The ClujUAYV student competition: A corridor
navigation challenge with autonomous drones *

Csanad Sandor * Szabolcs Pavel * Erik Wieser * Andreea Blaga **
Péter Boda ** Andrea-Orsolya Fiilop ** Adrian Ursache ** Attila Zold **
Aniké Kopacz *** Botond Lazar *** Karoly Szabo6 *** Zoltan Tasnadi ***

Botond Trinfa *** Lehel Csaté *** Tegzes Dan Marius ****
Pop M. Leontin **** Raluca Tarziu " Mihai Zaha ™ Sorin Grigorescu '
Lucian Busoniu * Paula Raica * Levente Tamas *

* Team Drone Whisperers contact: csanad.sandor @ cs.ubbcluj.ro
** Team Drop Table contact: blaga.andre @yahoo.com
*** Faculty of Mathematics and Informatics, Babegs-Bolyai University, team
Flying Penguins contact: lehel.csato@cs.ubbcluj.ro
**** Technical University of Cluj-Napoca, team Just the Drone contact:
tegzes.dan97 @ gmail.com
t RoVisLab, Transylvania University of Brasov, team RoVisLab contact:
Raluca.Tarziu @ student.unitbv.ro
Y Technical University of Cluj-Napoca, organizer contact:
Levente.Tamas @ aut.utcluj.ro

Abstract: We describe a novel student contest concept in which an unmanned aerial vehicle (UAV
or drone) must autonomously navigate a straight corridor using feedback from camera images. The
objective of the contest is to promote engineering skills (related to sensing and control in particular)
among students and young professionals, by means of an attractive robotics topic in an exciting
competition format. The first edition of this contest was organized in Cluj-Napoca, Romania on October
19th 2019. Teams from industry and academia competed, with an overall positive experience. We outline
the challenge and scoring rules, together with the technical solutions of the teams, and close with a
summary of the results and points to improve for the next editions.

Keywords: student competition, UAV, robotics, computer vision, control, education.

1. INTRODUCTION

Unmanned aerial vehicles (UAV) have a long history in
robotics (Carelli and Freire, 2003) and are currently becoming
widespread in everyday life, see e.g. the autonomous aerial
taxis reported recently by the BBC (2019).

For a fully autonomous behaviour, a series of building blocks
have to be implemented, like (1) perceiving of the surrounding
environment, (2) localizing using a map, (3) trajectory planning
for navigation, and (4) low-level flight control, to enumerate
just a few one. Most of these modules strongly depend on
the environment: they will be different in structured, indoor
versus outdoor environments, and will behave differently in full
daylight vs. dimmed, cloudy conditions.

Several contests were organized in the near past for both indoor
and outdoor UAV platforms, focusing on different tasks such
as people tracking (NIPS, 2019), line following (Mathworks,
2019), mapping or object detection (ELROB, 2019) or safety

* This event was financially sponsored by Accenture and Elektrobit; by the Ro-
manian National Authority for Scientific Research, CNCS-UEFISCDI, project
number PN-III-P1-1.1-TE-2016-0670; by the European Commission via grant
agreement no. 9/2018, Co4AIR - Computers, Cognition and Communication
in Control: A strateglc paRtnership” project funded through the Erasmus+
KA?2 scheme; and by a HAS Bolyai Scholarship. Corresponding author: Lev-
ente. Tamas @aut.utcluj.ro

(NASA, 2020). In October 2019, we held for the first time in
Cluj-Napoca, Romania a contest involving small scale indoor
UAV platforms. The challenge of the competition was to design
perception and control algorithms for an UAV so as to achieve
autonomous navigation in a structured, corridor-like environ-
ment.

Our main motivation for organizing the UAV flight contest was
to promote the importance of STEM (Bermudez et al., 2019)
for young professionals as well as special skills required for
UAV perception and control tasks. All of these are excellently
exemplified by the four UAV behavior features enumerated
above, while perception and control take the center spot in
our UAV challenge. Moreover, the robotics domain ensures a
seamless vertical competence integration of the student skills
earned during a bachelor degree in the computer science and
control engineering field (Chen and Chiu, 2016). Finally, a key
advantage of robotics and UAVs in particular is that they are
attractive to students.

