ

∣∣∣∣ x=xk−1
θ=θk−1

(4)

where αc > 0 is the learning rate of the critic. This
parameter update adapts the approximate value function such

Fig. 1. Block diagram of the S-AC algorithm.

that the error between the approximated and real values at the
state considered is minimized.

Using (4) to update the critic results in a one-step backup,
whereas the reward received is often the result of a series of
steps. Eligibility traces offer a better way of assigning credit
to states visited several steps earlier. The eligibility trace for a
certain state x at time instant k is denoted1 with ek(x)

ek(x) =
{

1, if x = xk

λγek−1(x), otherwise.

It decays with time by a factor λγ, with λ ∈ [0, 1) being the
trace decay rate. This makes more recently visited states more
eligible for receiving credit. All states along the trajectory now
influence the update of θ with the following equation:

θk = θk−1 + αcδk

∑
xv∈Xv

∂V (x, θ)
∂θ

∣∣∣∣
x=xv

θ=θk−1

ek(xv) (5)

where Xv denotes the set of states visited during the cur-
rent trial. The use of eligibility traces speeds up the learning
considerably.

The approximate policy is parameterized by ϑ with π(x, ϑ)
and indicates the action to take in a state x. RL requires the
use of exploration to keep trying new, possibly better, actions
in the states encountered. With exploration, the control action
uk is different from the action indicated by the policy. This can
be achieved by perturbing the action with a zero-mean random
exploration term ∆uk

uk = π(xk, ϑk−1) + ∆uk.

When the exploration ∆uk leads to a positive temporal dif-
ference, the policy is adjusted toward this perturbed action.
Conversely, when δk is negative, the policy is adjusted away
from this perturbation. This leads to the following update rule
for the actor:

ϑk = ϑk−1 + αaδk∆uk−1
∂π(x, ϑ)

∂ϑ

∣∣∣∣ x=xk−1
ϑ=ϑk−1

(6)

where αa > 0 is the learning rate of the actor. The temporal
difference is interpreted as a correction of the predicted per-
formance; if the temporal difference is positive, the obtained
performance is considered better than the predicted one.

Fig. 1 describes how different entities interact within the
S-AC algorithm. The full implementation of the S-AC algo-
rithm is shown in Algorithm 1.

1Note the slight abuse of notation here. If the state space X is continuous,
some mechanism has to be introduced such that there only exists a finite number
of eligibility traces to update.



Algorithm 1 S-AC

Input: γ, λ, αc, αa

1: e0(x) = 0 ∀x
2: Initialize x0, θ0 and ϑ0

3: Apply random input u0

4: k ← 1
5: loop
6: Choose ∆uk at random
7: Measure xk, rk

8: uk ← π(xk, ϑk−1) + ∆uk

9: Apply uk

10: δk ← rk + γV (xk, θk−1) − V (xk−1, θk−1)

11: ek(x) =
{

1, if x = xk

λγek−1(x), otherwise
12: θk ← θk−1 + αcδk

∑
x∈Xv

(∂V (x, θ)/∂θ)ek(x)
13: ϑk ← ϑk−1 + αaδk∆uk−1(∂π(x, ϑ)/∂ϑ)
14: k ← k + 1
15: end loop

IV. FUNCTION APPROXIMATION

In actor–critic methods, both the policy and the value func-
tion are represented using function approximation techniques.
Two such function approximation techniques, LLR and tile
coding, are used in this paper.

A. Local Linear Regression

The algorithms introduced in this paper use LLR as a
function approximator. LLR is a nonparametric memory-based
method for approximating nonlinear functions. Memory-based
methods are also called case based, exemplar based, lazy, in-
stance based, or experience based [23], [24]. It has been shown
that memory-based learning can work in RL and can quickly
approximate a function with only a few observations [4].
This is particularly useful at the start of learning.

The main advantage of memory-based methods is that the
user does not need to specify a global structure or predefine
features for the (approximate) model. Instead of trying to fit a
global structure to observations of the unknown function, LLR
simply stores the observations in a memory. A stored observa-
tion is called a sample si = [xT

i |yT
i ]T with i = 1, . . . , N . One

sample si is a column vector containing the input data xi ∈ R
n

and output data yi ∈ R
m. The samples are stored in a matrix

called the memory M with size (n + m) × N whose columns
each represent one sample.

