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Abstract—We consider an online planning algorithm for
partially observable Markov decision processes (POMDPS),
called Anytime Error Minimization Search 2 (AEMS2). Despite
the considerable success it has enjoyed in robotics and other
problems, no quantitative analysis exists of the relationship
between its near-optimality and the computation invested. Ex-
ploiting ideas from fully-observable MDP planning, we provide
here such an analysis, in which the relationship is modulated
via a measure of problem complexity called near-optimality
exponent. We illustrate the exponent for some interesting
POMDP structures, and examine the role of the informative
heuristics used by AEMS2 in the guarantees. In the second
part of the paper, we introduce a domestic assistance problem
in which a robot monitors partially observable switches and
turns them off if needed. AEMS2 successfully solves this task
in real experiments, and also works better than several state of
the art planners in simulation comparisons.

I. INTRODUCTION

Partially observable Markov decision

processe
(POMDPs) model sequential decision-making problem$
where states cannot be directly measured, but are inferr

". Speci cally, we extend the analysis of optimistic plangin
for MDPs [15] to the partially observable case, where a new
challenge is to exploit the informed lower and upper bounds
used by AEMS2 at tree leaves. The lower bound requires
a consistency property, which is satis ed by the often-used
blind policy heuristic [16]. The convergence rate"ato O is
expressed via a near-optimality exponent, and we prove that
good bounds attain an exponent at most as large as in [15].
We study the value of the exponent in some speci c POMDP
structures, focusing on the role of observation probadslit
Our second contribution is de ning a new robotic task,
motivated by safekeeping disabled or elderly people in a
known domestic environment. Such people are often affected
by memory decline, which raises risks such as re due to
ovens or other electrical devices left on, ooding because
of open faucets etc. In this context, our demonstrator is
@ simplied scenario in which the robot must look after
lectrical switches and turn off any of them left on. Since th
gyitch states cannot be observed with certainty, a POMDP

instead from indirect observations, while a cumulativéndel is required. We describe this model and our platform,

reward must be maximized. POMDPs are ideal for man§
robotic tasks affected by uncertainty, e.g. due to limite

sensing,

planning methods solve POMDPs by running a forwar
search in the tree of future sequences of actions a
observations, at each step of robot-environment interacti

Cyton Gamma 1500 arm mounted on a Pioneer 3-AT

fnobile base. We rst compare in simulations AEMS2 with
interaction with humans, etc. [1]-[6]. OnlineState-of-the art planners including online DESPOT [12],H
' 3], FHHOP [11], and of ine SARSOP [17]. Since AEMS2

tains better performance for small budgets, it is then
applied to the real task, which it solves successfully. We

[7]. Then, an action is chosen and the procedure repeats®¢ ilustrate numerically the analytical bounds.

the next step. Many online planners have been propos

e.g. [4], [5], [8]-[13], and successfully applied to simteaid
robotic tasks [9], [11], [13] and a few real ones [4], [5].

eg.This task joins the — not very numerous — ranks of real

robotic POMDPs, e.g. [1]-[6]. It is closest to the mobile
manipulation tasks of [2], [6] and similarly motivated tceth

We focus here on Anytime Error Minimization Search 22SSistive tasks of [1], [3]. Related analytical work inasd

(AEMS2) [8], which expands at each iteration a tree nodbt0l: [12], where probabilistic nite-budget guaranteesea
contributing maximally to the uncertainty of an optimistic9iven for POMCP and DESPOT. Motivated by the relation

policy, i.e. a policy that would be best if unknown reward<®f MDP complexity with the packing number of near-optimal
had the largest possible values. Despite its introductiopPutions [18], we believe that a deep link also exists betwe
nearly a decade ago, AEMS2 has proven dif cult to beatI,he near-optl_mallty exponent of the POMDP and the covering
consistently staying near the top of online planner raring'Umper studied as a measure of complexity by e.g. [19], [20].
[7], [13], [14]. While more recent algorithms like DESPOT _ Next, Section Il presents POMDPs and AEMS2, and Sec-
[12] and POMCP [10] can tackle larger-scale problems thalien Il the ana!y5|s. Section IV descrlt_)es the home asst®a
AEMS2, as soon as it works, AEMS?2 is usually near-optimaF.aSk and Section V the results. Section VI concludes.