For our — first — 2019 call, in total five teams attended the Cluj-
UAV autonomous flight contest and they represented both the
academic and industrial sector. For this first edition the target
was to fly through an unknown corridor(-like) environment with
a Parrot Ar.Drone 2 UAV. The teams were allowed to choose
their favorite method for solving the perception and control
problems that arose.

In Section 2, we review the main technical work that sits behind
the students’ approaches, as well as related contest concepts.
Following that, in Section 3 we detail the contest, and in Section
4 the teams outline their approaches, focusing on the unique
points of each. Then, Section 5 summarizes the results. Section
6 concludes the paper and outlines some directions for future
improvement.

2. RELATED WORK

Related contest concepts include both academic (Mathworks,
2019), industrial (NASA, 2020) and military (ELROB, 2019)
variants. The educational impact of each contest in part is
specific to its audience, however the UAV related contests are
still in focus today having impact on the educational side as
well (Bermudez et al., 2019).

A autonomous drone flight challenge is organized by Math-
works (2019) at the IFAC 2020 World Congress targets a line
following scenario, with a full deployment chain from Matlab
code to embedded hardware for two low cost drone platforms.
An important educational impact is expected, specifically for
students from engineering curricula. The competition organized
by NASA (2020) targets more realistic scenarios, where the
variability of the environment is important. The situation is
similar in the case of the ELROB competition (ELROB, 2019),
where the drone should be able to recognize generic targets in
the wild. The most similar drone contest to ClujUAV is the one
reported by Bermudez et al. (2019): they created a simulation
environment in ROS/Gazebo for an ArDrone like UAV, and
the teams could evaluate their algorithms within this realistic
environment, for a task or navigating through floating frames.
A dynamic model of the drone is available, which teams can
use for low level control.

Our contest is unique among autonomous UAV competitions
due to a combination of three factors: the use of real drones,
the simplicity of the task, and the focus on computer vision and
high-level control tasks.

On the technical side, one can distinguish two clusters of prob-
lems for the autonomous flight in corridor-like environments:
the perception and the control of the drone. For both topics,
significant related work exists in the robotics literature (Math-
works, 2019; NASA, 2020).

The problem of scene recognition is still an active research
topic, although several prior papers are related to this problem.
In the early 2000’s global scene perception related questions
were reported in (Oliva and Torralba, 2001; Torralba et al.,
2003; Fei-Fei and Perona, 2005; Quattoni and Torralba, 2009)
focusing mainly on holistic scene understanding. Later on dif-
ferent visual feature related solutions were proposed, including
linear (Grompone von Gioi et al., 2010) or planar (Kim et al.,
2018) ones. The solution described by Kim et al. (2018) tackles
the navigation problem in an active exploration context with a
SLAM framework.

According to the sensors used for spatial reasoning, there is also
a great variety in this research field: 2D cameras are the most
popular solutions (P4ll et al., 2015; Shichao Yang et al., 2016;
Dorbala et al., 2019) but laser (Pasteau et al., 2013; Park et al.,
2015) or ultrasonic sensor based (Carelli and Freire, 2003) ones
are also frequently used.

Due to the uncertainty in the detection and the disturbances
caused by the moving camera, some authors propose spe-
cialised filtering algorithms both for the IMU and image read-
ings for enhancing the quality of the perception (Pall et al.,
2015; Park et al., 2015). On the control side there are also
different approaches that were investigated starting from sim-
ple proportional controllers (Pall et al., 2015) up to complex
Lyapunov-based variants (Carelli and Freire, 2003).

Of course, deep-learning based solutions have also been pro-
posed for this problem, e.g. for layout estimation (Shichao
Yang et al., 2016) or corridor middle point extraction (Dorbala
et al., 2019). Both variants proved to be relevant also for the
experiments carried out by the teams in the competition.

3. THE CLUJUAV CONCEPT AND CHALLENGE

The main challenge of the contest was to autonomously nav-
igate a Parrot AR.Drone 2 UAV along an approximately 2m
wide corridor, based solely on the information from the front
camera and the IMU unit. The autonomous flying is nontrivial
by the limited camera resolution and the reduced field of view,
as well as the noisy IMU readings from a low-cost UAV plat-
form.

