
Sliding mode control of a ball balancing robot ?

Ioana Lal ∗ Alexandru Codrean ∗∗ Lucian Buşoniu ∗∗
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Abstract: This paper presents a sliding mode control design for a ball-balancing robot (ballbot),
with associated real-time results. The sliding mode control is designed based on the linearized
plant model, and is robust to matched uncertainties. The design is considerably simpler than
other nonlinear control strategies presented in the literature, and the experimental results for
stabilization and tracking show much better performances than those obtained with linear
control (in particular, a linear quadratic regulator).
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1. INTRODUCTION

Using mobile robots in closed spaces – like offices or homes
– has received considerable attention in the last few years.
One of the main tasks for such robots is to move in an
agile and stable manner in narrow environments, between
people or other possible obstacles. With this goal in mind,
lately the so called ballbots (ball balancing robots) have
been developed, which can move easily in any direction in
the plane (Lauwers et al., 2006; Fankhauser and Gwerder,
2010; Pham et al., 2018; Nagarajan and Hollis, 2013;
Hoshino et al., 2013). The most often encountered design
is that from Figure 1, where the robot is actuated by three
motors via omni-directional wheels that are in contact
with the ball. The control objective is to keep the robot
around the unstable equilibrium point (vertical position),
while ensuring that it moves according to the desired
trajectory.

Ballbots fall into the class of underactuated electrome-
chanical systems (3 actuators, 5 degrees of freedom),
with complex nonlinear dynamics, unstable and non-
minimum phase, with kinematic and controllability con-
straints. Moreover, there is significant uncertainty in the
models, due to different modeling simplifications, friction
forces that are not considered, noise and varying load
torques. Linear controllers designed based on the linearized
model around the unstable equilibrium point work only for
low velocities and are not robust to uncertainties or ex-
ternal disturbances. Nonlinear control strategies are thus
required in order to surpass these limitations.

In practice, however, most experiments are reported with
PID or LQR controllers (or both in a cascaded loop)
(Lauwers et al., 2006; Fankhauser and Gwerder, 2010;
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Fig. 1. The ballbot, without and with cover

Pham et al., 2018; Nagarajan and Hollis, 2013; Blonk,
2014). The wast majority of nonlinear controllers reported
for ballbots are tested only through simulations. The only
exceptions that we are aware of are Fankhauser and Gw-
erder (2010) and Pham and Lee (2018). Fankhauser and
Gwerder (2010) linearize the model in different operating
points, and then design a gain-scheduling LQR. Although
the design is pretty straightforward, it is not obvious
how to choose the operating points, and the interpolation
between different controllers requires a lot of a memory.
Also, no stability guarantees are provided. Pham and Lee
(2018) design a hierarchical sliding mode controller based
on the nonlinear dynamical model of the robot, and prove
asymptotic stability using Lyapunov functions. Due to
the complexity of the model, the calculations are fairly
elaborate, and involve significant online computation in
generating the control signals at each sampling period.

In contrast, the current paper aims to provide a nonlinear
control strategy directed towards control practitioners,
that is easy to tune and adapt to different types of ballbots
and control scenarios (tracking, stabilization, disturbance
rejection), with relatively low online computational effort.
To that end, we propose a sliding mode control based on



the linearized model of the process. We also introduce an
adaptation law for the gain corresponding to the discon-
tinuous part of the control law, based on the reference
velocity. Although the approach has only local stability
guarantees, experimental results show that it surpasses lin-
ear control. Another argument for using the linear model
is because in deriving a nonlinear dynamic model for
the robot, different simplifications and approximations are
always made, like ignoring the coupling between planes or
the friction components. We believe that the linearized
model is more reliable and much easier to validate ex-
perimentally than the nonlinear one. Finally, the control
exhibits robustness to matched model uncertainties and
external disturbances.

Our previous paper (Lal et al., 2019) focuses mainly on the
hardware construction and electronics of the robot, and
also presents the design of a linear quadratic regulator
and balancing experimental results. The present paper
fully focuses on control, and provides a novel sliding mode
control design, for both stabilization and tracking.