When a query xq is made, LLR uses the stored samples to
give a prediction ŷq of the true output yq. The prediction is
computed by finding a local neighborhood of xq in the samples
stored in memory. This neighborhood is found by applying a
weighted distance metric di (e.g., the 1-norm or 2-norm) to
the query point xq and the input data xi of all samples in M .
The weighting—denoted with W—is used to scale the inputs
x and has a large influence on the resulting neighborhood and
thus on the accuracy of the prediction. Note that, in this paper,
the input samples xi are actually stored in the LLR memories

as weighted samples Wxi. Searching through the memory for
nearest neighbor samples is computationally expensive. Here,
a simple sorting algorithm was used, but one can reduce the
computational burden by using, for instance, k-d trees [25].

By selecting a limited number of K samples with the small-
est distance d, we create a subset K(xq) with the indices of
nearest neighbor samples. Only these K nearest neighbors
are then used to make a prediction of ŷq. The prediction is
computed by fitting a linear model to these nearest neighbors.
Applying the resulting linear model to the query point xq yields
the predicted value ŷq. First, the matrices X and Y need to be
constructed using the K nearest neighbor samples

Y = [ y1 y2 · · · yK ]

X =
[

x1 x2 · · · xK

1 1 · · · 1

]
.

The last row of X consists of ones to allow for a bias on the
output, making the model affine instead of truly linear.

The X and Y matrices form an overdetermined set of equa-
tions for the model parameter matrix β ∈ R

m×(n+1)

Y = βX

and can be solved (for example) by the least squares method
using the right pseudoinverse of X

β = Y XT (XXT )−1.

Finally, the model parameter matrix β is used to compute the
prediction for the query xq

ŷq = βxq.

As a result, the globally nonlinear function is approximated
locally by a linear function. At the start of a trial, the matrices
X and Y will not yet form a fully determined set of equations.
In this case, there are infinitely many solutions, and β will be
chosen as the solution with the smallest norm.

Memory-based methods directly incorporate new observa-
tions, which makes it possible to get a good local estimate of
the function after incorporating only a few observations. Note
that if every observation were stored, the memory would grow
indefinitely and so would the computational effort of finding
K(xq). One has to apply memory management to keep the
memory from growing past a certain size. The exact description
of the memory management algorithm used is outside the scope
of this paper.

The use of LLR comes with a few assumptions. The first
and foremost one is that the approximated function should
be smooth enough so that it can be captured by locally linear
models. Any function with discontinuities or other nonsmooth
behavior will be tough to approximate. This also depends on
the maximum possible number of samples in the LLR memory.
This number should be large enough so that the neighborhood
in which a locally linear model is calculated is small enough,
i.e., the linear model is indeed local enough. More specifically,
when applying LLR in RL algorithms, the sampling time
used should be small enough so that a locally linear model
calculated at one time step is still good enough at the next time



Fig. 2. Tile coding example. The dot represents a point in the state space. Two
tilings each have one (shaded) tile to which that particular point belongs.

step. This is because we also use the model for predictions at
the next time step.

B. Tile Coding

Tile coding is a classical function approximator commonly
used in RL, also allowing for fast computation. It uses a limited
number of tilings which each divide the space into a number of
tiles. The distribution of the tiles is often the uniform gridlike
distribution—which is the approach used in this paper—but any
tile shape and distribution are possible. An illustration of a tile
coding example is shown in Fig. 2.

A point in the state space either belongs to a tile or not,
meaning that the tiles are, in fact, binary features [9]. The
average of the parameters of the T tiles that the state belongs to
is used to compute the prediction

ŷq =
1
T

T∑
i=1

θi.

LLR inserts new experiences (samples) directly into the (ini-
tially empty) memory, whereas tile coding starts with initial val-
ues of the parameters that are incrementally adjusted. LLR also
allows for broad generalization over states at the start of learn-
ing when the number of collected samples is low. As the sample
density grows, the neighborhood of the local model grows
smaller, and the scope of generalization decreases. This causes
LLR to be a better function approximator at the start of learning.