A bird-eye view of a typical navigation scenario is presented
in Fig. 1. The longitudinal navigation direction for the drone
can be placed in a relationship with the vanishing point (Pall
et al., 2015), i.e. the center of the corridor, where the lines of a
perspective view intersect each other. Many of the adopted nav-
igation solutions by the team members rely on the estimation of
this point from the perspective camera, and the guidance of the
UAV with respect to this reference.

Field of view

Fig. 1. Bird-eye view of the corridor with a UAV showing the
field of view including the vanishing point (VP) indicating
the center of the corridor and the camera image center (CI)
Pall et al. (2015)

In the preparation phase of the contest (half a year before
the contest date), each team was allowed to use their favorite
software for the implementation. The hardware constrains were
only related to the UAV platform: the affordable, well docu-
mented ArDrone2 was considered as standard platform for all
the teams.

Our scoring rules were as follows: 30% part of the score was
awarded for the technical approach as well as its connection to
the state of the art from the domain. The second, and largest
(70%) part of the score was based on the experimental solution
to the challenge.

In the morning of the contest, each team was allowed 10
minutes for setting up and possible last-minute tweaks. Before
this, they never used for testing the corridor of the contest.

During the challenge, each team had two independent trials
along the corridor (so they were allowed to reinitialize the
drone once, after a possible completion or crash). The teams
were evaluated according to the number of collisions with the
walls of the corridor: a smaller penalty if the drone recovers,
and larger if it crashes; as well as with a penalty related to the
flight time. Teams also received a bonus when they passed half
the corridor length; and when they completed the full corridor
length. These scores were recorded by an independent jury
composed of three members. Based on the total scores, the team
received their final ranking and prizes. Monetary prizes were
awarded using sponsorships from the Accenture and Elektrobit
companies.

There were five teams attending the contest, 2 from industry and
3 from academia. Most of the teams were local, with one team
from a different city. The total number of participants from all
the teams was 17. All of the students were at the BSc. or MSc
Jevel. In the next section, the technical solutions adopted by
each team are summarized.

4. THE SOLUTIONS PROPOSED BY THE TEAMS

Next, the teams outline their approaches to the problem, in
alphabetical order of the team name.

4.1 Drone Whisperers

The solution of this team to the contest had two main compo-
nents: a vanishing point estimation based perception module,
and a PID based control module. The solution was implemented
using the ROS framework (Quigley et al., 2009), providing the
toolkit for quick prototyping and debugging of the algorithms.

The different modules were implemented as nodes in the ROS
framework. All computations were offloaded to a laptop device,
while communication between the drone and the laptop was
handled by the ArDrone-Autonomy (Monajjemi et al., 2012)
ROS node, which implemented the driver and the necessary
interfaces for receiving sensor data and issuing control com-
mands. The perception module was also included in a single
node, and had the front camera images as input, and the coordi-
nates of the vanishing point as output. The control of the drone
was realized using two more nodes, a PID controller taking
the vanishing point coordinates as input, and outputting yaw
rates. A final node implementing additional control logic took
the yaw rates as inputs, and communicated with the driver node
to send the final processed commands, closing the control loop.
We also used the toolkit provided by the ROS framework to
debug our control loop. We recorded multiple sequences and
tested the perception algorithm without the need for using the
drone all the time. We also recorded logs about our test flights,
which helped us to discover potential corner-cases and during
parameter tuning.

The perception module used the front camera of the drone to
decide the optimal direction of flight. Our first attempt was
based on Structure-from-Motion methods, where we used an
open-source, camera- and IMU-based fusion algorithm (Qin
et al., 2018), and further implementation based on an epipolar
geometry (Hartley and Zisserman, 2003). In both cases we
faced difficulties, the main reason being the keypoint detection
and matching step used by both algorithms. We were mainly
interested in keypoints situated on the wall of the corridor,
but because of their uniform appearance they had very few

well distinguishable corner points or blobs on them. As a
consequence the number of identified keypoints was too small
for our use case.