The paper has the following structure: first, in Section 2
the methodology is presented, namely the control meth-
ods used throughout this paper. Then, the mathematical
model of the ballbot is introduced in Section 3, and later
the design of the controllers and the experimental results
using them are shown in Section 4. In the end, in Section
5 some conclusions are given.

2. METHODOLOGY

In this section we present the control methods used
throughout the paper. First, the LQR design is presented,
which will be used as a baseline for comparison. Then,
a nonlinear control technique, namely the sliding mode
control is introduced. This is the main focus of our paper.

2.1 LQR for stabilization

Consider a linear state space model of the form:

ẋ = Ax+Bu (1)

where x is the state vector, u is the control vector, A ∈
Rn×n and B ∈ Rn×m. We consider the cost function

J =
1

2

∫ ∞
0

(xTQx+ uTRu)dt (2)

whereQ ∈ Rn×n is positive-definite or positive-semidefinite,
and R ∈ Rm×m must be positive-definite hermitian or real
symmetric. We want to minimize the cost function. For
that, it is sufficient to apply the control law u = −Kx,
where K = R−1BTP and P is the stabilizing solution to
the Ricatti equation (Ogata and Yang, 2002):

Q+ATP + PA− PBR−1BTP = 0 (3)

2.2 Sliding mode control for reference tracking

In this subsection, we introduce sliding mode control
(SMC), a nonlinear robust control method (Edwards and
Spurgeon, 1998). The principle of SMC is to drive the
states of the system to a surface in the state space, named
the sliding surface and then keep them on this surface.

Let us consider a nominal linear system of the form:

ẋ = Ax+Bu+Bdm
y = Cx

(4)

where C ∈ Rp×n. dm represents an unknown matched
uncertainty, with known upper bound ‖dm‖ ≤ ku‖u‖ +

α(t, x), where 0 < ku <
√
λmin(BTB). Here, λmin(·)

represents the minimum eigenvalue. System (4) is assumed
to be square and the pair (A,B) is assumed to be in regular
form. This means that the matrix B can be written as
B = [0(n−m)×m, B2]T . All the signals are functions of time,
but we omit the time argument, for simplicity. We shall
consider an additional state xr ∈ Rp, which satisfies:

ẋr = r − y (5)

Here, tracking reference signal r must be differentiable and
must satisfy ṙ = Γ(r−R). Γ is a stable design matrix and
R is a constant. Let us now define the augmented system
state, and its partition as follows:

x̃ =

[
xr
x

]
=

[
x1
x2

]
(6)

with x1 ∈ Rn and x2 ∈ Rp. Note that xr 6= x1 and x 6= x2.
We also consider the following partitions for A and C:

A =

[
A11 A12

A21 A22

]
, C = [C1 C2] (7)

with A11 ∈ R(n−p)×(n−p), A12 ∈ R(n−p)×p, A21 ∈
Rp×(n−p), A22 ∈ Rp×p, C1 ∈ Rp×(n−p) and C2 ∈ Rp×p.
We can now write the augmented system dynamics as:

ẋ1 = Ã11x1 + Ã12x2 +Brr

ẋ2 = Ã21x1 + Ã22x2 +B2u+ dm
(8)

where[
Ã11 Ã12

Ã21 Ã22

]
=

 0 −C1 −C2

0 A11 A12

0 A21 A22

 , Br =

[
Ip
0

]
. (9)

The sliding surface is defined as:

S = {x̃ ∈ Rn+p : Sx− Srr = 0} (10)

with S and Sr being design parameters which give the
reduced-order motion.

We use another partition, corresponding to that in (6), for
the hyperplane system matrix (S1 ∈ Rn and S2 ∈ Rp):

S = [S1 S2] (11)

We further define the switching function

s(x, r) = Sx− Srr = S2Mx1 + S2x2 − Srr. (12)

where M = S−12 S1 can be regarded as a state feedback
gain that stabilizes the pair (A11,A12) during ideal sliding
mode (i.e. when s = 0). By assuming that S2 = ΛB−12 ,
with Λ being a non singular diagonal design matrix, it
results that, in order to have S, we only need to design the
matrix M . This can easily be done through pole placement
or quadratic minimization, as described by Edwards and
Spurgeon (1998) – Ch. 4.