The rst contribution of our paper is to clarify the reasons Il. BACKGROUND
for this success, by providing a quantitative analysis Of = paialy observable Markov decision processes

AEMS2. While [14] showed that the algorithm achieves . ) ,
optimality within some nite time, our guarantees are novel Ve introduce POMDPs following [7] and adapting the

by tightly linking the computation budgetwith the value of notation to be co_nvenient for the algorithm. States are
denoteds 2 S, actionsu 2 U, and observationg 2 Z.

Upon taking an actiom in states: the state changes &
with probability T(s; u;s®) whereT :S U S! [0;1]is
the transition function; a reward = R(s;u) is received,
whereR : S U ! R is the reward function; and an
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observationz is made with probabilityO(s% u;z) where 4=o0 [ ]1=0.544,0 =1.044]
O:S U Z:|[01]is the observation function. We
use the generic prime notation to indicate a quantity at the
next step. All spaceS;U;Z are taken discrete and nite, 4_,
and letjuj = M, jZj = N denote the cardinalities of the
action and observation spaces. We assume bounded rewards,
and by convention rescale them to the intef@all] without
changing the solution. d=2] |
The information accumulated from all actions and obser-
vations so far can be represented. videlief statex [7] Fig. 1. Example of planning tree fod = M = 2. The two actions are
a distributionx(s) over the underlying states, belonging symbolically denoted ;I . The squares are belief state nogesabeled
to the spaceX of probability distributions overS. The by beliefsx, where superscripts index the possible actions and oligmiva
Lo . . ) outcomes, while subscripts are depths, which increase oitly the belief
agent starts from some initial beliefy, and if at stepk  poge levels. The actions 2 f J ;1 g are included as circle nodes. Arcs
it executesuy and observegy. , then it updates its belief leading to actions are labeled by the rewargs; u), while arcs leading to

0,2] [0,2] [0,2] [0,2] [0, 2]

; — O i ; beliefs are labeled by the probabilitiegx; u; x 9, both in blue. Thd and
With Xics1 L (X Uic; Zk+1 ), Where Is de n.e(_j next. First, b-values are shown near the nodes in red. The thick subt@essh tree
the probability of OQSEWmQ givenx andu is: policy. Discount factor is 0:5, and we use/,, = 0;Vy = 1 = 2.
. Figures in this paper are best viewed in color.
Pzixu)= Ouz)  T(sudxe) @ PP )
s° s The planning process can be visualized using a tree struc-
Then: ture T, exempli ed in Figure 1. Each node in the planning
0(s%u; 2) X tree hasMN children. Specically, a nodey labeled by

XY= (xuz)(s) = beliefx is expanded by adding, for each actioand for each
observationz, a new child node/° labeled by the updated
Dene now a new reward function (x;u) = peliefx®= (x;u;z). Denote the children of along action
s X(s)R(s;u), and new probabilities: u by Q(y; u), the leaves of a tre€ by L(T), and the belief

( P(zjx:u); if 9227 st.x'= (x:u:2) !abel of nodey by x(y). Note that beligfs may .be duplicate_d

. if they are encountered along multiple action-observation

0 otherwise paths. A tree represents many possible stochastic evofutio
These two quantities de ne the so-calléetlief MDP, in  of the system, e.g. for the sequence of actifihsl | there
which the belief statex evolves in a Markov fashion basedare four possible belief trajectories in the tree of Figure 1
on the actionau. Then, the agent's behavior is suf ciently those ending in the 3rd, 4th, 7th, and 8th leaves at depth 2.
represented by a deterministic policy: X ! U, and the The algorithm computes upper and lower bouihdand |

Pzixu) | T(s;u;89x(s) (2)

f(x;u;x9:=

value of such a policy from initial beliefg is: on the values of node beliefs, starting from initial bouMs
andV at the leaves, wherg(x) V (x) V(X). These
V (Xo)=E K (ks (%K) initial bounds can be computed in various ways [16], and
k=0 at worst can be taken to be the uninformég =0, V, =

