
Analysis and a home assistance application of online AEMS2 planning

Előd Páll, Levente Tamás, Lucian Buşoniu

Abstract— We consider an online planning algorithm for
partially observable Markov decision processes (POMDPs),
called Anytime Error Minimization Search 2 (AEMS2). Despite
the considerable success it has enjoyed in robotics and other
problems, no quantitative analysis exists of the relationship
between its near-optimality and the computation invested. Ex-
ploiting ideas from fully-observable MDP planning, we provide
here such an analysis, in which the relationship is modulated
via a measure of problem complexity called near-optimality
exponent. We illustrate the exponent for some interesting
POMDP structures, and examine the role of the informative
heuristics used by AEMS2 in the guarantees. In the second
part of the paper, we introduce a domestic assistance problem
in which a robot monitors partially observable switches and
turns them off if needed. AEMS2 successfully solves this task
in real experiments, and also works better than several state of
the art planners in simulation comparisons.

I. INTRODUCTION

Partially observable Markov decision processes

(POMDPs) model sequential decision-making problems

where states cannot be directly measured, but are inferred

instead from indirect observations, while a cumulative

reward must be maximized. POMDPs are ideal for many

robotic tasks affected by uncertainty, e.g. due to limited

sensing, interaction with humans, etc. [1]–[6]. Online

planning methods solve POMDPs by running a forward

search in the tree of future sequences of actions and

observations, at each step of robot-environment interaction

[7]. Then, an action is chosen and the procedure repeats at

the next step. Many online planners have been proposed,

e.g. [4], [5], [8]–[13], and successfully applied to simulated

robotic tasks [9], [11], [13] and a few real ones [4], [5].

We focus here on Anytime Error Minimization Search 2

(AEMS2) [8], which expands at each iteration a tree node

contributing maximally to the uncertainty of an optimistic

policy, i.e. a policy that would be best if unknown rewards

had the largest possible values. Despite its introduction

nearly a decade ago, AEMS2 has proven difficult to beat,

consistently staying near the top of online planner rankings

[7], [13], [14]. While more recent algorithms like DESPOT

[12] and POMCP [10] can tackle larger-scale problems than

AEMS2, as soon as it works, AEMS2 is usually near-optimal.

The first contribution of our paper is to clarify the reasons

for this success, by providing a quantitative analysis of

AEMS2. While [14] showed that the algorithm achieves ε-

optimality within some finite time, our guarantees are novel

by tightly linking the computation budget n with the value of

The authors are with the Automation Department, Technical University
of Cluj-Napoca, Romania (contact: pall.elod@gmail.com). This work was
supported by two grants of the Romanian National Authority for Scientific
Research, CNCS-UEFISCDI, project numbers PNII-RU-TE-2012-3-0040
and PNII-RU-TE-2014-4-0942; and by grant no. CI2/1.2/2015 of TUCluj.

ε. Specifically, we extend the analysis of optimistic planning

for MDPs [15] to the partially observable case, where a new

challenge is to exploit the informed lower and upper bounds

used by AEMS2 at tree leaves. The lower bound requires

a consistency property, which is satisfied by the often-used

blind policy heuristic [16]. The convergence rate of ε to 0 is

expressed via a near-optimality exponent, and we prove that

good bounds attain an exponent at most as large as in [15].

We study the value of the exponent in some specific POMDP

structures, focusing on the role of observation probabilities.

Our second contribution is defining a new robotic task,

motivated by safekeeping disabled or elderly people in a

known domestic environment. Such people are often affected

by memory decline, which raises risks such as fire due to

ovens or other electrical devices left on, flooding because

of open faucets etc. In this context, our demonstrator is

a simplified scenario in which the robot must look after

electrical switches and turn off any of them left on. Since the

switch states cannot be observed with certainty, a POMDP

model is required. We describe this model and our platform,

a Cyton Gamma 1500 arm mounted on a Pioneer 3-AT

mobile base. We first compare in simulations AEMS2 with

state-of-the art planners including online DESPOT [12], DHS

[13], FHHOP [11], and offline SARSOP [17]. Since AEMS2

obtains better performance for small budgets, it is then

applied to the real task, which it solves successfully. We

also illustrate numerically the analytical bounds.

This task joins the – not very numerous – ranks of real

robotic POMDPs, e.g. [1]–[6]. It is closest to the mobile

manipulation tasks of [2], [6] and similarly motivated to the

assistive tasks of [1], [3]. Related analytical work includes

[10], [12], where probabilistic finite-budget guarantees are

given for POMCP and DESPOT. Motivated by the relation

of MDP complexity with the packing number of near-optimal

solutions [18], we believe that a deep link also exists between

the near-optimality exponent of the POMDP and the covering

number studied as a measure of complexity by e.g. [19], [20].

Next, Section II presents POMDPs and AEMS2, and Sec-

tion III the analysis. Section IV describes the home assistance

task and Section V the results. Section VI concludes.

II. BACKGROUND

A. Partially observable Markov decision processes

We introduce POMDPs following [7] and adapting the

notation to be convenient for the algorithm. States are

denoted s ∈ S, actions u ∈ U , and observations z ∈ Z.