As a final solution we used a vanishing point estimation
pipeline: first we rectified the image based on parameters es-
timated using Zhang’s calibration method (Zhang, 2000), then
converted it to gray-scale, followed by a Canny edge detector
(Canny, 1986) and a dilation to find edges. The edge detec-
tion step is followed by a probabilistic Hough line transform
(Hough, 1962) to detect straight lines. The returned lines were
then filtered based on their lengths and slope: we were inter-
ested in lines corresponding to the intersection of the floor and
the walls, whose slope depends on the width of the corridor and
it is usually well bound. The remaining lines were assigned to
the four quadrants of the image based on the position of their
midpoint. We consider a line intersection a possible vanishing
point only if a line from the left half of the image intersects
a line from the right side. This simple heuristic filtered out
most of the spurious intersections. Finally a single vanishing
point was computed as the median of all line intersections on
the image. While this pipeline gives a separate vanishing point
per image, we also used a temporal exponential smoothing to
avoid quick changes in the vanishing point, possibly resulting
in sudden changes of flight direction.

The control module controlled the yaw rate of the drone while
maintaining a constant forward velocity. After takeoff the drone
was set into hover mode, and waited a few seconds until it
stabilized. Then a PID controller was initiated, which took as
input the horizontal coordinates of the vanishing point (which
had to stay in the middle of the image), and produced the yaw
rate. The parameters of the controller were tuned manually
using a trial and error approach. During our experiments we
mainly focused on the proportional and derivative components,
which provided a stable trajectory for drone. The yaw rate and
the constant forward velocity command were sent out to the
drone simultaneously.

Our main problem in the competition was caused by the cor-
ridor floor: it had painted black stripes at 45 degree angle.
As our perception module was based on an edge detection
and vanishing point estimation, it was important to filter these
lines to avoid the appearance of incorrect vanishing points.
Recorded logs of the test run showed, that while these stripes
were correctly filtered in most of the frames, a few failures were
enough to divert the drone from the correct trajectory, resulting
in collision with the walls. Fig. 2 shows correct and incorrect
vanishing point detection from the records.

4.2 Drop Table

The solution uses classical image processing algorithms, aimed
for detecting edges and lines. Our customised algorithm detects
the two lines between the floor and the walls of the corridor.
After the detection our algorithm moves the drone according to
the computed line angles. Fig. 3 shows the overall algorithm.

In order to detect the lines, we first applied the Canny edge
detector algorithm (Canny, 1986) to get all the edges in a
frame. We fined tuned its parameters in order to detect the
relevant edges. The next step was to apply Probabilistic Hough
Transform (Matas et al., 2000), using OpenCV implementation.
This grouped edge pixels into line segments. Again, we fine
tuned its parameters to get the relevant lines. The fine tuning of

Fig. 2. Edge and vanishing point (white dot) detection by the perception node. Left: incorrect vanishing point position due to the
black stripes on the floor. Right: correct vanishing point estimate.

Apply Canny

W T

Input Image

Apply Hough
Transform

Estimate the

correct position Qg -t
and direction

—

Fig. 3. Algorithm overview of the Drop Table team

the algorithms’ parameters was made on the spot, after multiple
tests. Afterwards, the lines were filtered according to their
position in the frame. Each individual line slope was computed,
then converted to angles. We are interested in two diagonal
lines, one in the left half of the image (with negative angle),
the other in the right half (with positive angle). We build two
buffers with angles (one for each side) and average their values
in order to avoid the effect of noisy detection.

After getting enough data in the buffers, the drone can move
according to the angles’ averages (in absolute values). If the
right average is bigger than the left one, the drone steers slightly
to left. If the left average is bigger, then the drone steers slightly
to the right. If the averages are near the same value, the drone
moves forward.

Our control method is as follows: an open loop system having
to main elements: capturing the video stream, process as per
algorithm, output commands. So, we capture frame by frame
the video stream, then process it (Canny, Hough Transform)
estimate position and direction by calculating the relevant left
and right line angles. Finally, we send output the commands
that need to be executed by the drone.