@%' The bounds are backed up using dynamic programming

where the expectation is taken over the random beli
updates along the tree, e.g. for the b-values:

trajectories Xx+1 f (Xk; (xx); ). The objective in a
POMDP is to act according to the optimal policy (x) =

argmax V (x), which is related to maximizing the ex- b(y) = V() ity is a Ier

pected sum of discounted rewards in the original POMDP., maxy[ (X(Y);u)+  yopc yur) POYORXYL; else

DenoteV (x) =V (x). o @)
wherep(y9 = f (x(y); u;x(y9%). E.g. in Figure 1, the b-value

B. Algorithm: Anytime Error Minimization Search 2 of the root ismaxf0:375+ (0:75 1:25+ 0:25 1:6);0 +

We describe next AEMS2 [8]. It is in fact equivalent to (0:5 2+0:5 2)g maxf1:0441g 1:044 Thel-values
our optimistic planning for MDPs (OPMDP) [15] applied to are computed similarly but starting from at the leaves. By
the belief MDP, which allows us to exploit the analysis ofa straightforward induction from the leaves to the root, we
OPMDP and extend it to the partially observable case. So wavel(y) V (x(y)) b(y) for any node.
introduce AEMS2 in a new way, convenient for this analysis. To expand a node, aoptimistic tree policyhY is con-

At each stefk, AEMS2 explores possible solutions (actionstructed, by starting from the rog and recursively adding
sequences) from the current beligf. It iteratively re nes at each nodg theN children along one action that achieves
solutions until e.g. exhausting a computational budgetnd the maximum in (3). In contrast to a simple policy a
then returns an action, based on the reward information tree policy speci es an action choice for each inner belief
accumulated. This action is applied to the system and thde reached under the previous choices, i.e. for all ti@jgc
procedure is repeated from the new belief. We relabel byealizations up to the (varying) depth of the tree. Note Hat
convention the current timk to 0, while the procedure of is a subtree oT . In Figure 1,hY is shown by thick lines, e.qg.
course works at any step. the optimistic action branch at the rootisbecause, as seen



in the calculations above, this action achieved the maximunih). This quantity is the uncertainty on the valuemfand
in the b-value backup. Ond¥ has been found, one of its leaf c(y) in (4) is the contribution of leaf to this uncertainty.
nodes is selected by maximizing tbentribution de ned as: Thus, nally, the algorithm expands the leaf contributirgt
_ a(y) most to the uncertainty on the optimistic policy. The action
o(y) = P(y) [(y)  1(y)] ) returned at the end in fact corresponds to choosing a tree

where d(y) is the depth andP(y) is the probability of policy maximizing the lower bound = arg max ,r L (h),
reachingy, the product of the individual transition proba-a safe choice, and then applying its rst action.

bilities along the path. E.g. in Figure 1, the gray node has The main difference from the description in [8] is that
a probability P(y) = 0:75 0:5 = 0:375 and contribution there, contributions are computed falt leaves, with:

c(y) = P(y) ?[2 0] = 0:1875 The reader can verify dy) 1
this contribution is maximal on the optimistic polity, and Py) “Ooy)  1(y)] P(Uk j Yk)
equal to that of its immediate sibling, so one of these two k=0

nodes is expanded next. The meaningc(f) is detailed
below. Finally, aftem nodes have been expanded, an actio
that maximizes the expectéeialue from the root is returned.
Algorithm 1 summarizes AEMS?2.

whereP(ug j yk) is a probability of selecting actioax from
Hodeyk along the path ty. However, for AEMS2 [8] takes
P(ukxjyk) 1 for an action maximizing the upper bound,
which means all leaves outside have contribution0 and
Algorithm 1 AEMS2 will not be selected, just like in Algorithm 1.

Input: initial belief xo, expansion budget Ill. PERFORMANCEANALYSIS OF AEMS2
L initialize treeT with root yo, labeled byxo We study the near-optimality and convergence rate of

; for ;]y_ 1’%"“ dc.> start building optimistic subtrekY AEMS2, by extending the analysis line of OPMDP from
4 while L(h) 6 L(T) do [15] to the partially observable casg. In [15], the uninfedn
5. retrieve a node 2 L () n L(T, boundsV,;V,, were used, .and using petter boun_ds turns
6: W = arg max[ (x(y); u)+ o(y)b(yO)] out to be nontrivial. In particulaty requires a consistency

u ' y02C (y:u) property, which is satis ed by the often-used blind policy
7: add childrenC(y; u¥) to hY heuristic [16]. The convergence rate is expressed via a near
8: end while . end buildinghY optimality exponent , and we prove that good bounds attain
9: select leaf to expand?  argmax,, (nyy c(y) an exponent at most as large as in [15]. Finally, we study

the value of in some interesting POMDPs, focusing on the
role of the observation functio®.

