
Fuzzy Partition Optimization for

Approximate Fuzzy Q-iteration ⋆

Lucian Buşoniu ∗ Damien Ernst ∗∗ Bart De Schutter ∗

Robert Babuška ∗

∗ Delft University of Technology, The Netherlands
(e-mail: i.l.busoniu@tudelft.nl, b@deschutter.info, r.babuska@tudelft.nl)

∗∗ Research Associate FNRS, University of Liège, Belgium
(e-mail: ernst@montefiore.ulg.ac.be)

Abstract: Reinforcement learning (RL) is a widely used learning paradigm for adaptive agents.
Because exact RL can only be applied to very simple problems, approximate algorithms are
usually necessary in practice. Many algorithms for approximate RL rely on basis-function
representations of the value function (or of the Q-function). Designing a good set of basis
functions without any prior knowledge of the value function (or of the Q-function) can be a
difficult task. In this paper, we propose instead a technique to optimize the shape of a constant
number of basis functions for the approximate, fuzzy Q-iteration algorithm. In contrast to other
approaches to adapt basis functions for RL, our optimization criterion measures the actual
performance of the computed policies in the task, using simulation from a representative set
of initial states. A complete algorithm, using cross-entropy optimization of triangular fuzzy
membership functions, is given and applied to the car-on-the-hill example.

Keywords: reinforcement learning, approximate Q-value iteration, fuzzy approximation,
adaptive basis functions, cross-entropy optimization.

1. INTRODUCTION

Learning agents can tackle problems where pre-program-
med solutions are difficult or impossible to design. Rein-
forcement learning (RL) is a popular learning paradigm
for adaptive agents, thanks to the mildness of its as-
sumptions on the environment (which can be a nonlinear,
stochastic process), and to its ability to work without
an explicit model of the environment (Sutton and Barto,
1998; Bertsekas, 2001). In RL, the agent receives feedback
about its immediate performance in the form of a scalar
reward signal, and its goal is to maximize the cumulative
reward (the return) over the course of interaction with
the environment. Well-understood algorithms with good
convergence and consistency properties are available for
solving RL problems (Bertsekas, 2001; Sutton and Barto,
1998). Most of these algorithms store a function that
contains estimates of the return for every environment
state (a value function) or state-action pair (a Q-function).
Such algorithms are therefore not applicable to problems
with large or continuous state spaces.

For these problems, approximate RL algorithms have to
be used. Not all approximate algorithms guarantee con-
vergence to a (suboptimal) solution; those that do usu-
ally employ basis-function approximations of the value
or Q-function (Gordon, 1995; Ormoneit and Sen, 2002;
Szepesvári and Smart, 2004; Ernst et al., 2005; Buşoniu
⋆ This research is financially supported by Senter, Dutch Ministry
of Economic Affairs within the BSIK-ICIS project “Interactive
Collaborative Information Systems” (grant no. BSIK03024), by the
NWO Van Gogh grant VGP 79-99, and by the STW-VIDI project
“Multi-Agent Control of Large-Scale Hybrid Systems” (DWV.6188).

et al., 2007). Many of these algorithms require the basis
functions to be designed beforehand. In general, prior
knowledge about the shape of the value function is needed
in this design process. When prior knowledge is insuffi-
cient, many basis functions have to be defined to provide
a good coverage and resolution over the entire state space,
even in areas that might eventually be irrelevant to the
optimal policy.

In this paper, we propose to optimize the parameters of a
constant number of basis functions for the model-based
fuzzy Q-iteration algorithm (Buşoniu et al., 2007). To
evaluate each particular set of basis functions (membership
functions, MFs), a policy is computed by running fuzzy
Q-iteration to convergence. This is in contrast to most
current techniques, which adapt the basis functions simul-
taneously with learning an RL solution. While our strategy
incurs higher computational costs, it also ensures that a
meaningful RL solution is available at any stage of the
algorithm. The optimization criterion is the average return
from a representative set of initial states, computed empir-
ically with Monte Carlo simulations. Other criteria used in
the literature typically estimate the accuracy in represent-
ing the value function. Our criterion has the advantage of
being directly related to the agent’s performance.