This team also implemented a safety check so that, if detection
fails for a consecutive number of frames, the drone lands. The
main issue of this solution is that the video processing is not
done in parallel with the drone’s movement commands.

4.3 Flying Penguins

Given the relatively reduced algorithmic complexity of the
challenge, we aimed for a simple algorithm and an appropriate
calibration such that it performs the task in an optimal way.
Our team assumed that there are no obstacles when flying the
drone, i.e. we found the target point, we direct the drone such
that it goes towards the point we identified. Similar to the Drone
Whisperer team, we targeted the vanishing point.

The vanishing point was identified each processed frame from
the video sequence using the following pipeline: first blur the
image — a resolution reduction —; then to extract the edges using
the canny edge detection method, followed by the probabilistic
Hough algorithm to find the lines.

Our team tested the method to identify the vanishing point
based on the algorithms provided by the OpenCV system, but
soon we identified two problems:

(1) the vanishing point was moving way too abruptly for a
controller to be reliable;

(2) due to artefacts e.g. on the floor of the corridor, the line
detection algorithm identified lines that were outliers that
made the OpenCV method perform extremely bad.

To counter both side effects from above, we implemented a
robust vanishing point detection method that used as prior the
value of the previous detection.

The algorithm: We used a probabilistic setup ' that considered
— for each step — an a-priori distribution for the vanishing point,
modelled as a symmetric Gaussian distribution, parametrised
by the mean position £ = [, ft,/] and the scaling factor of the
variance o.

For each frame the detected lines were considered as observa-
tions determined the vanishing point in the following way: the
vanishing point was closest to all valid lines. From each line we
derived the following likelihood:

P(po| seg,) o< exp (—|disty (po])
and to find the new position of the vanishing point, we evaluated
the following integral:

N
ppost(v) X pO(pv| #7012) H P(p'u‘ Segn)'
n=1

Since we used the robust likelihood — as given above — the
a-posteriori distribution is not analytical and we employ an
approximation to it using the Gaussian quadrature.

The Bayesian and probabilistic treatment of the vanishing point
detection allowed us the mitigate the observed instabilities
of the standard vanishing point detection procedure in the
OpenCV system and simultaneously it allowed for a more
stable estimates.

Control: We used the horizontal position of the detected van-
ishing point and applied a controller that corrected the displace-
ment from the centre position in this direction. The forward
speed of the drone was increased according the certainty of our

1 We followed a quasi-Bayesian methodology to find the most probable
position of the vanishing point.

estimation of the vanishing point, o. A minimal base speed was
applied in the forward direction in order to lower the instability
of the drone caused by the turbulence in the narrow corridor. We
had to experiment with horizontal corrections in order to avoid
side collision with the corridor wall. The slopes of the detected
lines on the corresponding side of the frame reflect the distance
between the current position and the wall.

Lessons Learned: The benefit of our approach was to adapt to
the temporal absence of valid lines to determine the vanishing
point. We also had to be robust and to filter the detected lines
as best as we can: e.g. the pattern on the floor that originally
mislead the vanishing point detection algorithm. After correct-
ing for the misleading floor lines (as seen in Fig.2.a) — using
the assumption that lines on the floor do not contribute to the
vanishing point — we were able to fly the drone safely.

Our conclusion is that the robust approach to the vanishing
point detection was justified and that given the task at hand one
can — and should — adapt the algorithm to the special features
of the task.

4.4 Just the Drone

Short introduction: Our approach was to implement the idea
found in (Dorbala et al., 2019), so in order to do this we used
their dataset which is composed from a set of images and a
specific value assigned to each image. The value represents
an angular velocity that was obtained by extracting features
like vanishing point (VP) and vanishing line (VL) from each
image and passing them to a control law in order to obtain
the velocity vector. After training an algorithm on this dataset
we implemented a proportional control for the drone, on the
rotation around the Z axis, based on the angular velocity value
obtained from each frame.

Training the algorithm: In order to implement an algorithm on
this dataset, made by 3023 images, we split it into a training set
(2617 images) and a validation set (406 images), 87% training
images, respectively 13% validation images. This dataset can
be found online 2 .

After we split the data set, we took the ResNet-50 architecture
(He et al., 2015), that was pretrained on ImageNet dataset, and
we fine-tuned this model on our training images (resized to
224x224).