The consistency property prevents that expanding a node
and backing up the children bounds leads to a worse bound

10: expandhY, adding all its children tor
11: updateb and|-values on the tree
12: end for

P
Output: ug = argmax| (Xo;u) + p(y9I(y9]

y2C (yo;u) than the initial one, which would not make sense.
Assumption 1:Fhe lower bound isconsistent namely:
To get more insight, consider any tree poliy con- max,[ (x;u)+ wf U xOV (X9 V().

structed by assigning actions arbitrarily from the roothe t ~ We start by proving that near-optimality is given by the
leaves of T: and leth 2 T denote thath was obtained Smallest uncertainty of any optimistic policy re ned. This
in this way. De ne also arin nitely long tree policyh; , quantity can be computeal posterioriby the algorithm. Let
achieved by assigning actions to belief nodes inde nitelysubscripti denote quantities at iteratidn e.g. T;, hY, B =
and the expected discounted valsg; ) of such a policy. argmax,,r, L(h). Note we omit proofs due to space limits.
We havev :=sup,, v(hi) = V (xo), motivating us to Theorem 2:AEMS2 returns a policyR, so thatv

use tree policies as a local optimal solutionxgt For each W(Hn) , where =minj; (h).
policy h, de ne lower and upper bounds, and the best value Note thatv W(Hn) upper-bounds the sub-optimality
among in nite policiesh;  h (i.e. starting withh): v W (up) of the action choicelp, which is a good measure
X of the performance of an online planner.
_ d(y) .
L(h) = x Y2t () POIrm+ T We next establish that the blind policy lower bound [7],
B(h) = POV [r(v) + 9O : [16] is consistent, which is important because this bound is
(h) x Y2 W) byl widely used in AEMS2 and POMIPs in general. The blind
W (h) = PO [r(y)+ 90V (y)]= sup v(h; ) policy iteratesVy'(s) = R(s;u) + o T(s;u; 89V (9
y2L (h) hi h an arbitrary number of times, starting froRy' = 0, and
P = u
where r(y) = g(:‘g) ! Kre is the discounted sum of :Ee?tﬁholohseg/(;(zh ma:t; ¢ ;X(Si)nvt (S)l-itWe must show
rewards along the path o We haveL (h)  W(h) B(h). atthe L.n.s. ot the consistency inequaiity-
The optimistic policyh? constructed as above maximizes the  max[ (x;u) + f(x;u;x9YV (x9]
upper boundB among all tree policieb 2 T, so it is the . 0
t pramising partial soluti far. Note Bgh) = X X :
most prgmising partial solution seen so far. Note @) = :m'ﬁix[ (x;u) + P(zjx; u)mu%x XYYV, (9]

L(h)+ oL (n) (y), and let the latter sum be denoted by

z s0



wherex®= (x;u;z), is larger than the r.h.s.:
X

X
V(x)=max  x(s)[R(s;u) + T(s;u; 9V (9]
S 0
X
=max[ (x;u)+ x(s)  T(s;u;HVY (9]
! s s0
Thus, it suf ces to compare the two terms multiplyingin
the two expressions. The former term can be written, usin
(2) to express and noticing thaP(zjx;u) simpli es:
X X X Fig. 2. Example tree structures for different values of

max " O(s%uiz) | T(siuisIx(s) ()

Recall that this analysis line extends that of OPMDP in

X X’ X S . [15], where uninformed bounds ,; Vi, were used together
= max O(s% u; 2) T(s; u; SAxX(S)VU (89 with a slightly different de nition of important nodes:
)6 )éo s X ‘= i1 _~ ",
= max  x(s) O(%u;2)T(s;u; sV (9 Y= fy 2T1 i ~y) " ©)
2 Y s 50 (i) 9hy 3y;v v(hi) N~(y)=g
maXX X X(S)X O(so;u;z)T(s;u;so)Vtuo(so) Here, ~_(y) u(y) conservg.tively.estim.ates the impact.
ue NI Subscript "u' denotes quantities with uninformed bounds,
_ o . o u® which are tighter than those obtained withand (6); the
~ e X(s) o O(” U )T (s U I () latter are denoted by a tilde. Exponehitis de ned so that

