
A simple path-aware optimization method
for mobile robots ⋆

Tudor Sântejudean ∗ Lucian Buşoniu ∗ Vineeth Varma ∗∗

Constantin Morărescu ∗∗

∗ Technical University of Cluj-Napoca, Romania (e-mail:
tudorsantejudean@gmail.com, lucian@busoniu.net)

∗∗ Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
{vineeth.varma, constantin.morarescu}@univ-lorraine.fr.

Abstract: We present an approach for a mobile robot to seek the global maximum of an initially
unknown function defined over its operating space. The method exploits a Lipschitz assumption
to define an upper bound on the function from previously seen samples, and optimistically
moves towards the largest upper-bound point. This point is iteratively changed whenever new
samples make it clear that it is suboptimal. In simulations, the method finds the global maxima
with much less computation than an existing, much more involved technique, while keeping
performance acceptable. Real-robot experiments confirm the effectiveness of the approach.

Keywords: Optimization, learning control, mobile robots.

1. INTRODUCTION

Consider a scenario in which a mobile robot must find
the optimum of an initially unknown function defined
over its physical operating area or volume. Different from
classical optimization, the trajectory is important due to
energy and time considerations. This scenario, which we
call “path-aware global optimization”, can be applied to
find with a robot for instance the maximal density of
sea bottom, surface, or water-column ocean litter (see
http://seaclear-project.eu), the maximal or minimal
location of pollutant concentration, temperature, humidity
etc. (Essa et al., 2020; Lilienthal and Duckett, 2004),
or the strongest-signal location for radio transmission in
networked robots (Fink and Kumar, 2010; Busoniu et al.,
2020), among others.

Local optimization methods are inappropriate since they
do not find the global optimum. On the other hand, global
optimization (Horst and Tuy, 1996) like branch-and-bound
techniques (Lawler and Woods, 1966) or Bayesian opti-
mization (Frazier, 2018) may choose the next sample at a
location arbitrarily far away from the current robot posi-
tion. That is because they do not take into account that
the robot must physically move to that location, which
is costly. In path-aware optimization, the robot must be
able to revise its trajectory if from the newly accumulated
samples it becomes clear that the optimum is located in
another direction.

In (Santejudean and Busoniu, 2021), we introduced a path-
aware, optimistic optimization method (OOPA) that is a
variant of the branch-and-bound, deterministic optimistic

⋆ This work was been financially supported from H2020 SeaClear, a
project that received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement
No 871295; and by the Romanian National Authority for Scientific
Research, CNCS-UEFISCDI, SeaClear support project number PN-
III-P3-3.6-H2020-2020-0060.

optimization (DOO) algorithm (Munos, 2011). The bound
exploits a Lipschitz assumption on the function. Like other
global methods, DOO samples points irrespective of their
position, in this case choosing at each iteration the point
where an upper bound on the function is maximal. In
OOPA, a “sawtooth” upper bound is built from position-
function value pairs encountered along the trajectory.
Instead of going straight to the maximal-bound point like
DOO, OOPA solves an optimal control problem that aims
both to visit locations with large function values or upper
bounds, and also to refine (lower) these upper bounds. An
intricate procedure is used to estimate these refinements
and solve the optimal control problem approximately.

While OOPA works well in practice, it is computationally
intensive and depends on tuning several parameters em-
pirically. The algorithm involves several types of approxi-
mation, which make it difficult to analyze. Our objective
in this paper is to provide a much simpler and easier to
tune algorithm, without sacrificing too much performance.

To this end, we use the same upper bound as in OOPA,
but instead of solving a complicated optimal control prob-
lem, we adopt a much simpler rule. The algorithm moves
towards the maximal-upper bound point as long as the
bound value there is larger than all the sampled function
values. When this condition is no longer true, the algo-
rithm turns towards the new maximal-bound point. We
call this method “Turn When Function value is larger”,
abbreviated FTW.