To do this we removed the last four layers from the model
and added a Flatten, Dense (ReLU activation), Dropout and
a final Dense layer with linear activation (Fig. 4). We added
this types of layers because we needed to eliminate the specific
purpose for which the ResNet was trained, so we put two
regular densely-connected NN layers, but not before we flatten
the input for the first Dense layer, and adding a Dropout layer
after that, because this will stop the model from overfitting due
to the fact that we had a small dataset. Also, for determining the
gradients for backpropagation we used a Mean Squared Error
(MSE) loss, defined as:

1 & 5
MSE = %;(w—w) ,
where @ is the ground truth velocity, and w is the predicted
velocity.

2 https://drive.google.com/open?id=
1R4ctBxnCxHc433Ls6gYgitnSikzsLQ0Z

We used a batch size of n = 32 for training over 20 epochs, and
used an Adam optimizer, an extension to stochastic gradient
descent, with a learning rate of 0.0002.

inpui: | (224, 224, 3)

resnet50_input: InputLayer

output: | (224, 224, 3)
input: | (224, 224, 3)
resnet50: Model
output: | (7,7, 2048)
input: 7,7,2048
flatten_1: Flatten P ()
output: (100352)
input: | (100352)
dense_1: Dense
output: | (2048)
input: 2048
dropout_1: Dropout P ()
output: | (2048)
input: | (2048)

dense_2: Dense
output: (1)

Fig. 4. Layers added to the ResNet50 model

Control: After training the Convolutional Neural Network
(CNN) on our dataset we tested to see the values predicted,
so that we observed that the angular velocity predicted by our
model was pretty accurate, because if the drone was positioned
to the left of the hallway center, it predicted negative values
(right command), respectively if it was positioned to the right
of the wall it predicted positive values (left command) (Fig. 5).

Fig. 5. Values predicted by the model, relative to the center of
the image, marked with red

The only thing remained was to scale this values because they
were too big to give them as direct commands to the drone so
we divided them by 2. Now the drone is moving forward with
a constant (small) speed on the X axis, and for each frame is
rotating either to the left, either to the right, based on the sign
of the angular velocity and just by the half of this value, around
the Z axis, as you can see in the machine state diagram Fig. 6.

A problem we encountered with this approach is that when the
drone camera gets too close to the wall, to the point where it’s
vertical on the wall, the algorithm will predict some unreliable
values, which will lead to poor control. This is a worst case
scenario, so in order to get past this problem we need to design
a corner case on which the drone makes a quarter rotation along
the Z axis.

Lessons Learned: First of all, working on this project taught us
the importance of starting early and doing a lot of upfront work.
Another valuable lesson we learned is that data normalization

start button (takeoff)

Processing
image

Rotate
right
&
Move
forward

Rotate
left
&

Move
forward

Move

forward

Fig. 6. Machine state diagram of the drone control

@ [xyz]
y

Drone

PID u

L_| Fusion

Fig. 7. Drone control diagram

and cleaning is mandatory. Often the data you have and with
which you have to model a process will be noisy and inaccurate,
so cleaning it is the first step.

4.5 RoVisLab

The method we adopted is a combination of multiple image
based detection algorithms such as vanishing point detection
and artificial intelligence, which together with a PID controller
realize the autonomous flight of the drone. The solution was
implemented in C++ using the OpenCV library and a neural
network based on the ResNet model.

In order to detect the hallway we first applied a Canny edge de-
tector (Canny, 1986) whose thresholds we adjusted depending
on the structure of the corridor. Afterwards we used a Hough
line transform (Matas et al., 2000) to extract the straight lines
from the pre-processed image and keep the ones that have a
slope in a specific range. The remaining lines were then in-
tersected obtaining the vanishing point of the hall. This point
is then inserted in a PID controller (Hari Om Bansal, 2012),
which gives as output the rotation velocity of the drone so that
it always faces the end of the hall.