Upon taking an action u in state s: the state changes to s′

with probability T (s, u, s′) where T : S×U ×S → [0, 1] is

the transition function; a reward r = R(s, u) is received,

where R : S × U → R is the reward function; and an

observation z is made with probability O(s′, u, z) where

O : S × U × Z : [0, 1] is the observation function. We

use the generic prime notation to indicate a quantity at the

next step. All spaces S,U, Z are taken discrete and finite,

and let |U | = M , |Z| = N denote the cardinalities of the

action and observation spaces. We assume bounded rewards,

and by convention rescale them to the interval [0, 1] without

changing the solution.

The information accumulated from all actions and obser-

vations so far can be represented via a belief state x [7]:

a distribution x(s) over the underlying states s, belonging

to the space X of probability distributions over S. The

agent starts from some initial belief x0, and if at step k
it executes uk and observes zk+1, then it updates its belief

with xk+1 = τ(xk, uk, zk+1), where τ is defined next. First,

the probability of observing z given x and u is:

P(z |x, u) =
∑

s′

O(s′, u, z)
∑

s

T (s, u, s′)x(s) (1)

Then:

x′(s′) = τ(x, u, z)(s′) =
O(s′, u, z)

P(z |x, u)

∑

s

T (s, u, s′)x(s) (2)

Define now a new reward function ρ(x, u) :=∑
s x(s)R(s, u), and new probabilities:

f(x, u, x′) :=

{
P(z |x, u), if ∃z ∈ Z s.t. x′ = τ(x, u, z)

0, otherwise

These two quantities define the so-called belief MDP, in

which the belief state x evolves in a Markov fashion based

on the actions u. Then, the agent’s behavior is sufficiently

represented by a deterministic policy π : X → U , and the

value of such a policy from initial belief x0 is:

V π(x0) = E

{
∞∑

k=0

γkρ(xk, π(xk))

}

where the expectation is taken over the random belief

trajectories xk+1 ∼ f(xk, π(xk), ·). The objective in a

POMDP is to act according to the optimal policy π∗(x) =
arg maxπ V π(x), which is related to maximizing the ex-

pected sum of discounted rewards in the original POMDP.

Denote V ∗(x) = V π∗

(x).

B. Algorithm: Anytime Error Minimization Search 2

We describe next AEMS2 [8]. It is in fact equivalent to

our optimistic planning for MDPs (OPMDP) [15] applied to

the belief MDP, which allows us to exploit the analysis of

OPMDP and extend it to the partially observable case. So we

introduce AEMS2 in a new way, convenient for this analysis.

At each step k, AEMS2 explores possible solutions (action

sequences) from the current belief xk. It iteratively refines

solutions until e.g. exhausting a computational budget n, and

then returns an action uk based on the reward information

accumulated. This action is applied to the system and the

procedure is repeated from the new belief. We relabel by

convention the current time k to 0, while the procedure of

course works at any step.

0.5

◄ ►

f=0.5f=0.5f=0.75 f=0.25

0.5 0.75 0.250.5 0.5 0.75 0.25

x1

◄1
x1

►1

x0

◄

x1

◄2
x1

►2

►

◄ ►

[0.25, 1.25] [0.6, 1.6]

[=0.544, =1.044]l b

[0, 2][0, 2] [0, 2] [0, 2] [0, 2] [0, 2] [0, 2]

[0, 2] [0, 2]

[0, 2]

d 0=

d = 2

d = 1

r=0.375 r=0

0.25 0.1 0.2 0.6

Fig. 1. Example of planning tree for N = M = 2. The two actions are
symbolically denoted ◭, ◮. The squares are belief state nodes y, labeled
by beliefs x, where superscripts index the possible actions and observation
outcomes, while subscripts are depths, which increase only with the belief
node levels. The actions u ∈ {◭, ◮} are included as circle nodes. Arcs
leading to actions are labeled by the rewards ρ(x, u), while arcs leading to
beliefs are labeled by the probabilities f(x, u, x′), both in blue. The l and
b-values are shown near the nodes in red. The thick subtree shows a tree
policy. Discount factor γ is 0.5, and we use V

u
= 0, V̄u = 1

1−γ
= 2.

(Figures in this paper are best viewed in color.)

The planning process can be visualized using a tree struc-

ture T , exemplified in Figure 1. Each node in the planning

tree has MN children. Specifically, a node y labeled by

belief x is expanded by adding, for each action u and for each

observation z, a new child node y′ labeled by the updated

belief x′ = τ(x, u, z). Denote the children of x along action

u by C(y, u), the leaves of a tree T by L(T), and the belief

label of node y by x(y). Note that beliefs may be duplicated

if they are encountered along multiple action-observation

paths. A tree represents many possible stochastic evolutions

of the system, e.g. for the sequence of actions [◭,◮] there

are four possible belief trajectories in the tree of Figure 1:

those ending in the 3rd, 4th, 7th, and 8th leaves at depth 2.