V. EFFICIENT POLICY UPDATE METHODS

In this section, two new actor–critic algorithms are intro-
duced. The first algorithm is the model learning actor–critic
(MLAC). The algorithm learns a process model in addition to
the actor and critic. It is the actor update that makes this method
different from actor–critic methods found in the literature. The
update is done using a policy gradient which is calculated using
a local gradient of the critic and a local gradient of the learned
process model.

The second method learns a process model, a reference
model, and a critic. The reference model takes the place of the
actor, which means that there is no explicit actor function. This
reference model represents a desired behavior along which the
process is controlled by using the inverse of the learned process
model. Although the scheme lacks an explicit actor, we refer to
this method as reference model actor–critic (RMAC).

Both methods belong to the class of model learning al-
gorithms (also called indirect methods) as opposed to direct

algorithms [9]. In the implementation of the algorithms, we
always use LLR to learn and approximate the functions and
models involved.

The process model, actor, and critic are updated by inserting
the last observed sample into the memory, as the most up-
to-date knowledge should be incorporated in any approxima-
tion calculated from the memory. The critic memory MC

holds samples of the form si = [xT
i |Vi]T with i = 1, . . . , NC ,

the actor memory MA has samples si = [xT
i |uT

i ]T with i =
1, . . . , NA, and the process memory MP has samples si =
[xT

i uT
i |x′T

i ]T with i = 1, . . . , NP , where x′ denotes the ob-
served next state, i.e., x′ = f(x, u). Finally, the reference model
MR has samples si = [xT

i |x̂T
i ]T with i = 1, . . . , NR, where x̂

denotes a desired next state. During the learning process, the
actor, critic, and reference model are updated by adjusting
the output parts of the nearest neighbor samples si that relate to
the query point xq. The method of updating them is explained
in more detail in the following sections.

A. Model Learning Actor–Critic

In addition to learning the actor and critic functions, the
MLAC method learns an approximate process model x′ =
f̂(x, u). Having a learned process model available simplifies
the update of the actor, as it allows us to predict what the
next state x′ will be, given some input u. Together with the
approximate value function, this allows us to obtain information
on the value V (x′) of the next state x′. This means that we
can choose the input u such that V (x′) is optimal. However,
since we assume that our action space is continuous, we cannot
enumerate over all possible inputs u and therefore choose to
put a policy gradient in place. By virtue of LLR, we can easily
estimate the gradient of the value function with respect to the
state x and the gradient of the process model with respect to the
input u. Then, by applying the chain rule, we have a gradient of
the value function with respect to the input u available and use
this to update the actor.

Hence, the actor is updated by multiplying the local gradients
of the value function and of the process model to obtain a
gradient of the value function with respect to a chosen input u.
By adjusting the input u in the direction given by this gradient
and saturating the result element-wise such that the new input
lies in the allowed input range [umin, umax], the actor is trying
to maximize V (x′)

ui ← sat

{
ui + αa

∂V

∂x

∣∣∣∣
x=x′

∂x′

∂u

}
∀i ∈ K(x). (7)

Recall that x′ is given by the state transition function x′ =
f(x, u), which is approximated here by f̂ , based on the process
model memory MP .

The value function is approximated by LLR which estimates
a local linear model on the basis of previous observations of
V (x). The local linear model is of the form

V (x) = βC ·
[

x
1

]

= [βC
x βC

b ] ·
[

x
1

]
.



Fig. 3. Block diagram of the MLAC algorithm. The solid lines indicate actual
signals. The dashed lines indicate the use of a local linear model or gradient
from a particular entity.

This model has an input vector of length n + 1 (n state dimen-
sions plus a bias), a scalar output V , and a model parameter
matrix βC of size 1 × (n + 1). The gradient ∂V/∂x is the part
of βC that relates the input x to the output V . This part is
denoted as βC

x and has size 1 × n.
The gradient ∂x′/∂u can be found by LLR on previous

observations of the process dynamics. The local linear process
model is of the form

x′ = f̂(x, u) = βP ·


 x

u
1




= [βP
x βP

u βP
b ] ·


 x

u
1


 .