For a better precision of the detection we also used a neural
network, which detects the floor of the corridor in order to be
able to place the drone in the center of the hallway. For this
movement we are controlling the velocity of the drone on the

Table 1. Times obtained by each team

Team DroneW. | DropT. | FlyingP. | JusttheD. | RoVisLab
Time(s) | 58 64 75 49 53

y axis through a PID controller. After combining these two
methods for the detection we apply a constant velocity on the x
axis.

As mentioned before, we utilized a PID controller whose pa-
rameters we tuned through experimentation. First we set a value
for the proportional component and obtained an oscillation
movement on the y axis around the desired point. Next we
added a small derivative gain, which we increased until we
considered that the flight is stable enough. We determined that
these two components were the ones that gave us the smoothest
and most accurate flight. Some of the problems we encountered
were caused by sudden changes in the light brightness, which
alter the detection, also the excessive number on lines detected
by the algorithm because of the patterns of the corridor, for
example the slightly sloped stripes on the floor.

In conclusion, the corridor navigation was quite a challenge
and working with an UAV was not an easy task, but it taught
us how it works like a team and that there is always place for
improvement.

5. SUMMARY OF CONTEST RESULTS

In the morning set-up trials, results were excellent: nearly all
the teams reached the end of the hallway, and there were only a
few crashes. In the actual challenge however, which took place
at noon, only one team reached the end of the hallway, and
two more navigated along three quarters of the corridor. Our
podium consisted of these three teams: Just the Drone in the
first place, RoVisLab in the second, and Drop Table in the third.
The detailed run-times are visible in the Table 5: for each team
we considered the flight time over the corridor, even if they
were not able to finish the route. For reaching the end of the
corridor extra points were earned.

We hypothesize that the lower performance in the afternoon
was largely due to lighting conditions. Most of the drones
crashed when passing through a very large-contrast area from
dark to direct sunlight, see Fig. 8. Moreover, the floor of
the corridor chosen had inclined dark stripes, which confused
vanishing point detection algorithms (since most of them rely
on line detection). In addition, performance suffered due to
disturbances such as air currents and, in one case, a clump of
dust blocking one of the propellers which immediately crashed
the drone. It is interesting — although not statistically significant
— to note that the winning team was the one where machine
learning was the most important component of the control. A
video of this winning run is available at http://rocon.
utcluj.ro/files/clujuav_Jjustthedrone.mov.

6. CONCLUSIONS AND FUTURE IMPROVEMENTS

After the contest, the organizers ran a survey among the teams.
Out of the five teams, four responded, and all of the respondents
reported a good overall positive experience, with three stating
their willingness to attend a second edition of the contest.
Points of improvement noted were the fact that the rules of the
challenge were finalized quite late; that the lists of teams and
participants weren’t made public prior to the contest; and that a
clearer schedule and timing would be needed.

Fig. 8. High-contrast region along the corridor.

We plan to address all these points for the next edition. More-
over, to improve sensing and control reliability, three solutions
are possible: (i) changing from AR.Drone to a other platforms,
(i1) changing to a controlled-lighting location, or (iii) suggest-
ing a significantly more challenging array of testing scenarios
for the team, so that their solution is more robust. Nevertheless,
overall we believe that ClujUAV had a significant positive im-
pact and is a useful contest concept, which we definitely plan to
refine and reiterate in the coming years.

REFERENCES

BBC (2019). Flying taxi makes test flight over Sin-
gapore. https://www.bbc.com/news/topics/
cljev44x051t/drones. [Online; accessed 19-Oct-
2019].

Bermudez, A., Casado, R., Fernandez, G., Guijarro, M., and
Olivas, P. (2019). Drone challenge: A platform for promoting
programming and robotics skills in k-12 education. Interna-
tional Journal of Advanced Robotic Systems, 16(1).

Canny, J. (1986). A computational approach to edge detection.
IEEE Transactions on pattern analysis and machine intelli-
gence, (6), 679-698.

Carelli, R. and Freire, E.O. (2003). Corridor navigation and
wall-following stable control for sonar-based mobile robots.
Robotics and Autonomous Systems, 45(3), 235 — 247.

Chen, C.H. and Chiu, C.H. (2016). Employing intergroup
competition in multitouch design-based learning to foster
student engagement, learning achievement, and creativity.
Computers & Education, 103,99 — 113.