Consider the transformation[
x1
s

]
=

[
I 0
S1 S2

] [
x1
x2

]
(13)

for which (8) becomes

ẋ1 = Ā11x1 + Ā12s+Brr
ṡ = S2Ā21x1 + S2Ā22S

−1
2 s+ Λu+ S1Brr + S2dm

(14)



where Ā11 = Ã11 − Ã12M , Ā21 = MĀ11 + Ã21 − A22M ,
Ā22 = MÃ12 +A22, and Ā12 = Ã12S

−1
2 .

The control law has a linear and a nonlinear component:

u = uL + uN . (15)

The linear part has both feedback and feedforward terms:

uL = Lx̃+ Lrr + Lṙ ṙ, (16)

where the gains are computed as:

L = −Λ−1(SÃ− ΦS),
Lr = −Λ−1(ΦSr + S1Br),

Lṙ = Λ−1Sr.
(17)

The nonlinear part is a discontinuous term, given by

uN =

−ρc Λ−1
P̄2(Sx− Srr)

‖P̄2(Sx− Srr)‖
if Sx 6= Srr,

0 otherwise
(18)

with P̄2 being symmetric positive definite and satisfies:

P̄2Φ + ΦT P̄2 = −I (19)

The gain ρc is designed based on the following proposition:

Proposition 1: The control law (15) induces a sliding
motion despite the matched uncertainty if

ρc ≥
‖S2‖(ku‖uL‖+ α(t, x)) + γ

1− ku‖Λ−1‖‖Λ‖‖B−12 ‖
, (20)

where γ is a design parameter.

The proof follows directly from the argument of Edwards
and Spurgeon (1998) – Sec. 3.6.1.

Proof: By using the Lyapunov function V (s) = sT P̄2s for
system (14), along with control law (15), it can be shown
that if (20) holds, then

ρc ≥ ‖S2‖(ku‖u‖+ α(t, x)) + γ, (21)

and the derivative of the Lyapunov function is negative:

V̇ (s) ≤ −‖s‖2 − 2γ‖P̄2s‖. (22)

Next, the mathematical model of the ballbot is presented.

3. SYSTEM DESCRIPTION AND MODEL

The ballbot is a vertical platform, mounted on a ball.
Here, the driving mechanism is comprised of 3 brushless
DC motors and 3 omni-wheels, which are distributed
equidistantly at 120◦, and fall perpendicular to the ball.

3.1 Nonlinear mathematical model

The mathematical model consists of a combination of
three 2D models, which separate the planes YZ, XZ and
XY. Two of these planes can be seen in Figure 2. It
should be noted that the X axis is aligned with motor 1.
Mathematical modeling is done with the Euler-Lagrange
technique, based on the derivation in Pham et al. (2018).
The minimal coordinates for the planes are:

qx =

[
yk
θx

]
, qy =

[
xk
θy

]
, qz = [θz] (23)

where xk and yk give the ball’s position on the floor,
and θx, θy and θz are the Tait-Bryan angles of the body
(Fankhauser and Gwerder, 2010). We use subscript x to

Fig. 2. The coordinates for the YZ and XY planes

denote the YZ plane, y for XZ and z for XY. The robot
dynamics in the YZ plane are:

D(qx)q̈x + C(qx, q̇x)q̇x +G(qx) = Bxτx (24)

where:
D(qx) =mk +

Ik
r2k

+ma +
3Iw cos2 α

2r2w

3Iw cos2 α

2r2w
rk −mal cos θx

3Iw cos2 α

2r2w
rk −mal cos θx mal

2 +
3Iwr

2
k cos2 α

2r2w
+ Ix


C(qx, q̇x) =

[
0 malθ̇x sin θx
0 0

]
G(qx) = [0 −magl sin θx]

T

Bx =

[
1

rw

rk
rw

]T
(25)

For the XZ plane, the dynamics are described by analogous
equations. The dynamics for the horizontal plane are:

θ̈z =
Ik

IkIz + 3(Ik + Iz)Iw
r2
k

r2w
sin2 α

rk
rw
τz (26)