This model has an input vector of length n + m + 1 (with n
being state dimensions and m as action dimensions plus a bias),
an output vector x′ of length n, and a model parameter matrix
βC of size n × (n + m + 1). The gradient ∂x′/∂u is the part
of βP that relates u to x′, denoted as βP

u , and has size n × m.
We can now use βC

x , βP
u , and (7) to improve the actor by

adapting the nearest neighbor samples with

ui ← sat
{
ui + αβC

x βP
u

}
∀i ∈ K(x).

Fig. 3 shows the scheme of MLAC, and the pseudocode is
found in Algorithm 2. In the pseudocode, the set K+(xq) is
K(xq), extended with the index where the sample representing
xq was inserted.

Algorithm 2 MLAC

Input: γ, λ, αc, αa

1: Initialize x0, MC , MA and MP

2: V0 = 0, βC = 0
3: e0(si) = 0 ∀si ∈ MC

4: Apply random input u0

5: k ← 1
6: loop
7: Choose ∆uk at random
8: Measure xk, rk

9: Obtain βA from MA for xk

10: uk ← βA · [xT
k 1]T + ∆uk

11: Apply uk

12: % Update process model
13: Obtain βP from MP for xk−1, uk−1

14: Insert [xT
k−1 uT

k−1|xT
k ]T in MP

15: % Update actor
16: Insert [xT

k−1|(uk−1 + αaβC
x βP

u )T ]T in MA

17: for ∀i ∈ K(xk−1) of MA do
18: ui ← sat

{
ui + αaβC

x βP
u

}
19: end for
20: % Update critic
21: Obtain βC from MC for xk

22: Vk ← βC · [xT
k 1]T

23: Insert [xT
k−1|Vk−1]T in MC

24: δk ← rk + γVk − Vk−1

25: for ∀si ∈ MC do

26: ek(si) =
{

1, if i ∈ K+(xk−1)
λγek−1(si), otherwise

27: Vi ← Vi + αcδkek(si)
28: end for
29: k ← k + 1
30: end loop

Note that, with the S-AC algorithm, which uses (6), explo-
ration is needed in order to update the actor. Because MLAC
uses the process model gradient (7), it knows in what direc-
tion to update the actor such that higher state values will be
encountered, without having to perform exploratory actions.
As a result, the MLAC algorithm can estimate the policy gra-
dient without exploration. Exploration is nevertheless needed
because it reduces the chance that the policy improvement gets
stuck in a local optimum. Moreover, it gives a more complete
value function over the entire state space. The current policy
only visits a part of the state space. Without exploration, only a
part of the value function will then be correctly estimated. Fi-
nally, exploration improves the model of the process dynamics.

B. Reference Model Actor–Critic

RMAC is different from the typical actor–critic methods in
the sense that it does not learn an explicit mapping from state xk

to action uk. This means that an actor is no longer learned. In-
stead, RMAC learns a reference model that represents a desired
behavior of the system, based on the value function. Similar to
MLAC, this algorithm learns a process model, through which
it identifies a desired next state x′ with the highest possible
value V (x′). The difference with respect to MLAC is that we
now do not explicitly store the actor, mapping a state x onto
an action u, but store the mapping from a state x to the desired
next state x′ in a reference model. Then, using the inverse of the
learned process model, the action u is calculated.

The reference model R(x) maps the state xk to a desired next
state x̂k+1, i.e.,

x̂k+1 = R(xk).

The process is controlled toward this desired next state by
using the inverse of the learned process model xk+1 = f̂(xk,
uk). The reference model R(x) and the inverse process model



uk = f̂−1(xk, xk+1) together act as a policy by using the
relation uk = f̂−1(xk, R(xk)). The process model is given by

xk+1 = f̂(xk, uk) = [βP
x βP

u βP
b ]︸ ︷︷ ︸

βP

·


 xk

uk

1


 .

By replacing xk+1 with the desired next state x̂k+1 given by the
reference model and inverting the process model, we obtain the
action uk

uk =
(
βP T

u βP
u

)−1

βP T

u ·
(
R(xk) − βP

x xk − βP
b

)
.