The proposed approach is useful when prior knowledge is
not available and when the number of MFs is limited (e.g.,
due to limited memory resources). It tackles RL problems
with large or continuous state spaces, and discrete action
spaces. Using the cross-entropy method for optimization,
we design an algorithm to optimize the locations of trian-
gular MFs. Many other optimization algorithms could be

applied to optimize the MFs, e.g., genetic algorithms, tabu
search, pattern search, etc. Triangular MFs are chosen
because they are the simplest type of MFs that ensure the
convergence of fuzzy Q-iteration. The performance of the
algorithm is evaluated on the classical car-on-the-hill RL
benchmark (Munos and Moore, 2002; Ernst et al., 2005).

Other authors have also investigated approximate RL
algorithms that change the number, position, and shape
of the basis functions (Munos and Moore, 2002; Ratitch
and Precup, 2004; Menache et al., 2005; Ernst et al.,
2005; Mahadevan, 2005; Keller et al., 2006). Typically,
basis functions are changed simultaneously with learning
an RL solution. A pre-requirement for the convergence to
an RL solution is the convergence of the basis functions
to a final configuration. This is an open problem, usually
circumvented by stopping the adaptation of the basis
functions after a finite number of successive updates.
Convergence proofs for fixed basis functions hold once the
changes have stopped (Ernst et al., 2005).

The work that is most closely related to ours is that of
Menache et al. (2005), who optimized the location and
shape of a constant number of basis functions for policy
evaluation. The optimization criterion used by Menache
et al. (2005) was the Bellman error (residual) of the value
function. We employ the empirical return of the computed
policy instead.

The rest of this paper is structured as follows. Brief intro-
ductions to reinforcement learning, the fuzzy Q-iteration
algorithm, and the cross-entropy method for optimization
are given in Section 2. Our approach to optimizing the
fuzzy MFs, together with a complete algorithm that opti-
mizes triangular MFs using the cross-entropy method, are
presented in Section 3. The performance of this algorithm
is assessed in simulation in Section 4. Section 5 concludes
the paper and presents some ideas for future work.

2. BACKGROUND

2.1 Reinforcement Learning

In this section, the RL task is briefly introduced and
its optimal solution is characterized. The presentation is
based on (Sutton and Barto, 1998; Bertsekas, 2001).

Consider a deterministic Markov decision process. Let
X denote its state space, U its action space, f : X ×
U → X its transition function, and ρ : X × U → R its
reward function. As a result of the agent’s action uk in
state xk at the discrete time step k, the state changes to
xk+1 = f(xk, uk). At the same time, the agent receives the
scalar reward signal rk+1 = ρ(xk, uk), which evaluates the
immediate effect of action uk, but says nothing about its
long-term effects. 1

The agent chooses actions according to its policy h :
X → U . The goal of the agent is to learn a policy that
maximizes, starting from the current moment in time
(k = 0) and from any state x0, the discounted return:

1 A stochastic formulation is possible. In that case, expected returns
under the probabilistic transitions must be considered. For the sake
of simplicity, only the deterministic case is considered in this paper.
Our approach can be extended in an almost straightforward way to
stochastic problems.

Rh(x0) =

∞∑

k=0

γkrk+1 =

∞∑

k=0

γkρ(xk, uk) (1)

where γ ∈ [0, 1) is the discount factor, uk = h(xk) (the
policy), and xk+1 = f(xk, uk) for k ≥ 0. The discounted
return compactly represents the rewards accumulated by
the agent over the long run. The learning task is therefore
to maximize the long-term performance, while only receiv-
ing feedback about the immediate, one-step performance.

This can be achieved by computing the optimal action-
value function (Q-function), defined as:

Q∗(x, u) = ρ(x, u) + γ maxh Rh(f(x, u)) (2)

Any policy that selects for every state the action with
the highest optimal Q-value: h∗(x) = arg maxu Q∗(x, u)
is optimal [it maximizes the return (1)]. RL techniques
compute Q∗ by using the Bellman optimality equation:

Q∗(x, u) = ρ(x, u) + γ max
u′∈U

Q∗(f(x, u), u′) (3)

Let the set of all Q-functions be denoted by Q. Define
the Q-iteration mapping T : Q → Q, which computes
the right-hand side of the Bellman equation for any Q-
function:

[T (Q)](x, u) = ρ(x, u) + γ max
u′∈U

Q(f(x, u), u′) (4)

The model-based Q-value iteration (Q-iteration, for short)
algorithm starts from an arbitrary Q-function Q0 and at
each iteration ℓ updates the Q-function using the formula
Qℓ+1 = T (Qℓ). Q-iteration converges to Q∗ as ℓ → ∞.