Y. = O(" 7). We expect AEMS2 with good bounds to be

X .
—_ . . u
=max  x(s) T(s:u; )V (s) faster than uninformed OPMDP, and to illustrate we show

s xS that, indeed, good bounds cannot lead to a largénan ~.
X(s)  T(s;u;sHVY 1(s9) Proposition 5:1f V. V,;V Vi, then  ~
s s° Next, we illustrate the complexity of some interesting

where we used/" V" ,, manipulated some summation POMDP structures, exploiting Proposition 5. We focus

indices, and exchanged a summation with a maximizatiopn the role of the observation functio®, and consider

preserving the desired direction of the inequality. This imO(s%u;z) = 0o(z);8s%u, T(s;u;s9) = t(s%;8s;u. Then,

plies the original consistency inequality. using (1), we get the following transition probabilities
We move on to ara priori guarantee. For any node P(zjx;u) in the belief MDP:

de ne rst a measure of its impact, as the largest uncenjaint X o X B B o
of any (nite) policy to which it maximally contributes: O u;t(s)  x(5)= o(z)  t(s) = o2);8x;u
s0 s s0
¥) = hgmy) (h):H(y) = fhjy2 a;lzgz;Lnggxc(yO)g These restrictions on the structure allow us to match the

MDPs for which exponents™ were studied in [15], and
Then, for any” 0 de ne the set of nodes with (i) at thereby to get an upper bound and some insight orfo
least” impact to (i) a near-optimal policy, as follows: isolate the effect ob we take for now all the rewards equal
Yo = fy 2T jl) (y) " to 1. Two particplar edge' cases are most infor'mative. In
(i) 9hy 3yiv  v(hy) )9 (5) the rst case,o0 is the uniform distribution, leading to a
’ dif cult problem with high uncertainty; such probabilise
Intuitively, these nodes are important to examine, andedde are exempli ed in boldface in Figure 2, fdd = 2. In this

it turns out that AEMS2 only expands such nodes, in thease, we nd that ~= ',‘;9 NM_ which is also the largest

following sense. possible value. HerbBlM is the branching factor of the tree
Lemma 3:All nodesy! expanded by AEMS2 belong to that AEMS2 explores, and the value tells us that the entire

Y ,where =minl; (v)). tree may have to be explored, so the algorithm converges
To characterize the size 6f, and thereby the complexity slowly, cf. Theorem 4.

of the planning problem at hand, de ne timear-optimality In the second case is a Bernoulli distributionq;1 g

exponentas the smallest number 0 so thatjY-j = with g close tol, i.e., one observation among the two has

o ) for" > 0, i.e. so that9a > 0;b 0;jY-j high probability, leading to an easier problem with infor-

aflog(1=")]"" . We assume heré(xo) < V(Xo), to ensure mative observations. These probabilities are in pareethes
makes sense. We can now provide the mgbriori bound. in Figure 2. We consider the deterministic limit qf! 1.
Theorem 4:The near-optimality W (R,) of AEMS2is Then,~! h')‘;gl“ﬂ , so only the high-probability tree branches

O(n ¥ )when > 0, orO(exp[( n=a)*™"]) when =0. are explored for alM actions, and AEMS2 converges faster.
The smaller , the faster AEMS2 converges to an optimal To understand the in uence of the rewards, consider again

solution. In particular, when = 0, i.e. when the problem the uniformo but now let a single action get rewards bf

is easy, convergence is (stretched-)exponential. everywhere on the tree, while the other actions @esee




again Figure 2 where the high-reward action nodes are gray. TABLE |

In this case, the exponent is arourﬁ'g’ll: (see [15] for SENSING PROBABILITIES FOR ONE SWITCH
details), so the branching due to the actions is eliminated, . switchon | switch off
. . . . Location type | TP FN TN FP

and the alg0r|_thm only ex_plor_es the single optimal policy, A 082 018 078 [ 022
shown as a thick subtree in Figure 2. B 0.84 [ 0.16 | 1.00 | 0.00
The overall insight is that complexity is larger for “more C 0.89 | 0.11] 0.93 | 0.07

uniform” problems, in terms of distributions or rewardspan ,,.-h we computed from experiments, and which is due to

it is small when the algorithm can focus on high-probabilityhe jimited arm accuracy of aboatcm (because of the arm
solutions with distinctly high rewards. Beyond the quaN@ .o struction and imprecise visual feedback).