We improve R(x) by adapting the desired state x̂ of the nearest
neighbor samples si (i ∈ K(xk−1)) toward higher state values
using the following gradient update rule:

x̂i ← x̂i + α
∂V

∂x

∣∣∣∣
x=x′

, i ∈ K(xk−1). (8)

However, (8) eventually may lead to an infeasible reference
model if x̂i are not kept within the reachable set Rx, which
is the set of all states that can be reached from the current state
x within a single sampling interval

Rx = {x′ ∈ X|∃u ∈ U with x′ = f(x, u)} .

It is not straightforward to determine this set because it depends
on the current state, the (nonlinear) process dynamics, and the
action space U .

We approximate Rx as a convex hull by applying combina-
tions of extremes of U to the learned process model f̂(x, u).
The current state xk and all possible combinations of extreme
values of u are put in a matrix UR. Every column of UR

gives the current state xk and a combination of maximum and
minimum values for u. The matrix UR has a number of rows
equal to the number of inputs of the learned process model
f̂(x, u) and a number of columns equal to 2m, with m being the
size of vector u. For example, with two inputs, UR would be

UR =




xk xk xk xk

u1,max u1,max u1,min u1,min

u2,max u2,min u2,max u2,min

1 1 1 1


 .

By applying UR to the process model, we obtain a matrix XR

containing the vertices of the convex hull as column vectors

XR = βP · UR.

Given that we are using a locally linear model of the value
function V (x) bounded by a convex hull, we know that the
optimum of V (x) must then lie in one of the states found in
XR.2 Denoting this set of reachable states with XR, we then
calculate which of these states yields the highest value, using
the local linear model of the value function

V (x) = βC ·
[

x
1

]
.

2When the function is nonlinear, the optimum can lie inside the hull. With a
linear function but nonlinear boundaries, it will lie on one of the edges.

Fig. 4. Block diagram of the RMAC algorithm. The solid lines indicate actual
signals. The dashed lines indicate the use of a local linear model or gradient
from a particular entity.

The state xr that corresponds to the highest value is then used
to update the reference model R(x)

xr = arg max
x∈XR

βC ·
[

x
1

]

x̂i ← x̂i + αr(xr − x̂), i ∈ K(xk−1).

Because of the approximation of Rx, the reference model will
be updated by a desired state xr that is the result of applying
the extremes of u. However, by using the learning rate αr in
the update of R(x), we can still achieve a smooth reference
model and a smooth policy. However, it is likely that this
approximation means that the algorithm will at most converge
to a near-optimal solution and a more accurate calculation of
Rx could improve the performance.

The aforementioned method to update samples already
present in the reference model is also used to insert new samples
into the reference model. Once the desired state xr has been
calculated for the state xk−1, the sample [xT

k−1|xT
r ]T is inserted

into the reference model memory. This means that the reference
model is completely learned and updated from scratch, since it
can initialize itself this way online without using prior knowl-
edge. However, initializing the reference model with samples
learned from a demonstrated trajectory offline is still possible if
they are available.

Learning the reference model online and from scratch might
pose convergence issues, since another bootstrapping approx-
imation comes into play. Nonetheless, we believe that con-
vergence is likely to be achieved when following the same
reasoning that S-AC algorithms use. In, e.g., [11] and [26], it is
stated that, for those algorithms, convergence is not a problem
as long as the actor is updated on a slower time scale than the
critic. Now that the reference model is taking up the role of the
actor, it is natural to conjecture that, when keeping the learning
rate of the reference model below that of the critic, we should
also have convergence.

In contrast to S-AC, the RMAC improves the reference
model using (8) which does not involve exploration. Instead,
it improves the reference model using locally linear models
estimated on the basis of previous experiences. However, for the
same reasons as with MLAC, exploration is still needed. Fig. 4
shows the scheme of RMAC, and the pseudocode is found in
Algorithm 3.



Fig. 5. Inverted pendulum setup.