In simulated experiments, we show that FTW is com-
petitive with OOPA in terms of how quickly it reaches
close to the optimum, while being significantly cheaper
computationally. We investigate the dependence of the
performance on the smoothness of the underyling function.
We finally provide a real-robot application of our method
where a TurtleBot3 mobile robot seeks the darkest location
on a 2D surface.

Besides optimization, our technique is related to path
planning in robotics (LaValle, 2006; Alexopoulos and Grif-
fin, 1992; Aggarwal and Kumar, 2020). Classically, path
planning aims to find a given goal position; for us, the
goal position is unknown, and we exploit the structure of
the problem to provide a custom path planning approach.

The paper has the following structure: first, in Section 2
the problem is defined, and DOO and OOPA are pre-
sented. Then, the new algorithm FTW is explained in
Section 3. Section 4 presents our simulation results and
Secton 5 the real experiment. In the end, in Section 6 some
conclusions and future work are given.

2. PROBLEM STATEMENT AND BACKGROUND

Consider a problem in which a mobile robot needs to
approximate the global optimum of a function f : X →
R in minimum time using sequential evaluations of the
objective f . The robot moves with the dynamics described
by the control inputs u ∈ U over the search space X,
defined in discrete time by g : X × U → X:

g(xk; uk) := xk+1 (1)

with k indexing the step of the trajectory. The agent
has no previous knowledge of the function and thus f
must be learnt while searching for the optimum x∗ :=
argmaxx∈Xf(x). Due to dynamics constraints (e.g. limited
velocity), it is not possible for the robot to sample at
next steps positions situated arbitrarily far away from
each other, being limited to the neighboring ones. This
problem formulation is formally known as path-aware
global optimization (Santejudean and Busoniu, 2021).

DOO is a global optimization algorithm belonging to
the branch-and-bound class that aims to estimate the
optimum of f from successive function evaluations. It
sequentially splits the search space X into finer partitions
and samples to expand further only those sets associated
with the highest upper bound values on the objective
function. After a numerical budget has been exhausted,
the algorithm approximates the maximum as the location
x with the highest f value evaluated so far. An assumption
made by DOO is that there exists a (semi) metric over X,
denoted by l, w.r.t. which f is Lipschitz continuous at least
around its optima, in the sense:

f(x∗)− f(x) ≤ l(x∗; x);∀x ∈ X (2)

where x∗ ∈ argmaxx∈Xf(x). For convenience, we will
require here the property to hold for any pair (x1; x2) ∈
X2:

|f(x1)− f(x2)| ≤ l(x1; x2); (3)
and the infinity norm weighted by the Lipschitz constant
M will be chosen as the metric l over X:

l(x1; x2) =M ||x1 − x2||∞; (4)

Our method can be extended to any metric l. Note that a
regularity assumption such as Lipschitz continuity is likely
required to obtain a global optimization algorithm that
does not require sampling the entire space.

Exploiting the Lipschitz property described in equations
(2)-(4), we use here an alternative approach to the parti-
tion splitting in DOO: the construction of a so-called “saw-
tooth” upper bound (Munos, 2014). This upper bound
function is defined as B : X → R so that:

f(x) ≤ B(x) := min
(xs;f(xs))∈S

[f(xs) + l(x; xs)]; ∀x ∈ X (5)

where xs is a sampled point and (xs; f(xs)) ∈ S, denoting
with S the set of samples (function evaluations) considered
while building B. See Figure 2 for an example. At each
iteration, the next state to sample is given by the formula:

x+ := argmaxx∈XB(x): (6)

The algorithm iteratively samples points selected with
equation (6). Note that B is lowered (refined) with each
new sample gathered by the robot, implicitly via (5).

The approach in which the robot picks the point according
to (6), commits to this point, and only changes the
trajectory once it has been reached, will be called Classical
DOO (CDOO).