The inputs for the models τx, τy, τz are the equivalent
torques for each plane, but since we need the model in
terms of motor torques, a conversion must be applied. This
conversion is represented by the following transformation:

[
τ1
τ2
τ3

]
=


2

3 cosα
0

1

3 sinα

− 1

3 cosα

√
3

3 cosα

1

3 sinα

− 1

3 cosα
−
√

3

3 cosα

1

3 sinα


[
τx
τy
τz

]
(27)

where τ1, τ2, τ3 are the torques of each motor, respectively.
See Pham et al. (2018) for further details regarding the
model, and Lal et al. (2019) for the parameter values.

3.2 Linear model

We can observe that the developed model is nonlinear for
the vertical planes. Nevertheless, we will apply both linear
as well as nonlinear control techniques on the linearized
model of the ballbot. Therefore, we must first linearize
the previously derived model. We can choose any point
in the horizontal plane, when the robot is upright. For
simplicity, we shall consider the linearization around the
point represented by the origin of the coordinate system,
which to us is the initial position on the floor.

We linearize the two models for vertical planes separately,
as in Lal et al. (2019). Therefore we have different state
vectors and inputs corresponding to each of the planes. We
shall present here just the linearization for the YZ plane,
as it is analogous for XZ. Each state vector is represented



by the minimal coordinates and their velocities, and the
input is the equivalent torque for that plane:

xx = [qTx q̇Tx ]T , ux = τx (28)

Considering that ẋx = [q̇Tx q̈
T
x ]T and q̈x can be computed

from (24), by multiplying to the left with M−1(qx), we can
now write the model of the system as:

ẋx = fx(xx, ux) (29)

with fx being a nonlinear vector function. Its expression is
complex, so it will not be provided here. The equilibrium
point is xx0

= [0 0 0 0]T , ux0
= 0. The linear model of the

system becomes:

ẋx = Axxx +Bxux (30)

where

Ax =

0 0 1 0
0 0 0 1
0 3.4586 0 0
0 20.6773 0 0

 , Bx =

 0
0

2.1950
2.7587

 (31)

The equation for the horizontal plane was already linear, so
by substituting parameters, considering the system state
as xz = [qz q̇z]T , and the input as τz, we get:

Az =

[
0 1
0 0

]
, Bz =

[
0

50.0343

]
(32)

4. CONTROL DESIGN AND EXPERIMENTAL
RESULTS

This section presents the design of the two controllers,
LQR and SMC, and the experimental results obtained
with them for balancing (stabilization), and then the ones
with SMC for tracking. A sampling period of 0.01 seconds
was adopted for both controllers.

4.1 LQR control for balancing

This subsection discusses the balancing results when the
controller used is a linear quadratic regulator. First, based
on the method described in Section 2.1, we design the
three gains, for the three planes. In order to do this, we
must choose suitable Q and R matrices corresponding
to the planes. Matrix Q determines the weight of the
states and R that of the input. Therefore, we must find
a balance between how fast the states must reach their
equilibrium state and the magnitude of the control signal.
Since there is no precise rule when it comes to these weight
matrices, we try several values. While in Lal et al. (2019)
we also provided similar LQR stabilization results, the
weight matrices here are different. The best results are
with the following matrices:

Qx = Qy = diag(35, 35, 1, 1) Rx = Ry = 5
Qz = diag(30, 5) Rz = 10

(33)

With these weight matrices, the resulting gain vectors are:

Kx = [−2.6458 32.8594 − 3.1148 7.8317]
Ky = [ 2.6458 32.8594 3.1148 7.8317]

Kz = [1.7321 0.7589]
(34)

However, in practice, we observe that some gains are too
high, making the robot too violent. Therefore, we make
some adjustments. Specifically, for the vertical planes, we
divide the gains that correspond to the inclination of
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Fig. 3. LQR vs. SMC - stabilization: position in the plane
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Fig. 4. LQR - stabilization: angles

the ballbot body (angles and angular velocities) by 2.
Therefore, the new gains are:

Kx = [−2.6458 16.4297 − 3.1148 3.9158]
Ky = [2.6458 16.4297 3.1148 3.9158]

(35)

The balancing results with these gains can be seen in
Figure 3, in a dotted line, where we can observe the ballbot
movement on the floor. The robot has circular movements
around the initial point, which is due to the fact that robot
always inclines to one side or another and must thus regain
its balance. In order to do so, it has to move in the plane. In
Figure 4 we can see the evolution of the angles in time. We
notice that the robot is almost upright and only slightly
inclines, up to roughly 3 degrees.