Algorithm 3 RMAC

Input: γ, λ, αc, αr

1: Initialize x0, x̂1, MC , MR and MP

2: V0 = 0, βP = 0
3: e0(si) = 0 ∀si ∈ MC

4: Apply random input u0

5: k ← 1
6: loop
7: Choose ∆uk at random
8: Measure xk, rk

9: x̂k+1 = R(xk)
10: uk ← f̂−1(xk, x̂k+1) + ∆uk

11: Apply uk

12: % Update process model
13: Insert [xT

k−1 uT
k−1|xT

k ]T in MP

14: % Update reference model
15: Select best reachable state xr

16: Insert [xT
k−1|xT

r ]T in MR

17: for ∀i ∈ K(xk−1) of MR do
18: x̂i ← x̂i + αr(xr − x̂k)
19: end for
20: % Update critic
21: Vk ← V (xk)
22: Insert [xT

k−1|Vk−1]T in MC

23: δk ← rk + γVk − Vk−1

24: for ∀si ∈ MC do

25: ek(si) =
{

1, if i ∈ K+(xk−1)
λγek−1(si), otherwise

26: Vi ← Vi + αcδkek(si)
27: end for
28: k ← k + 1
29: end loop

VI. EXAMPLE: PENDULUM SWING-UP

To evaluate and compare the performance of our algorithms,
we apply them to the task of learning to swing up an inverted
pendulum and compare them to the standard algorithm. The
swing-up task was chosen because it is a low-dimensional, but
challenging, highly nonlinear control problem commonly used
in RL literature. As the process has two states and one action,
it allows for easy visualization of the functions of interest. A
photograph of this system is shown in Fig. 5.

The equation of motion of this system is

Jφ̈ = Mgl sin(φ) −
(

b +
K2

R

)
φ̇ +

K

R
u

TABLE I
INVERTED PENDULUM MODEL PARAMETERS

where φ is the angle of the pendulum measured from the upright
position. The model parameters are given in Table I.

The task is to learn to swing the pendulum from the pointing-
down position to the upright position as quickly as possible
and stabilize it in this position. The (fully measurable) state x
consists of the angle φ of the pendulum and the angular velocity
φ̇ of the pendulum

x =
[

φ
φ̇

]
.

The actuation signal u is limited to u ∈ [−3, 3] V, making
it impossible to directly move the pendulum to the upright
position. Instead, the controller has to learn to increase the
momentum of the pendulum by swinging it back and forth
before it can push it up.

A continuous quadratic reward function ρ is used to define
the swing-up task. This reward function has its maximum in
the upright position [0 0]T and quadratically penalizes nonzero
values of φ, φ̇, and u.

rk(xk−1, uk−1) = −xT
k−1Qxk−1 − Pu2

k−1 (9)

with

Q =
[

5 0
0 0.1

]
P = 1.

The S-AC method and the two novel methods MLAC and
RMAC are applied to the pendulum swing-up problem de-
scribed earlier. The algorithms run for 30 min of simulated time,
consisting of 600 consecutive trials with each trial lasting 3 s.
The pendulum needs approximately 1 s to swing up with a near-
optimal policy. Every trial begins in the upside-down position
with zero angular velocity, x0 = [π 0]T . With a learning exper-
iment, we denote one complete run of 600 consecutive trials.

The sum of rewards received per trial is plotted over the time
which results in a learning curve. This procedure is repeated
for 40 complete learning experiments to get an estimate of
the mean, maximum, minimum, and confidence interval of the
learning curve.

A. Standard Actor–Critic

This section presents the results of applying the S-AC algo-
rithm to the swing-up problem.

The function approximator used is tile coding (Section IV-B),
with 16 partitions, each being a uniform grid of 7 × 7 tiles. The



TABLE II
THE RL PARAMETERS AND THE PARAMETERS FOR LLR

FOR THE S-AC, MLAC, AND RMAC METHODS

partitions are equidistantly distributed over each dimension of
the state space.

Exploration is done every third step by randomly perturbing
the policy with normally distributed zero-mean white noise
with standard deviation σ = 1

∆u ∼ N [0, 1].

The reason for exploring only once every three steps instead of
every step is because this allows for large exploratory actions
while giving the controller time to correct for suboptimal
exploratory actions. Large exploratory actions appeared to be
beneficial for learning. This can be explained by the fact that the
representation of the value function by tile coding is not perfect.
There is a constant error in the approximation causing the
temporal difference to continuously vary around a certain level.
For small exploratory actions, their contribution to the resulting
temporal difference is small compared to the contribution of the
approximation error. This causes the update of the actor by (6)
to be very noisy.