The algorithm computes upper and lower bounds b and l
on the values of node beliefs, starting from initial bounds V
and V̄ at the leaves, where V (x) ≤ V ∗(x) ≤ V̄ (x). These

initial bounds can be computed in various ways [16], and

at worst can be taken to be the uninformed V u = 0, V̄u =
1

1−γ . The bounds are backed up using dynamic programming

updates along the tree, e.g. for the b-values:

b(y) =

{
V̄ (x(y)), if y is a leaf

maxu[ρ(x(y), u) + γ
∑

y′∈C(y,u) p(y′)b(y′)], else

(3)

where p(y′) = f(x(y), u, x(y′)). E.g. in Figure 1, the b-value

of the root is max{0.375 + γ(0.75 · 1.25 + 0.25 · 1.6), 0 +
γ(0.5 · 2 + 0.5 · 2)} ≈ max{1.044, 1} ≈ 1.044. The l-values

are computed similarly but starting from V at the leaves. By

a straightforward induction from the leaves to the root, we

have l(y) ≤ V ∗(x(y)) ≤ b(y) for any node.

To expand a node, an optimistic tree policy h† is con-

structed, by starting from the root y0 and recursively adding

at each node y the N children along one action that achieves

the maximum in (3). In contrast to a simple policy π, a

tree policy specifies an action choice for each inner belief

node reached under the previous choices, i.e. for all trajectory

realizations up to the (varying) depth of the tree. Note that h†

is a subtree of T . In Figure 1, h† is shown by thick lines, e.g.

the optimistic action branch at the root is ◭ because, as seen

in the calculations above, this action achieved the maximum

in the b-value backup. Once h† has been found, one of its leaf

nodes is selected by maximizing the contribution, defined as:

c(y) = P(y) γd(y)[b(y)− l(y)] (4)

where d(y) is the depth and P(y) is the probability of

reaching y, the product of the individual transition proba-

bilities along the path. E.g. in Figure 1, the gray node has

a probability P (y) = 0.75 · 0.5 = 0.375, and contribution

c(y) = P (y)γ2[2 − 0] = 0.1875. The reader can verify

this contribution is maximal on the optimistic policy h†, and

equal to that of its immediate sibling, so one of these two

nodes is expanded next. The meaning of c(y) is detailed

below. Finally, after n nodes have been expanded, an action

that maximizes the expected l-value from the root is returned.

Algorithm 1 summarizes AEMS2.

Algorithm 1 AEMS2

Input: initial belief x0, expansion budget n
1: initialize tree T with root y0, labeled by x0

2: for i = 1, . . . , n do

3: h† ← y0 ⊲ start building optimistic subtree h†

4: while L(h†) 6⊆ L(T) do

5: retrieve a node y ∈ L(h†) \ L(T)
6: u† = arg max

u
[ρ(x(y), u)+γ

∑
y′∈C(y,u)

p(y′)b(y′)]

7: add children C(y, u†) to h†

8: end while ⊲ end building h†

9: select leaf to expand: y† ← arg maxy∈L(h†) c(y)

10: expand h†, adding all its children to T
11: update b and l-values on the tree

12: end for

Output: u0 = arg max
u

[ρ(x0, u) + γ
∑

y′∈C(y0,u)

p(y′)l(y′)]

To get more insight, consider any tree policy h, con-

structed by assigning actions arbitrarily from the root to the

leaves of T ; and let h ∈ T denote that h was obtained

in this way. Define also an infinitely long tree policy h∞,

achieved by assigning actions to belief nodes indefinitely,

and the expected discounted value v(h∞) of such a policy.

We have v∗ := suph∞
v(h∞) = V ∗(x0), motivating us to

use tree policies as a local optimal solution at x0. For each

policy h, define lower and upper bounds, and the best value

among infinite policies h∞ ≻ h (i.e. starting with h):

L(h) =
∑

y∈L(h)
P(y) [r(y) + γd(y)l(y)],

B(h) =
∑

y∈L(h)
P(y) [r(y) + γd(y)b(y)],

W (h) =
∑

y∈L(h)
P(y) [r(y) + γd(y)V ∗(y)] = sup

h∞≻h
v(h∞)

where r(y) =
∑d(y)−1

k=0 γkrk is the discounted sum of

rewards along the path to y. We have L(h) ≤W (h) ≤ B(h).
The optimistic policy h† constructed as above maximizes the

upper bound B among all tree policies h ∈ T , so it is the

most promising partial solution seen so far. Note that B(h) =
L(h) +

∑
y∈L(h) c(y), and let the latter sum be denoted by

δ(h). This quantity is the uncertainty on the value of h, and

c(y) in (4) is the contribution of leaf y to this uncertainty.

Thus, finally, the algorithm expands the leaf contributing the

most to the uncertainty on the optimistic policy. The action

returned at the end in fact corresponds to choosing a tree

policy maximizing the lower bound, ĥ = arg maxh∈T L(h),
a safe choice, and then applying its first action.

The main difference from the description in [8] is that

there, contributions are computed for all leaves, with:

P(y) γd(y)[b(y)− l(y)]

d(y)−1∏

k=0

P(uk | yk)

where P(uk | yk) is a probability of selecting action uk from

node yk along the path to y. However, for AEMS2 [8] takes

P(uk | yk) 1 for an action maximizing the upper bound,

which means all leaves outside h† have contribution 0 and

will not be selected, just like in Algorithm 1.