4.2 SMC control for balancing

This subsection shows the stabilizing result for the ballbot
when a sliding mode controller is used. Recall that all the
shown results are experimental. Since we only want the
robot to balance around the initial point in the plane, we
shall consider the reference signal to be r(t) = ṙ(t) = 0.
We will only present the design of the controller for the YZ
plane, as it is analogous for the XZ plane. For XY, we will
keep the linear controller designed in Section 4.1, as the
model for that plane is linear. First, we bring the system to
a regular form, by applying the following transformation,
xreg = Trx, determined with QR factorization, where:

Tr =

 0 1.0000 0 0
−0.6585 0 0.56637 −0.4956
−0.7525 0 −0.4956 0.4337

0 0 −0.6585 −0.7525

 . (36)

The new system matrices are:

Areg =

 0 −0.4956 0.4337 −0.7525
−7.7159 −0.3729 0.3264 0.4337
6.7521 −0.4262 0.3729 0.4956
−17.5233 0 0 0


Breg =

 0
0.0000
0.0000
−3.1564


(37)



Now B2 = −3.1564 and we can adopt any nonzero value
for Λ. We choose it to be 1. Therefore, we will have
S2 = B−12 = −0.3168. We now derive the vector M using
quadratic minimization (Shtessel et al., 2014), in order to
find S1. This vector is

M = [−1.0000 − 18.6849 1.0851 − 7.9555], (38)

which leads to the following S vector:

S = [0.3168 5.9198 − 0.3438 2.5205 − 0.3168]. (39)

We choose P̄2 to be 1, meaning that Φ is -0.5. In the end,
this leads to:

L = [−0.1584 − 28.1826 3.8429 − 4.8937 3.5133]. (40)

In order to reduce the chattering effect, due to the discon-
tinuous term the control law, we replace (18) with:

uN =

−ρc Λ−1
P̄2(Sx− Srr)

‖P̄2(Sx− Srr)‖+ ε
if Sx 6= Srr,

0 otherwise
(41)

where we adopt ε = 0.002. This value has to be small
enough to approximate the sign function well; we chose it
based on a few experimental trials. The value of ρc should
be high enough to stabilize the robot, but not too high, to
not make it violent. Again, after running a few experiments
we picked ρc = 0.3.

We first want to analyze the results with this controller
for balancing (stabilization). These can be seen in Figure
3, in a continuous line. As it can be seen, the result with
SMC is better than when using LQR, the robot remaining
closer to the initial point on the floor.

We also want to test the robustness to a matched distur-
bance when using SMC. Therefore, we consider a scenario
in which we give the robot an additive disturbance dm on
uy at 5s. The disturbance is an impulse signal that lasts
for 0.5s and has an amplitude of 0.5Nm. The results are
shown in Figure 5, where we can observe the position of the
ballbot in the plane. As we can see, the robot does not have
greater oscillations than the initial case. Also, in Figure 6
we can see the evolution in time of the inclination of the
ballbot. The maximum angles of inclination are smaller
than when using LQR. Figure 7 shows an example of a
command current for the first motor.

Figure 8 shows the switching functions s for the two
planes. As we can see on sy, there are certain oscillations
around 0 in the beginning. Up until 5s, the oscillatory
behaviour is due to the stabilization process, since we have
non-zero initial conditions (θy starts from approximately
2◦). Without the introduced disturbance, the oscillations
would decrease and we would reach a small chattering
effect around 0. However, due to the additive matched
disturbance, the damping of these oscillations lasts longer.
It is nonetheless difficult to highlight just the effect of
this disturbance, since there are many other unmatched
uncertainties (such as the coupling between the planes)
and external perturbations (such as friction) that act
simultaneously. Conclusively, the matched disturbance is
rejected by the sliding mode controller.