The S-AC algorithm, using parameter settings from Table II,
applied to the pendulum swing-up task results in the learning
curve as shown in Fig. 6. The final approximations of V (x) and
π(x) after a representative learning experiment are shown in
Figs. 7 and 8.

The method takes, on average, about 10 min to converge. One
striking characteristic of the curve in Fig. 6 is the short drop in
performance in the first minutes. This can be explained by the
fact that the value function is initialized to zero, which is too

Fig. 6. Results for the S-AC algorithm. The mean, max, and min bounds and
95% confidence region are computed from 40 learning curves.

Fig. 7. Final critic V(x) for the S-AC algorithm after one learning experiment.

Fig. 8. Final actor π(x) for the S-AC algorithm after one learning experiment.

optimistic compared to the true value function. As a result, the
algorithm collects a lot of negative rewards before it eventually
learns the true value of “bad” states and adapts the actor to
avoid these. In order to prevent this initial drop in performance,
the value function can be initialized with low values, but this
decreases the overall learning speed as all new unvisited states
are initially assumed to be bad and are avoided. An example
of this is shown in Fig. 9, where the value function has been
initialized pessimistically, by using the infinite discounted sum
of minimum rewards, i.e.,

∞∑
j=0

γj min
x,u

r(x, u) =
1

1 − γ
min
x,u

r(x, u) (10)



Fig. 9. Results for the S-AC algorithm with two initializations for the value
function: V0(x)=−1000 for all x and V0(x)=(1/1−γ) minx,u r(x, u) ≈
−4050 (pessimistic).

Fig. 10. Results for the MLAC algorithm. The mean, max, and min bounds
and 95% confidence region are computed from 40 learning curves.

with r defined as in (9). Obviously, r has no minimum and
tends toward −∞ for x → ∞, but assuming3 that the angular
velocity |θ̇| will never exceed 8π rad · s−1 and using the facts
that |θ| ≤ π rad and |u| ≤ 3 V, it is still possible to calculate
the worst possible immediate reward that can be received, by
using x = [π 8π]T and u = 3 in (9). This worst possible reward
is then used as the minimum of r in (10). With γ = 0.97,
the value function is then initialized with V0(x) ≈ −4050. In
Fig. 9, a plot is also given for the case where the value function
was initialized with V0(x) = −1000 for all x. The drop in
performance is gone, and learning is still quick. However,
estimating an initial value that will achieve this sort of behavior
is done by trial and error and is therefore very hard.

The final performance can be improved by increasing the
number of partitions and number of tiles per partition in the
tile coding, but this decreases the learning speed. The S-AC
curve in Fig. 6 is used as a baseline to compare the novel
methods to, because it was obtained with a nontuned reasonable
initialization of the value function, as will most likely be done
in applications.

B. Model Learning Actor–Critic

The MLAC algorithm was applied using the parameter set-
tings in Table II. This results in the learning curve for the

3This assumption is justified by the fact that typical trajectories do not exceed
this velocity.

Fig. 11. Final critic V (x) for the MLAC algorithm after one learning experi-
ment. Every point represents a sample [x|V ] in the critic memory MC .

Fig. 12. Final actor π(x) for the MLAC algorithm after one learning experi-
ment. Every point represents a sample [x|u] in the actor memory MA.

pendulum swing-up task shown in Fig. 10. Figs. 11 and 12
show the samples in the critic and actor memories after one
full learning experiment, respectively.

There is a lack of samples in the lower regions of Figs. 11
and 12, because none of the trials in this particular learning
experiment generated a trajectory through that region.

The MLAC method converges fast and to a good solution
of the swing-up task. The fast learning speed can be attributed
to the characteristics of LLR. LLR gives a good quick estimate
at the start of learning by inserting observations directly into the
memory and also allows for broad generalization over the states
when the number of collected samples is still low. Finally, the
update by (7) is not stochastic in contrast to the update of the
S-AC by (6) which is typically based on random exploration
∆u. This means that MLAC is less dependent on the proper
tuning of exploration parameters, such as the standard deviation
used in the generation of random exploratory actions.

C. Reference Model Actor–Critic

The RMAC algorithm was applied using the parameter
settings in Table II, and this resulted in the learning curve
for the pendulum swing-up task shown in Fig. 13. Fig. 14
shows the samples from the critic memory obtained after one
representative learning experiment, whereas Fig. 15 shows the



Fig. 13. Results for the RMAC algorithm. The mean, max, and min bounds
and 95% confidence region are computed from 40 learning curves.