However, if one accounts for the dynamics constraints pre-
viously discussed, this classical strategy becomes inappro-
priate. By committing to paths leading to the maxima of
B, the robot would travel trajectories that in the meantime
became suboptimal, as new information (in the form of
samples) becomes available. Figure 1 provides some intu-
ition on this phenomenon, which we call overcommitment.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

robot position

function optimum

overcommitted trajectory

optimized trajectory

Fig. 1. Based on the information available to the robot
when it is at the black cross, a classical algorithm de-
cides to check the point at the black arrow. However,
samples (dots) accumulated along the black trajectory
give more information about the optimum (blue disk),
so it becomes apparent that continuing along this tra-
jectory would waste energy and time. Thus, the robot
should change heading to the magenta trajectory.

To address these issues, Path-Aware Optimistic Optimiza-
tion (OOPA) (Santejudean and Busoniu, 2021) also uses
the upper bound of (5) while searching for the optimum,
but it solves at each step an optimal control problem
(OCP) to obtain the next action to be taken by the robot.
The OCP objective is to maximize the cumulative sum of
rewards (negative costs), where each reward is defined as
a refinement of the upper bound weighted by the mean
between the bound and function values:

�(x; u) =
bf(x) +B(x)

2
r(x; u) (7)

Here, �(x; u) is the reward function, bf an estimate ob-
tained using a sample-based approximator (e.g. nearest-
neighbor), B is the upper bound, and r(x; u) is the volume
predicted to be refined by applying action u in state x. The
idea is that we prefer actions that lead us to regions wherebf or B are large (since either may contain optima), and at
the same time obtain large refinements of the upper bound,
i.e. a large amount of information about this bound. For

more details regarding the computation of � and how the
OCP is solved, please refer to Santejudean and Busoniu
(2021).

3. ALGORITHM

While OOPA behaves well in experiments, it is computa-
tionally intensive and nontrivial to tune. Next, we provide
a much simpler algorithm and investigate how much per-
formance must be sacrificed to achieve this simplicity.

Like CDOO and OOPA, our new approach extends the
DOO principle by building and refining with each new f -
sample gathered the upper bound in (5), with the goal
of focusing the search towards x∗. To tackle the danger
of overcommitment, the robot continuously monitors the
upper bound and function values with each new sample
gathered. If the upper bound of the currently targeted
state (the last-chosen maximal-B location) becomes lower
than an f -sample previously seen by the robot, the current
path is clearly suboptimal. In such a case, the robot
updates its target to the current maximum of B. This
idea is expected to save energy and time, and will be called
FTW, as the robot Turns When a previous Function value
becomes larger than the upper bound of the currently
targeted position.

Figure 2 provides some intuition on the difference between
the CDOO and FTW methods. The global maximum of
the function is marked with a red star and denoted with f∗.
The robot is heading towards the left endpoint ofX, where
initially the bound was maximal (marked with a blue star
at the end of the blue dotted line). At step k+3, the refined
bound at this initial target point becomes lower than the
previous function sample f(xk), as shown by the horizontal
dotted line, and thus FTW changes direction towards
the right. In contrast, CDOO continues the suboptimal
trajectory until reaching the position initially targeted,
thus wasting energy and time.

0 5 10 15 20 25

x

0

5

10

20

30

40

f

B

samples of f

heading B-values

f
*

CDOO FTW

f
*

f(x
k+3

)

f(x
k
)

Fig. 2. The latest upper bound B (the saw-tooth drawn
with continuous blue lines) envelopes f (black line)
and has been refined with each new sampled gathered
(black stars). When the upper bound of the current
target point (blue star to the left) becomes lower than
a previously seen sample (black dashed line), FTW
changes direction, thus reaching sooner the global
optimum compared to CDOO. The dashed blue line
is the initial upper bound.