III. PERFORMANCE ANALYSIS OF AEMS2

We study the near-optimality and convergence rate of

AEMS2, by extending the analysis line of OPMDP from

[15] to the partially observable case. In [15], the uninformed

bounds V̄u, V u were used, and using better bounds turns

out to be nontrivial. In particular, V requires a consistency

property, which is satisfied by the often-used blind policy

heuristic [16]. The convergence rate is expressed via a near-

optimality exponent β, and we prove that good bounds attain

an exponent at most as large as in [15]. Finally, we study

the value of β in some interesting POMDPs, focusing on the

role of the observation function O.

The consistency property prevents that expanding a node

and backing up the children bounds leads to a worse bound

than the initial one, which would not make sense.

Assumption 1: The lower bound is consistent, namely:

maxu[ρ(x, u) + γ
∑

x′ f(x, u, x′)V (x′)] ≥ V (x).
We start by proving that near-optimality is given by the

smallest uncertainty of any optimistic policy refined. This

quantity can be computed a posteriori by the algorithm. Let

subscript i denote quantities at iteration i, e.g. Ti, h†
i , ĥi =

arg maxh∈Ti
L(h). Note we omit proofs due to space limits.

Theorem 2: AEMS2 returns a policy ĥn so that v∗ −
W (ĥn) ≤ δ∗, where δ∗ = minn

i=1 δ(h†
i).

Note that v∗ − W (ĥn) upper-bounds the sub-optimality

v∗−W (u0) of the action choice u0, which is a good measure

of the performance of an online planner.

We next establish that the blind policy lower bound [7],

[16] is consistent, which is important because this bound is

widely used in AEMS2 and POMDPs in general. The blind

policy iterates V u
t (s) = R(s, u) + γ

∑
s′ T (s, u, s′)V u

t−1(s
′)

an arbitrary number of times, starting from V u
0 = 0, and

then chooses V (x) = maxu

∑
s x(s)V u

t (s). We must show

that the l.h.s. of the consistency inequality:

max
u

[ρ(x, u) + γ
∑

x′

f(x, u, x′)V (x′)]

=max
u

[ρ(x, u) + γ
∑

z

P(z |x, u)max
u′

∑

s′

x′(s′)V u′

t (s′)]

where x′ = τ(x, u, z), is larger than the r.h.s.:

V (x) = max
u

∑

s

x(s)[R(s, u) + γ
∑

s′

T (s, u, s′)V u
t−1(s

′)]

= max
u

[ρ(x, u) + γ
∑

s

x(s)
∑

s′

T (s, u, s′)V u
t−1(s

′)]

Thus, it suffices to compare the two terms multiplying γ in

the two expressions. The former term can be written, using

(2) to express τ and noticing that P(z |x, u) simplifies:

∑

z

max
u′

∑

s′

O(s′, u, z)

(∑

s

T (s, u, s′)x(s)

)
V u′

t (s′)

=
∑

z

max
u′

∑

s′

∑

s

O(s′, u, z)T (s, u, s′)x(s)V u′

t (s′)

=
∑

z

max
u′

∑

s

x(s)
∑

s′

O(s′, u, z)T (s, u, s′)V u′

t (s′)

≥max
u′

∑

z

∑

s

x(s)
∑

s′

O(s′, u, z)T (s, u, s′)V u′

t (s′)

= max
u′

∑

s

x(s)
∑

s′

∑

z

O(s′, u, z)T (s, u, s′)V u′

t (s′)

= max
u′

∑

s

x(s)
∑

s′

T (s, u, s′)V u′

t (s′)

≥
∑

s

x(s)
∑

s′

T (s, u, s′)V u
t−1(s

′)

where we used V u
t ≥ V u

t−1, manipulated some summation

indices, and exchanged a summation with a maximization

preserving the desired direction of the inequality. This im-

plies the original consistency inequality.

We move on to an a priori guarantee. For any node y,

define first a measure of its impact, as the largest uncertainty

of any (finite) policy to which it maximally contributes:

α(y) = sup
h∈H(y)

δ(h),H(y) = {h | y ∈ arg max
y′∈L(h)

c(y′)}

Then, for any ε ≥ 0 define the set of nodes with (i) at

least ε impact to (ii) a near-optimal policy, as follows:

Yε = {y ∈ T∞|(i) α(y) ≥ ε,

(ii) ∃h∞ ∋ y, v∗ − v(h∞) ≤ α(y)}
(5)

Intuitively, these nodes are important to examine, and indeed

it turns out that AEMS2 only expands such nodes, in the

following sense.

Lemma 3: All nodes y†
i expanded by AEMS2 belong to

Yα∗ , where α∗ = minn
i=1 α(y†

i).
To characterize the size of Yε, and thereby the complexity

of the planning problem at hand, define the near-optimality

exponent as the smallest number β ≥ 0 so that |Yε| =
Õ(ε−β) for ε > 0, i.e. so that ∃a > 0, b ≥ 0, |Yε| ≤
a[log(1/ε)]bε−β . We assume here V (x0) < V̄ (x0), to ensure

β makes sense. We can now provide the final a priori bound.

Theorem 4: The near-optimality v∗−W (ĥn) of AEMS2 is

Õ(n−1/β) when β > 0, or O(exp[(−n/a)1/b]) when β = 0.

The smaller β, the faster AEMS2 converges to an optimal

solution. In particular, when β = 0, i.e. when the problem

is easy, convergence is (stretched-)exponential.

.