Fig. 14. Final critic V (x) for the RMAC algorithm after one learning experi-
ment. Every point represents a sample [x|V ] in the critic memory MC .

Fig. 15. Final reference model R(x) for the RMAC algorithm after one
learning experiment. Every arrow represents a sample [x|x̂] in the reference
model memory MR. The arrow points to the desired next state x̂.

memory samples for the reference model, i.e., the mapping
from states to their next respective desired states.

The RMAC method converges very quickly and to a good
solution for the pendulum problem. The main reason for the fast
convergence is the fact that the method starts out by choosing
the desired states x̂ that resulted from the extremes of u. Desired
states that result from the extremes of u also result in large
values for u and make the system explore a large part of the state
space. This yields a fast initial estimate of the value function
which is beneficial for the learning speed.

Fig. 16. Learning curves for S-AC, MLAC, and RMAC compared with each
other.

Fig. 17. Learning curves for S-AC, MLAC, and RMAC compared with each
other, where the value function of S-AC was initialized with V (x) = −1000
for all x.

VII. CONCLUSION AND OPEN ISSUES

This paper has introduced two novel actor–critic meth-
ods, which use LLR as a nonparametric memory-based
function approximator. It has been shown by simulation exper-
iments that these novel methods are capable of fast learning.
Fig. 16 shows the learning curves of the S-AC, MLAC, and
RMAC algorithms in one plot, allowing for a comparison in
performance.

The most notable difference is that the algorithms using
LLR learn faster than the algorithm using tile coding. For both
MLAC and RMAC, this is because we have a process model
and a critic function available. Combining these two, it is pos-
sible to calculate the inputs u that will yield high values at the
next time step. This largely overcomes the problem of having
to explore the effect of different inputs in certain states, and as
a result, the algorithms are less likely to run into suboptimal
states at the start of learning, like S-AC does. MLAC reaches
the best solution, whereas RMAC converges fastest. The latter
can be explained with the update of R(x), which is on the basis
of a predicted next state x̂k+1, initially calculated using the
extremes of u. The result is a rapid exploration of the state space
and estimation of the value function.

Using the initial value V (x) = −1000 for all x, as used
before in Fig. 9, the comparison looks a bit different (see
Fig. 17). In this case, MLAC and S-AC perform similarly, and



RMAC still learns the fastest in the early stages. However, it has
to be noted that MLAC and RMAC are able to perform this way
without the need for a good initialization of the value function,
which is difficult to obtain in general.

In the pendulum swing-up experiment, the memories were
initialized as empty, but instead, one can initialize them with
previous measurements. This makes it easy to incorporate prior
knowledge on the process dynamics, near-optimal control pol-
icy or near-optimal behavior, e.g., the RMAC reference model
can be initialized with samples of the closed-loop behavior.
This can be beneficial if the desired behavior of the system is
known, but the control policy is yet unknown (which is often
the case when supplying prior knowledge by imitation [15]).
In both algorithms, the process model can be initialized with
input/state/output samples of the open-loop system. This has
the benefit that it is usually easy to conduct experiments that
will generate these samples and that it is unnecessary to deduce
an analytical model of the system, as the samples are used to
calculate locally linear models that are accurate enough in their
neighborhood.

LLR seems very promising for use in fast learning algo-
rithms, but a few issues prevent it from being used to its full
potential. The first issue is how to choose the correct input
weighting (including the unit scaling of the inputs), which
has a large influence on selecting the most relevant samples
for regression. A second issue that must be investigated more
closely is memory management: Different ways of scoring
samples in terms of age and redundancy and thus deciding when
to remove certain samples from the memory will also influence
the accuracy of the estimates generated by LLR.

The experiment now only compares the performance of
MLAC and RMAC with the S-AC algorithm. It should also be
interesting to see how these methods compare to direct policy
search methods. Finally, the approximation of the reachable
subset XR may not be sufficiently accurate for more complex
control tasks. A more reliable calculation of reachable states is
the main improvement that could be made to this method.
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