Algorithm 1 presents the steps of the FTW method. The
method starts in a position x0 and applies the dynamics
in (1) to move towards the maximal B state, denoted by
xt (target state). At each iteration step k, the robot takes
a new sample f(xk) and updates the upper bound B and

f∗k , the maximal f -value seen so far. If f∗k is greater (or
equal) to the bound value B(xt), a new target associated
with the latest maximum value of B is chosen next. Then,
the control action leading closest to xt among all available
actions:

uk = argmin
u
||xt − g(xk; u)|| (8)

is determined and applied so that the new state of the
agent becomes xk+1.

The algorithm stops when either the total number of
iterations was exhausted or convergence was reached.
Convergence is obtained when f∗k becomes larger than all
(or equal to some) B values. In that case, the position
corresponding to f∗k is returned as an approximation of
the optimum.

Algorithm 1 FTW

Input: search space X, motion dynamics g, Lipschitz
constant M , total trajectory steps n

1: initialize sample set S ← ∅
2: measure initial state x0

3: initialize target point xt = x0

4: for each step k = 0; : : : ; n− 1 do
5: sample f(xk), add pair (xk; f(xk)) to S
6: update max f -value sampled f∗k = maxf(xs)

where (xs; f(xs)) ∈ S; s = 1; : : : ; k
7: update the upper bound B (5)
8: if B(xt) ≤ f∗k then
9: find max B-value state:

x∗b;k = argmaxxb∈XB(xb)
10: update target xt = x∗b;k

11: if B(xt) ≤ f∗k then
12: convergence occurred, break loop
13: end if
14: end if
15: find action uk = argminu ||xt − g(xk; u)||
16: apply uk, measure next state xk+1

17: end for
18: return cx∗ = argmaxxs f(xs), where (xs; f(xs)) ∈ S.

In the following sections, we study the performance of
the algorithm experimentally. Analysis will be the focus
of future work.

4. SIMULATION RESULTS

For the following simulations consider a simulated robot
with the unicycle-like, motion dynamics in (1):

xk+1 = xk + Ts · uk;1 · [cos(uk;2); sin(uk;2)]
T (9)

with Ts = 1 s denoting the sampling period and action
uk = [uk;1; uk;2]

T giving the velocity (uk;1) and heading
of the robot (uk;2). We will take as robot velocity uk;1 ∈
[0; 0:2]m/s with the heading uk;2 ∈ [0; 2�). The robot will
travel at full speed towards the maximum-B state until
the distance to this state becomes smaller than 0:2m, the
interval travelled at full speed in one sampling period. In
the latter case, the agent adapts (lowers) the step size to
reach the maximum B state. We do this because a faster
moving robot explores sooner the search space, whereas
an adaptable step size can lead closer x∗. The robot will
search for the maximum in the spaceX = [0; 4]m×[0; 4]m.
To find the maximum B-state without increasing too much
the computational time, we will evaluate B over a grid of

states. In the sequel, the discrete states over which B is
computed will be given by an equidistant grid Xgrid of
21×21 points (placed at a spacing of 0:2m on both axes).

When searching for the optimum, the agent will sample
a function represented by the sum of five radial-basis
functions (RBFs), each having the following coefficients:
widths bi = [1:25; 1:25]; [0:7; 0:7]; [1; 1]; [0:75; 0:75]; [0:5; 0:5]
and heights hi = [150; 255; 215; 100; 125]. The centers of
the RBFs (ci) will be discussed later. Using these param-
eters, an RBF in 2D is:

Ri(x) = hi · exp

24− dX
j=1

(xj − cij)
2

b2
ij

35 (10)

where Ri represents the ith RBF function, d = 2 is the
number of dimensions of the RBF and x = [x1; x2]

T

denotes the evaluation state. A possible contour plot of f
could be seen in Figure 3 on page 4. The Lipschitz constant
corresponding to a given f is computed analytically as the
maximum absolute derivative of f , found using the first
two derivatives, so that it produces true bounds B.