0.5

()q
0.5

(1-)q
0.5

()q
0.5

(1-)q

0.5

()q
0.5

(1-)q 0.5

()q
0.5

(1-)q

0.5

()q
0.5

(1-)q 0.5

()q
0.5

(1-)q

0.5

()q
0.5

(1-)q 0.5

()q
0.5

(1-)q

0.5

()q
0.5

(1-)q 0.5

()q
0.5

(1-)q

Fig. 2. Example tree structures for different values of β.

Recall that this analysis line extends that of OPMDP in

[15], where uninformed bounds V u, V̄u were used together

with a slightly different definition of important nodes:

Ỹε = {y ∈T∞|(i) α̃(y) ≥ ε,

(ii) ∃h∞ ∋ y, v∗ − v(h∞) ≤ Nα̃(y)/γ}
(6)

Here, α̃(y) ≥ αu(y) conservatively estimates the impact.

Subscript ‘u’ denotes quantities with uninformed bounds,

which are tighter than those obtained with α̃ and (6); the

latter are denoted by a tilde. Exponent β̃ is defined so that

Ỹε = Õ(ε−β̃). We expect AEMS2 with good bounds to be

faster than uninformed OPMDP, and to illustrate we show

that, indeed, good bounds cannot lead to a larger β than β̃.

Proposition 5: If V ≥ V u, V̄ ≤ V̄u, then β ≤ β̃.

Next, we illustrate the complexity of some interesting

POMDP structures, exploiting Proposition 5. We focus

on the role of the observation function O, and consider

O(s′, u, z) = o(z),∀s′, u, T (s, u, s′) = t(s′),∀s, u. Then,

using (1), we get the following transition probabilities

P(z |x, u) in the belief MDP:
∑

s′

O(s′, u, z)t(s′)
∑

s

x(s) = o(z)
∑

s′

t(s′) = o(z),∀x, u

These restrictions on the structure allow us to match the

MDPs for which exponents β̃ were studied in [15], and

thereby to get an upper bound and some insight on β. To

isolate the effect of o we take for now all the rewards equal

to 1. Two particular edge cases are most informative. In

the first case, o is the uniform distribution, leading to a

difficult problem with high uncertainty; such probabilities

are exemplified in boldface in Figure 2, for N = 2. In this

case, we find that β ≤ β̃ = log NM
log 1/γ , which is also the largest

possible value. Here NM is the branching factor of the tree

that AEMS2 explores, and the value tells us that the entire

tree may have to be explored, so the algorithm converges

slowly, cf. Theorem 4.

In the second case, o is a Bernoulli distribution q, 1 − q
with q close to 1, i.e., one observation among the two has

high probability, leading to an easier problem with infor-

mative observations. These probabilities are in parentheses

in Figure 2. We consider the deterministic limit of q → 1.

Then, β̃ → log M
log 1/γ , so only the high-probability tree branches

are explored for all M actions, and AEMS2 converges faster.

To understand the influence of the rewards, consider again

the uniform o but now let a single action get rewards of 1
everywhere on the tree, while the other actions get 0, see

again Figure 2 where the high-reward action nodes are gray.

In this case, the exponent is around log N
log 1/γ (see [15] for

details), so the branching due to the actions is eliminated,

and the algorithm only explores the single optimal policy,

shown as a thick subtree in Figure 2.

The overall insight is that complexity is larger for “more

uniform” problems, in terms of distributions or rewards; and

it is small when the algorithm can focus on high-probability

solutions with distinctly high rewards. Beyond the qualitative

Proposition 5, it would be very interesting to investigate

quantitatively the relation between bound quality and β,

taking the structure of observations and rewards into account.

This is our first point for future work.

IV. ROBOTIC HOME ASSISTANCE APPLICATION

We consider a scenario in which a robot must look after

electrical switches and turn off any of them left on. Since

the switch states cannot be observed fully accurately, not all

the switches can be seen at once, and the motion of the robot

must be controlled, a POMDP model is ideal for this task.

A. POMDP model of the home assistance task

The states of the home assistance task can be divided in

two classes: locations and switch states. The robot location

in the environment is discretized into a grid coordinate

λ ∈ Λ, which is fully observable. The state of each switch

i, wi ∈ {on, off}, is partially observable. The state space

consists of all combinations of grid locations and switch

states, S = Λ×W . For switch i, we define its location λi, as

well 3 sets of locations Λi,j , j ∈ {A,B,C} from which it is

observable with different probabilities, as explained below.

Figure 3 illustrates this type of model for our real lab.

Fig. 3. Discretized map of size (5 × 9), where the yellow circles are
the location of the switches. The rightmost corner is (1, 1) and the initial
location of the robot is (1, 8). Dark gray cells are obstacles and light gray
cells denote the observation ranges of three types A, B, C. The green line
shows the trajectory in the real experiment of Section V-B, where O, F, S
indicate the execution of observe, flip, and stay actions, respectively.

The possible actions are U = {north, east, south, west,
stay, flip, observe}, out of which the first five are determinis-

tic. The four motion actions navigate the robot between cells

relatively to the map. If an action would lead to leaving the

map or hitting an obstacle, then the robot does not move.