4.3 SMC control for tracking

In this subsection, we present the results for trajectory
tracking, when the implemented controller is a sliding
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Fig. 5. SMC - stabilization with disturbance: position in
the plane

0 5 10 15 20 25
-4

-2

0

2

4

y
 [

d
e

g
]

0 5 10 15 20 25

Time [s]

-4

-2

0

2

4

x
 [

d
e

g
]

Fig. 6. SMC - stabilization with disturbance: angles
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mode one. We are interested in seeing the robot follow
a straight line in the XY plane, but also in the switch-
ing between the balancing phase and the tracking one.
Therefore, we consider a ramp reference trajectory for the
position in the plane, after an initial balancing phase.
We choose a ramp trajectory for xk and 0 for yk. After
reaching the desired point in the plane, the robot must
then stabilize in that position. We will in the end have 2
switches: first between balancing and tracking, and later
between tracking and balancing.
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We will now design the controller using the method pre-
sented in Section 2.2. Again, we only consider the YZ
plane, as the model is analogous for the XZ plane. As
introduced before, we must first bring the system to a
regular form, which means applying the transformation
in (36) and reaching the new system in (37). We consider:

y = yk = Cx (42)

with C = [0, −0.6585, −0.7525, 0].

The matrix S is designed the same way as in the previous
subsection, with the result already given in (39). Sr is
chosen such that in a steady state regime, the state xr is
0 (Edwards and Spurgeon, 1998, Sec. 7.3.4). In our case,
this value is -1.6704. However, by running several tests, we
notice that this value is too small, and the robot is moving
too slowly. Therefore, we increase its value by multiplying
with 3. The final value is Sr = −1.6704 · 3 = −5.0112.

We choose the same P̄2 = 1, meaning Φ = −0.5 and Λ = 1.
Therefore, the value for L remains the same as the one
computed before, in (40). In a tracking scenario, Lr and
Lṙ are important as well, since they are the feedforward
gains for the reference and its derivative. The computed
values are Lr = −2.8224, Lṙ = −5.0112.

An important parameter in our design is ρc. We notice
that an increased value is desired for the stabilizing phase;
however it makes the robot too violent when it must follow
a line trajectory. However, a smaller value, suitable for the
tracking phase, gives poor results when the robot balances
in the same spot. Therefore, we propose a slow variation
between values based on the reference velocity in the plane
(ṙ), using the affine function ρc = a|ṙ|+b. Considering the
maximum speed of the robot to be 0.2m/s, and that in
experiments we obtained the best results with ρc = 0.3 for
balancing, and ρc = 0.15 for tracking at maximum speed,
we get a = −0.75 and b = 0.3.

The results with this control law are shown in Figure 9.
As we can observe, the robot succeeds in following the
line trajectory quite well. When going from tracking to
balancing, damped oscillations can be noticed around the
final reference position in the plane.

Finally, the results are difficult to compare with other
experiments reported in the literature because often the
robot structure differs: the actuators (motors) are differ-
ent, the surface of the ball is different, the robot is big-
ger (taller, heavier). All of these greatly influence control
performances. Nevertheless, if we limit the comparison to
Pham and Lee (2018), which implemented a sliding mode

strategy based on the nonlinear model, the performances
are comparable: stabilization in a disc with radius smaller
than 10 cm, tracking with errors less than 15 cm.

5. CONCLUSIONS

This paper presented an SMC strategy for stabilization
and reference tracking with ballbot. The control design is
based on a linearized model of the process, and is robust
to matched uncertainties due to unmodeled dynamics or
external disturbances. Experimental results for stabiliza-
tion and tracking illustrated the efficiency of the control,
and the fact that it outperforms linear control (LQR).

As future work, we plan to use algorithms inspired from
artificial intelligence to determine the switching values of
ρc depending on the tracking scenario (Buşoniu et al.,
2017). We also intend to tackle the issue of the unmatched
disturbance, by estimating and then rejecting it.
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