Proposition 5, it would be very interesting to investigate The observation is limited to the switches; 2 fon

quantitatively the relation between bound quality and . ynobserveg. Observation probabiliies depend on the
taking the structure of observations and rewards into aticou ,qnat's [ocation relative to the switch. and on the switch
This is our rst point for future work. state. Table | shows the probabilities of sensing true pesit
1V. ROBOTIC HOME ASSISTANCE APPLICATION TP and false negativeBN W_hen the SWItCh is on, and true
We consider a scenario in which a robot must look aﬁelpegatwesTN.an.d false positives P when it 1S off, for e'.”‘.c.h
ype of locationj 2 f A;B; C g. These sensing probabilities

electrical switches and turn off any of them left on. Sincé timated . tallv. Using th the ob i
the switch states cannot be observed fully accurately, lhot ere estimated experimentally. Using them, the obsematio
ction for a single switch is de ned:

the switches can be seen at once, and the motion of the ro a
must be controlled, a POMDP model is ideal for this task. O; (so;%bserve )=

A. POMDP model of the home assistance task 2[TP 5 FNj 5 1 ifwl=on %2
The states of the home assistance task can be divided in 5 [FPi 5 TNj 5 I if wP=off; 92
two classes: locations and switch states. The robot latatio © [0;0; 1]; otherwise

in the environment is discretized into a grid coordinatt?_|ere
2, which is fully observable. The state of each SWitcrEwitc'h
i, wi 2 fon;offg, is partially observable. The state spac

=0:001is a small probability of not observing the
even in the observable range, which we introduced to
Sover rare situations when the camera view is obstructed. Fo
hexample, if action “observe' is taken in cell A with the swaitc
on, the probabilities of seeing “on', “off', and "unobsetve
are0:82 5;0:18 5; and , respectively. We assume the
observation ranges of different switches are disjoint,rso t
overall observation functio® is easy to compute.

The reward function is de ned as follows:

statesS = W. For switchi, we de ne its location ;, as
well 3 sets of locations i ,j 2 f A;B; C g from which it is
observable with different probabilities, as explainedobel
Figure 3 illustrates this type of model for our real lab.

switch 1 8

El ifu=ip; = j;w =on
0 ifu=ip; = i;w = off

3 0:601 if u= stay (for anys)

" 06 otherwise

R(s;u) = (7)

Recall that reward values must be normalized between 0 and
1. Maximum rewardL is given for turning off an on switch,
and the smallest rewar@ (maximum penalty) is given for
ipping an off switch to on. In other cases, a better than
neutral reward is givenQ:6, to avoid a misleading solution
that in nitely toggles a switch (getting average rewdr).

A marginally greater reward was chosen for “stay' to reduce
Fig. 3. Discretized map of siz¢6  9), where the yellow circles are energy consumption.
the location of the switches. The rightmost corner is (1, 1 #re initial
location of the robot is (1, 8). Dark gray cells are obstaeled light gray B. Hardware and software
cells denote the observation ranges of three tyje3; C . The green line .
shows the trajectory in the real experiment of Section V-BerehO, F, S A Pioneer 3-AT wheeled robot forms the base of the

indicate the execution of observe, ip, and stay actionspestively. platform, and a Sick LMS200 laser scanner is used for