Action ‘stay’ keeps the robot in the same cell. Action ‘flip’

is stochastic and succeeds only with 80% probability, a value

TABLE I

SENSING PROBABILITIES FOR ONE SWITCH.

switch on switch off
Location type TP FN TN FP

A 0.82 0.18 0.78 0.22

B 0.84 0.16 1.00 0.00

C 0.89 0.11 0.93 0.07

which we computed from experiments, and which is due to

the limited arm accuracy of about 1 cm (because of the arm

construction and imprecise visual feedback).

The observation is limited to the switches: zi ∈ {on,
off, unobserved}. Observation probabilities depend on the

robot’s location relative to the switch, and on the switch

state. Table I shows the probabilities of sensing true positives

TP and false negatives FN when the switch is on, and true

negatives TN and false positives FP when it is off, for each

type of location j ∈ {A,B,C}. These sensing probabilities

were estimated experimentally. Using them, the observation

function for a single switch i is defined:

Oi(s
′,observe, ·) =






[TPj −
ǫ
2 , FNj −

ǫ
2 , ǫ], if w′

i = on, λ′ ∈ Λi,j

[FPj −
ǫ
2 , TNj −

ǫ
2 , ǫ], if w′

i = off, λ′ ∈ Λi,j

[0, 0, 1], otherwise

Here, ǫ = 0.001 is a small probability of not observing the

switch even in the observable range, which we introduced to

cover rare situations when the camera view is obstructed. For

example, if action ‘observe’ is taken in cell A with the switch

on, the probabilities of seeing ‘on’, ‘off’, and ‘unobserved’

are 0.82 − ǫ
2 , 0.18 − ǫ

2 , and ǫ, respectively. We assume the

observation ranges of different switches are disjoint, so the

overall observation function O is easy to compute.

The reward function is defined as follows:

R(s, u) =






1 if u = flip, λ = λi, wi = on

0 if u = flip, λ = λi, wi = off

0.601 if u = stay (for any s)

0.6 otherwise

(7)

Recall that reward values must be normalized between 0 and

1. Maximum reward 1 is given for turning off an on switch,

and the smallest reward 0 (maximum penalty) is given for

flipping an off switch to on. In other cases, a better than

neutral reward is given, 0.6, to avoid a misleading solution

that infinitely toggles a switch (getting average reward 0.5).

A marginally greater reward was chosen for ‘stay’ to reduce

energy consumption.

B. Hardware and software

A Pioneer 3-AT wheeled robot forms the base of the

platform, and a Sick LMS200 laser scanner is used for

localization, together with the odometry sensors built into the

base. On top of the laser scanner we placed the 7DOF Cyton

Gamma 1500 lightweight robotic arm. A camera mounted

above the gripper is used for switch state sensing and for

vision feedback in arm trajectory control, see Figure 4.

The application is written in C++ and Python, under the

Robot Operating System (ROS). A high-level controller calls

TABLE II

PERFORMANCE COMPARISON ON THE HOME ASSISTANCE MODEL.

τ = 1 ms τ = 10 ms τ = 100 ms τ = 500 ms τ = 750 ms τ = 1000 ms

AEMS2 9.858 (9.844, 9.872) 9.897 (9.879, 9.915) 9.903 (9.885, 9.922) 9.920 (9.896, 9.943) 9.874 (9.858, 9.891) 9.876 (9.858, 9.895)

DH 9.424 −− 9.424 −− 9.856 (9.840, 9.871) 9.866 (9.847, 9.885) 9.835 (9.812, 9.858) 9.871 (9.850, 9.891)

FHHOP 9.424 −− 9.424 −− 9.842 (9.826, 9.859) 9.837 (9.815, 9.859) 9.853 (9.830, 9.876) 9.856 (9.875, 9.836)

DESPOT 9.566 (9.528, 9.603) 9.548 (9.516, 9.579) 9.613 (9.587, 9.639) 9.643 (9.601, 9.685) 9.641 (9.604, 9.678) 9.650 (9.609, 9.691)

SARSOP 9.877 (9.857, 9.898); offline execution time 1360 ms

Fig. 4. Left: robot system with its elements. Right: robot executing a flip
action; the inset shows the camera view.

the low-level motion and sensing procedures needed by the

POMDP solver to execute actions and make measurements.

E.g. switch sensing uses blob detection for the LED indicat-

ing the switch state and marker (chessboard) pose estimation

on a 2D image, see Figure 4. The most involved, ‘flip’

action is a sequence of plans generated with the MoveIt!

ROS package, using vision feedback. The relative pose of

the marker is used to compute goal positions for the end

effector, as well as position corrections after execution.

Initially, visual contact with the marker is necessary, so the

end effector is oriented perpendicularly to the marker plane.

Next, the arm is moved vertically to aim for the switch

button. Finally, the button is pushed by constraining the

orientation and position of the end effector so that it only

translates on one axis. The low-level controllers and sensing

run on a laptop placed on the mobile platform, while the

computationally intensive POMDP planning algorithm and

3D visualization run on a desktop with a quad-core Xeon

E5-1620 3.70GHz CPU and 16GB RAM.