4.1 Comparison to baselines

We will compare next the FTW method against two
baselines: CDOO and OOPA. For OOPA we will consider
the headings uk;2 ∈ {0; �=2; �; 3�=2} leading the robot
in the states up/down/right/left at next iterations. We
restrict the robot headings during an OOPA sweep due to
the high computational times required to solve the OCP.

For the baseline comparison, the RBFs from above are cho-
sen with the centers positioned as follows: ci = [0:75; 1:5];
[2:75; 3:5]; [3:25; 0:75], [1:25; 2:5], [2; 0:25]. Since the OOPA
method does not provide a convergence test, we will con-
sider as metric the distance traveled by the robot to reach
as close as � = 0:2m to x∗ (as � equals the grid discretiza-
tion step of X for OOPA). For a fair comparison, we will
take 15 randomly chosen points in X as initial positions
for our agent.

Figure 3 reports the results. The distances till x∗ for
OOPA, CDOO and FTW (in this order, separated by
slashes) are reported below each robot starting position
marked with a blue ’x’. On average, FTW scores 10% fewer
steps compared to CDOO while searching for x∗ with �
accuracy. Compared to OOPA, FTW takes 30% more steps
till the optimum, but achieves this using significantly lower
computational times. While OOPA takes on average 1:85 s
per iteration step, the time required by FTW (or CDOO)
is below 0:01 s per step.

It would be instructive to study the evolution of the best
sample seen so far, f = maxxs

(f(xs)), as an average of
the 15 runs, for each one of the three methods. Figure
4 reports the results for 250 trajectory steps. The FTW
performance in terms of f is between OOPA and CDOO,
OOPA being the algorithm which (on average) gathers
faster higher function values and thus finds x∗ sooner.

4.2 Influence of the Lipschitz constant

In this experiment we will study the impact of the land-
scape smoothness, i.e. the impact of the Lipschitz con-
stant, on the performance of the FTW and CDOO meth-
ods. A quantitative study will be performed with 50

0 0.5 1 1.5 2 2.5 3 3.5 4

x
1

0

0.5

1

1.5

2

2.5

3

3.5

4

x
2

31.2/53.6/41.4

19.8/46.8/8.2
18.2/43.0/24.8

45.4/37.8/33.0

12.6/47.2/37.4

13.4/29.8/34.0

30.0/0.2/0.220.2/37.4/15.8

37.8/42.8/41.0

11.8/36.2/44.6
22.4/44.4/44.6

13.2/38.8/46.6

29.4/17.4/52.6

12.0/39.4/25.0

7.6/41.6/26.0

Fig. 3. Comparison between OOPA, CDOO and FTW
methods in terms of steps until reaching as close as
� = 0:2m to x∗. FTW improves the CDOO average
steps by roughly 10%, but scores 30% more steps than
OOPA. However, FTW achieves this at much lower
computational times compared to OOPA.

0 50 100 150 200 250

k

100

150

200

250
Best sample seen so far (on average)

OOPA

CDOO

FTW

Fig. 4. Comparison between OOPA, CDOO and FTW
methods in terms of best sample seen so far for the
first 250 samples (on average) acquired during the
baseline experiments.

different sets of center positions (placed in X) for each
of the RBFs from above. Thus, 50 different landscapes
result. For each such landscape, the width of the RBFs
will range as follows: b = � · bi, where the width factor
� ∈ {0:5; 1:0; 1:5; 2:0; 2:5; 3:0; 3:5; 4; 4:5; 5}. For each of the
50 landscapes, the robot starts in an initial position uni-
formly randomly chosen inside X. The evolution of the
Lipschitz constant for each width factor is presented in
Figure 5: the larger the �, the smoother the landscape
and thus the lower the value of M .

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

width factor

100

200

300

400

500

600

700

M

Lipschitz constant

Fig. 5. Evolution of the Lipschitz constant based on the
width factor of the RBFs.