The possible actions ar®l = fnorth eastsouthwest localization, together with the odometry sensors builb ithie
stay, ip ; observe, out of which the rst ve are determinis- base. On top of the laser scanner we placed the 7DOF Cyton
tic. The four motion actions navigate the robot betweerscellGamma 1500 lightweight robotic arm. A camera mounted
relatively to the map. If an action would lead to leaving theabove the gripper is used for switch state sensing and for
map or hitting an obstacle, then the robot does not moveision feedback in arm trajectory control, see Figure 4.
Action “stay' keeps the robot in the same cell. Action “ip' The application is written in C++ and Python, under the
is stochastic and succeeds only with 80% probability, aezaluRobot Operating System (ROS). A high-level controllersall

robot initial pose




TABLE Il

PERFORMANCE COMPARISON ON THE HOME ASSISTANCE MODEL

=1ms =10ms =100 ms = 500ms = 750ms = 1000 ms
AEMS? | 9.858 (9.844, 9.872) 9.897 (9.879, 9.915) 9.903 (9.885, 9.922) 9.920 (9.896, 9.943) 9.874 (9.858, 9.891) 9.876 (9.858, 9.895)
DH 9.424 9.424 9.856 (9.840, 9.871) 9.866 (9.847, 9.885) 9.835 (9.812, 9.858) 9.871 (9.850, 9.891)
FHHOP | 9.424 9.424 9.842 (9.826, 9.859) 9.837 (9.815, 9.859) 9.853 (9.830, 9.876) 9.856 (9.875, 9.836)
DESPOT| 9.566 (9.528, 9.603] 9.548 (9.516, 9.579) 9.613 (9.587, 9.639) 9.643 (9.601, 9.685) 9.641 (9.604, 9.678) 9.650 (9.609, 9.691)
SARSO 9.877 (9.857, 9.898); of ine execution time 1360 ms
a starting point for tree construction at the next step (€.g.
actionJ is chosen in Figure 1, and observation 2 is seen,
then the node okj > becomes the new root, and all nodes
outside its subtree are deleted).
A. Algorithm comparison in simulation
The algorithms are applied to the model of our real lab,
shown in Figure 3. This hag$ | = 43 location states,
two switches leading tgW] = 4 switch statesjUj = 7
Fig. 4. Left: robot system with its elements. Right: robot@xéng a ip actions, andZj =9 observations. The initial robot location

is (1,8), as shown in Figure 3, and both switches are on.
I:[ge initial belief statexg is a uniform distribution over the

action; the inset shows the camera view.

the low-level motion and sensing procedures needed by t . . : .
POMDP solver to execute actions and make measureme ssible switch states. V.V'th reward .fun(‘:tlon (7). DHS and
E.g. switch sensing uses blob detection for the LED indicat; HOP get stucl_< ]E:hoostl_ng only aﬁtlon sftay. ”SO’I to _rtr;]ake
ing the switch state and marker (chessboard) pose est'mnatiﬁe comparison I (I)rma Ve, We change for atl algoritims
on a 2D image, see Figure 4. The most involved, ° ip't e reward of “stay' td0:6, equal to the neutral reward of
action is a sequence of plans generated with the Movelr&awgatmn and observahon actions. . .
ROS package, using vision feedback. The relative pose of Ve compare the discounted return ofthe online algorithms
the marker is used to compute goal positions for the erd®’ trajectories oBO steps, as a.functlon of the computa-
effector, as well as position corrections after executiont!_Onal budget, expresse_zd as the time allowed for tree expan-
Initially, visual contact with the marker is necessary, Be t gzg;oocgloose olne ﬁctlonb,: 1,106,100 5(|)0,_75(1f 1003”‘?2

end effector is oriented perpendicularly to the marker @lan ™" c_o_ntro S _t e robot using a so ution ound ofine,
Next, the arm is moved vertically to aim for the switchWlth a precision 0_0'000099[17]' The_d|scount factor is = .
button. Finally, the button is pushed by constraining th&).95. We ran100independent experiments for each setting,

i 1 ()
orientation and position of the end effector so that it onlfr;d c?m_lp#ted the I:nean rﬁturn .W'Ep l;tls I?S/O con dence
translates on one axis. The low-level controllers and sensi interval. These resufts are snhown in fabie 1. )
run on a laptop placed on the mobile platform, while the AEMS2 has better performance for all 500, while

computationally intensive POMDP planning algorithm anéor greater values of statistically none of the algorithms
3D visualization run on a desktop with a quad-core XeoIqutperforms the others (but AEMS?2 still has the largest mean