V. PLANNING RESULTS FOR HOME ASSISTANCE

Our goal in this section is to solve the home assistance

task using POMDP planning. We start with simulations that

compare AEMS2 with several state of the art online planners:

DHS [13], FHHOP [11], and DESPOT [12], as well as the

SARSOP [17] offline planner as a baseline. The performance

of these planners on standard POMDPs is known [7], [10],

[12]–[14], so here we only apply them to the new task. We

then evaluate the winner, AEMS2, in the real-life task.

We implemented AEMS2, DHS, and FHHOP in the

appl package (http://bigbird.comp.nus.edu.sg/

pmwiki/farm/appl/), which originally includes SAR-

SOP; and we used the publicly available appl implementation

of DESPOT. For all algorithms, we initialize lower and upper

bounds V , V̄ with the blind policy and Fast Informed Bound

techniques [16], respectively. To improve performance, the

subtree of the action chosen at each current step is taken as

a starting point for tree construction at the next step (e.g. if

action ◭ is chosen in Figure 1, and observation 2 is seen,

then the node of x◭,2
1 becomes the new root, and all nodes

outside its subtree are deleted).

A. Algorithm comparison in simulation

The algorithms are applied to the model of our real lab,

shown in Figure 3. This has |Λ| = 43 location states,

two switches leading to |W | = 4 switch states, |U | = 7
actions, and |Z| = 9 observations. The initial robot location

is (1,8), as shown in Figure 3, and both switches are on.

The initial belief state x0 is a uniform distribution over the

possible switch states. With reward function (7), DHS and

FHHOP get stuck choosing only action ‘stay’. So, to make

the comparison informative, we change for all algorithms

the reward of ‘stay’ to 0.6, equal to the neutral reward of

navigation and observation actions.

We compare the discounted return of the online algorithms

over trajectories of 30 steps, as a function of the computa-

tional budget, expressed as the time allowed for tree expan-

sion to choose one action, τ = 1, 10, 100, 500, 750, 1000 ms.

SARSOP controls the robot using a solution found offline,

with a precision of 0.000099 [17]. The discount factor is γ =
0.95. We ran 100 independent experiments for each setting,

and computed the mean return with its 95% confidence

interval. These results are shown in Table II.

AEMS2 has better performance for all τ ≤ 500, while

for greater values of τ statistically none of the algorithms

outperforms the others (but AEMS2 still has the largest mean

performance). This confirms the good quality of AEMS2

predicted by our analysis. Note that the different returns

correspond to real differences in task-solving performance,

e.g. for τ = 1 and 10, DHS and FHHOP still always choose

action ‘stay’, while AEMS2 and DESPOT do not. Returns

are usually larger for larger budgets, as the analysis indicates,

although there are exceptions, e.g. for τ = {750, 1000}
AEMS2 has slightly smaller performance than for τ =
{100, 500}. SARSOP returns an offline, global solution with

performance that is statistically similar to AEMS2. The exe-

cution time of SARSOP is, however, larger than the planning

time used by AEMS2 over the entire 30-step trajectory when

τ ∈ {1, 10}ms, so AEMS2 is computationally preferable for

these budgets.

Next, we provide some insight on how the analysis impacts

the results. Figure 5 shows the near-optimality bounds δ∗ of

Theorem 2, for each step k along a representative trajectory.

The bound becomes very tight because the subtrees are

reused, and because the local planning problems become

0 5 10 15 20 25 30
10

−5

10
−3

10
−1

10
0

k

δ
*

Fig. 5. Evolution of δ∗.

simpler as the task is being solved. To illustrate Theorem 4,

we created a very large tree using τ = 60 s from the initial

state, and computed its average branching factor, which is

related to β as explained in Section III. The result is around

2.23, much smaller than the worst-case branching factor

21 = |U | × 3 (recall that switches do not overlap so at most

3 observations have nonzero probability at any state). Note

that complexity may grow exponentially in the number of

switches with overlapping sensing and manipulation areas

(observations may give information on several switches, and

actions must choose between them). This growth is however

just a worst case, since as seen above the real branching

factor will typically be much smaller.

B. Real-life experiment

Given the better performance for smaller budgets, AEMS2

is selected for the real experiment. We reinstate the reward

0.601 for the ‘stay’ action, since reducing power consump-

tion is important in practice. The initial state is the same as

above. A budget of n = 2000 node expansions is imposed for

each action search (leading to execution times τ ≈ 78 ms).

The trajectory in the real experiment is shown in Figure

3. The robot determines that both switches are on and flips

them off, and once it reaches this goal, it chooses ‘stay’.

An interesting feature related to partial observability is that

the robot always performs two consecutive observations to

reduce uncertainty, from locations of type B where sensing

accuracy is the highest. Furthermore, observations are made

before and after flipping a switch, to make sure the switch

is off, given the 80% success rate of flipping. Figure 4,

right illustrates the robot in action, see also the full demo

video at https://youtu.be/xc4t6p9dVFM. Our soft-

ware is publicly available under BSD licensing at http:

//rocon.utcluj.ro/node/171.

VI. CONCLUSIONS AND FUTURE WORK

The near-optimality of the AEMS2 algorithm was an-

alyzed as a function of the computation budget invested.

The algorithm was successfully applied to a new domestic

assistance problem, in which a robot monitors partially

observable switches and turns them off if needed.