Dorbala, V.S., Hafez, A.H.A., and Jawahar, C.V. (2019). A
deep learning approach for robust corridor following from
an arbitrary pose. In 2019 27th Signal Processing and
Communications Applications Conference (SIU), 1-4.

ELROB (2019). The European Land Robot Trial. https://
www.elrob.org/. [Online; accessed 19-Oct-2019].

Fei-Fei, L. and Perona, P. (2005). A bayesian hierarchical
model for learning natural scene categories. In 2005 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’05), volume 2, 524-531 vol. 2.

Grompone von Gioi, R., Jakubowicz, J., Morel, J., and Randall,
G. (2010). Lsd: A fast line segment detector with a false
detection control. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(4), 722-732.

Hari Om Bansal, Rajamayyoor Sharma, PR.S. (2012). Pid
controller tuning techniques: A review. Journal of Control
Engineering and Technology, 2, 168-176.

Hartley, R. and Zisserman, A. (2003). Multiple view geometry
in computer vision. Cambridge university press.

He, K., Zhang, X., Ren, S., and Jian Sun, C. (2015). Deep
residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 770-778.

Hough, P.V. (1962). Method and means for recognizing com-
plex patterns. US Patent 3,069,654.

Kim, S., Manduchi, R., and Qin, S. (2018). Multi-planar
monocular reconstruction of manhattan indoor scenes. In
2018 International Conference on 3D Vision (3DV), 616—
624.

Matas, J., Galambos, C., and Kittler, J. (2000). Robust detection
of lines using the progressive probabilistic hough transform.
Computer Vision and Image Understanding, 78(1), 119-137.

Mathworks (2019). MathWorks Minidrone Competition.
https://de.mathworks.com/academia/
student-competitions/minidrones/
ifac—2020.html. [Online; accessed 19-Oct-2019].

Monajjemi, M. et al. (2012). ardrone autonomy: A ros driver
for ardrone 1.0 & 2.0.

NASA (2020). Safeguard with Autonomous Navigation
Demonstration. https://www.nasa.gov/san. [On-
line; accessed 19-Oct-2019].

NIPS (2019). Game of Drones — Competition at
NeurIPS 2019. https://www.microsoft.
com/en-us/research/academic-program/
game—-of-drones—-competition—-at—-neurips/.
[Online; accessed 19-Oct-2019].

Oliva, A. and Torralba, A. (2001). Modeling the shape of
the scene: A holistic representation of the spatial envelope.
International Journal of Computer Vision, 42(3), 145-175.

Pall, E., Tamas, L., and Busoniu, L. (2015). Vision-based quad-
copter navigation in structured environments. In Handling
Uncertainty and Networked Structure in Robot Control, 265—
290. Springer, Cham.

Park, J., Kim, T., and Park, T. (2015). Autonomous navigation
system for a mobile robot using a laser scanner in a corridor
environment. In 2015 IEEE/SICE International Symposium
on System Integration (SII), 512-516.

Pasteau, F., Babel, M., and Sekkal, R. (2013). Corridor fol-
lowing wheelchair by visual servoing. In 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
590-595.

Qin, T, Li, P, and Shen, S. (2018). Vins-mono: A robust
and versatile monocular visual-inertial state estimator. /[EEE
Transactions on Robotics, 34(4), 1004-1020.

Quattoni, A. and Torralba, A. (2009). Recognizing indoor
scenes. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 413-420.

Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T,
Leibs, J., Wheeler, R., and Ng, A.Y. (2009). Ros: an open-
source robot operating system. In /CRA Workshop on Open
Source Software.

Shichao Yang, Maturana, D., and Scherer, S. (2016). Real-
time 3d scene layout from a single image using convolutional
neural networks. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), 2183-2189.

Torralba, Murphy, Freeman, and Rubin (2003). Context-based
vision system for place and object recognition. In Pro-
ceedings Ninth IEEE International Conference on Computer
Vision, volume 1, 273-280.

Zhang, Z. (2000). A flexible new technique for camera cali-
bration. IEEE Transactions on pattern analysis and machine
intelligence, 22.