E5-1620 3.70GHz CPU and 16GB RAM. performance). This conrms the good quality of AEMS2
predicted by our analysis. Note that the different returns
V. PLANNING RESULTS FOR HOME ASSISTANCE correspond to real differences in task-solving perforneanc
Our goal in this section is to solve the home assistanaeg. for =1 and10, DHS and FHHOP still always choose
task using POMDP planning. We start with simulations thaaction “stay’, while AEMS2 and DESPOT do not. Returns
compare AEMS2 with several state of the art online plannerare usually larger for larger budgets, as the analysis atels;
DHS [13], FHHOP [11], and DESPOT [12], as well as thealthough there are exceptions, e.g. for= {750 100Q
SARSOP [17] of ine planner as a baseline. The performancAEMS2 has slightly smaller performance than for =
of these planners on standard POMDPs is known [7], [10f,100;, 500y. SARSOP returns an of ine, global solution with
[12]-[14], so here we only apply them to the new task. Wg@erformance that is statistically similar to AEMS2. The exe
then evaluate the winner, AEMS2, in the real-life task.  cution time of SARSOP is, however, larger than the planning
We implemented AEMS2, DHS, and FHHOP in thetime used by AEMS2 over the entiB®-step trajectory when
appl packagehttp://bigbird.comp.nus.edu.sg/ 2f1;10gms, so AEMS2 is computationally preferable for
pmwiki/farm/appl/ ), which originally includes SAR- these budgets.
SOP; and we used the publicly available appl implementation Next, we provide some insight on how the analysis impacts
of DESPOT. For all algorithms, we initialize lower and uppethe results. Figure 5 shows the near-optimality boundef
boundsV; V with the blind policy and Fast Informed Bound Theorem 2, for each stdpalong a representative trajectory.
techniques [16], respectively. To improve performance, thThe bound becomes very tight because the subtrees are
subtree of the action chosen at each current step is takenrassed, and because the local planning problems become
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simpler as the task is being solved. To illustrate Theorem 4,
we created a very large tree using= 60 s from the initial
state, and computed its average branching factor, which igy
related to as explained in Section Ill. The result is around
2:23, much smaller than the worst-case branching factor
21 =jUj 3 (recall that switches do not overlap so at mostjs)
3 observations have nonzero probability at any state). Note
that complexity may grow exponentially in the number of
switches withoverlappingsensing and manipulation areas [g]
(observations may give information on several switched, an
actions must choose between them). This growth is however
just a worst case, since as seen above the real branchipg
factor will typically be much smaller.

B. Real-life experiment (8]

Given the better performance for smaller budgets, AEMS2
is selected for the real experiment. We reinstate the reward
0:601 for the “stay' action, since reducing power consump-
tion is important in practice. The initial state is the sarse a
above. A budget ofi = 2000 node expansions is imposed for
each action search (leading to execution times 78ms).

The trajectory in the real experiment is shown in Figure
3. The robot determines that both switches are on and ips
them off, and once it reaches this goal, it chooses ‘sta)yl.l]
An interesting feature related to partial observabilitythat
the robot always performs two consecutive observations to
reduce uncertainty, from locations of type B where sensin
accuracy is the highest. Furthermore, observations are mad
beforeand after ipping a switch, to make sure the switch [13]
is off, given the 80% success rate of ipping. Figure 4,
right illustrates the robot in action, see also the full demqi4]
video athttps://youtu.be/xc4t6p9dVFM . Our soft-
ware is publicly available under BSD licensing laitp:
/lrocon.utcluj.ro/node/171

[20]

[15]
VI. CONCLUSIONS AND FUTURE WORK

The near-optimality of the AEMS2 algorithm was an-pig)
alyzed as a function of the computation budget invested.
The algorithm was successfully applied to a new domestic

. . . . A7)
assistance problem, in which a robot monitors partially
observable switches and turns them off if needed.

The next step for the application is monitoring the huma vg]
to prevent the robot from becoming a nuisance (collisions,
turning off lights that are actually needed), revisit old
switches in case they were turned back on, etc. On ttheg]
analytical side, it is important to quantitatively explaite
informed AEMS2 bounds and to understand the complexity
of more realistic POMDP structures. It is also interesting t
investigate the relation between the near-optimality exmnd
and the covering number of [19], [20].

[20]
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