The next step for the application is monitoring the human,

to prevent the robot from becoming a nuisance (collisions,

turning off lights that are actually needed), revisit old

switches in case they were turned back on, etc. On the

analytical side, it is important to quantitatively exploit the

informed AEMS2 bounds and to understand the complexity

of more realistic POMDP structures. It is also interesting to

investigate the relation between the near-optimality exponent

and the covering number of [19], [20].

REFERENCES

[1] J. Pineau and S. Thrun, “High-level robot behavior control using
POMDPs,” in AAAI Workshop on Cognitive Robotics, Edmonton,
Canada, 28 Jul 2002.

[2] G. A. Hollinger, D. Ferguson, S. S. Srinivasa, and S. Singh, “Com-
bining search and action for mobile robots,” in IEEE Int. Conf. on

Robotics and Automation (ICRA-09), Kobe, Japan, 12–17 May 2009,
pp. 952–957.

[3] T. Taha, J. V. Miró, and G. Dissanayake, “A POMDP framework for
modelling human interaction with assistive robots,” in IEEE Int. Conf.

on Robotics and Automation (ICRA-11), Shanghai, China, 9–13 May
2011, pp. 544–549.

[4] P. Monso, G. Alenyà, and C. Torras, “POMDP approach to robotized
clothes separation,” in IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS-12), Vilamoura, Portugal, 7–12 October 2012, pp.
1324–1329.

[5] C. P. C. Chanel, C. Lesire, and F. Teichteil-Königsbuch, “A robotic
execution framework for online probabilistic (re)planning,” in 24th

Int. Conf. on Automated Planning and Scheduling (ICAPS-14),
Portsmouth, US, 21–26 Jun 2014, pp. 454–462.

[6] N. A. Vien and M. Toussaint, “POMDP manipulation via trajectory
optimization,” in IEEE/RSJ Int. Conf. on Intelligent Robots and

Systems (IROS-15), Hamburg, Germany, 28 Sept – 2 Oct 2015, pp.
242–249.

[7] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online planning
algorithms for POMDPs,” Journal of Artificial Intelligence Research,
vol. 32, pp. 663–704, 2008.

[8] S. Ross and B. Chaib-draa, “AEMS: An anytime online search
algorithm for approximate policy refinement in large POMDPs,” in
20th Int. Joint Conf. on Artificial Intelligence (IJCAI-07), Hyderabad,
India, 6–12 Jan 2007, pp. 2592–2598.

[9] S. Ross, B. Chaib-draa, and J. Pineau, “Bayesian reinforcement
learning in continuous POMDPs with application to robot navigation,”
in IEEE Int. Conf. on Robotics and Automation, (ICRA-08), Pasadena,
US, 19–23 May 2008, pp. 2845–2851.

[10] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,”
in Advances in Neural Information Processing Systems 23, Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, Eds. MIT
Press, 2010, pp. 2164–2172.

[11] Z. Zhang and X. Chen, “FHHOP: A factored hybrid heuristic online
planning algorithm for large POMDPs,” in 28th Conf. on Uncertainty

in Artificial Intelligence (UAI-12), Catalina Island, US, 15–17 Aug
2012, pp. 934–943.

[12] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP
planning with regularization,” in Advances in Neural Information

Processing Systems 26, 2013, pp. 1772–1780.
[13] A. Eck and L. Soh, “Online heuristic planning for highly uncertain

domains,” in 2014 Int. Conf. on Autonomous Agents and Multi-Agent

Systems (AAMAS-14), Richland, US, 5–9 May 2014, pp. 741–748.
[14] S. Ross, J. Pineau, and B. Chaib-draa, “Theoretical analysis of

heuristic search methods for online POMDPs,” in Advances in Neural

Information Processing Systems 20, J. C. Platt, D. Koller, Y. Singer,
and S. T. Roweis, Eds. MIT Press, 2008, pp. 1233–1240.

[15] L. Buşoniu and R. Munos, “Optimistic planning for Markov decision
processes,” in 15th Int. Conf. on Artificial Intelligence and Statistics

(AISTATS-12), La Palma, Canary Islands, Spain, 21–23 Apr 2012, pp.
182–189.

[16] M. Hauskrecht, “Value-function approximations for partially observ-
able Markov decision processes,” Journal of Artificial Intelligence

Research, vol. 13, pp. 33–94, 2000.
[17] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: efficient point-

based POMDP planning by approximating optimally reachable belief
spaces,” in Robotics: Science and Systems IV (RSS-08), Zurich,
Switzerland, 25–28 Jun 2008, pp. 65–72.

[18] R. Munos, “The optimistic principle applied to games, optimization
and planning: Towards foundations of Monte-Carlo tree search,”
Foundations and Trends in Machine Learning, vol. 7, no. 1, pp. 1–130,
2014.

[19] Z. Zhang, M. L. Littman, and X. Chen, “Covering number as a
complexity measure for POMDP planning and learning,” in 26th AAAI

Conf. on Artificial Intelligence (AAAI-12), Toronto, Canada, 22–26 Jul
2012, pp. 1853–1859.

[20] Z. Zhang, D. Hsu, and W. S. Lee, “Covering number for efficient
heuristic-based POMDP planning,” in 31th Int. Conf. on Machine

Learning (ICML-14), Beijing, China, 21–26 Jun 2014, pp. 28–36.