2.2 Approximate Fuzzy Q-iteration

When dealing with continuous or very large discrete state
and/or actions spaces, the Q-function cannot be stored
explicitly, and exact Q-iteration cannot be applied. Fuzzy
Q-iteration is an approximate algorithm geared towards
problems with continuous (or discrete but large) state
spaces and discrete action spaces (Buşoniu et al., 2007).
It employs a fuzzy partition of the state space into N
fuzzy sets, each described by a membership function (MF)
ϕi : X → [0, 1], i = 1, . . . , N . A state x belongs to each set
i with a degree of membership ϕi(x). In its simplest form,
the algorithm requires that:

(1) Each MF i has a singleton core xi, i.e., there exists
a unique xi such that ϕi(xi) = 1 (consequently,
ϕī(xi) = 0 for all ī 6= i by the previous assumption).

(2) The fuzzy partition is normalized, i.e.,
∑N

i=1 ϕi(x) =
1, ∀x ∈ X.

Denote the discrete action space by U = {uj |j = 1, . . . ,M}.
Fuzzy Q-iteration stores an N×M matrix θ of parameters,
with one component θij corresponding to each fuzzy set-
discrete action pair (i, uj). Every iteration of the algorithm
applies successively the following three mappings to the
parameter matrix:

(i) The approximation mapping F : R
N×M → Q:

Q̂(x, uj) = [F (θ)](x, uj) =

N∑

i=1

ϕi(x)θij (5)

(ii) The Q-iteration mapping T , defined by (4).
(iii) The projection mapping P : Q → R

N×M :

θij = [P (Q)]ij = Q(xi, uj) (6)

Each fuzzy Q-iteration can therefore be written as:

θℓ+1 = PTF (θℓ) (7)

where θ0 is arbitrary (e.g., identically 0). To compute P
in (7), only N · M values of TF (θℓ) have to be evaluated:

θℓ+1,ij = ρ(xi, uj) + γ max
j̄

[F (θℓ)](f(xi, uj), uj̄)

This requires only a finite number of evaluations of F (θℓ);
the Q-function F (θℓ) does not have to be explicitly stored.

Fuzzy Q-iteration provably converges to a parameter ma-
trix θ∗ such that F (θ∗) is within a bound of the true opti-
mum Q∗ (Buşoniu et al., 2007). In practice, the algorithm
terminates when maxi,j |θℓ+1,ij − θℓ,ij | ≤ ε for some small
ε. The approximation of the optimal policy is then given
by:

h(x) = uj∗ with j∗ = arg max
j

[F (θ∗)](x, uj) (8)

2.3 Cross-Entropy Optimization

This section provides a brief introduction to the cross-
entropy (CE) method for optimization. The presentation
is based on (Rubinstein and Kroese, 2004).

Consider the following optimization problem:

max
φ∈Φ

s(φ) (9)

where s : Φ → R is the score function to maximize,
and the variable φ takes values in the domain Φ. Denote
the maximum by s∗. The CE method for optimization
maintains a probability density with support Φ. At each
iteration, a number of samples are drawn from this density
and the score values for these samples are computed. A
(smaller) number of samples that have the highest scores
are kept, and the remaining samples are discarded. The
probability density is then updated using the selected
samples, such that at the next iteration the probability of
drawing better samples is increased. The algorithm stops
when the score of the worst selected sample no longer
improves.

Formally, a family of probability densities {p(·; v)} has to
be chosen. This family has support Φ and is parameterized
by v. At each iteration τ of the CE algorithm, a number
NCE of samples is drawn from the density p(·; vτ−1), their
scores are computed, and the (1 − ρCE) quantile λτ of the
sample scores is determined, with ρCE ∈ (0, 1). Then, a
so-called associated stochastic problem is defined, which
involves estimating the probability that the score of a
sample drawn from p(·; vτ−1) is at least λτ :

Pvτ−1
(s(φ) ≥ λτ) = Evτ−1

I(s(φ) ≥ λτ) (10)

where Evτ−1
denotes expectation under p(·; vτ−1), and I is

the indicator function, equal to 1 whenever its argument
is true, and 0 otherwise.

The probability (10) can be estimated by importance sam-
pling. For this problem, an importance sampling density
is one that increases the probability of the “interesting”
event s(φ) ≥ λτ . The best importance sampling density in
the family {p(·; v)} (in the smallest cross-entropy sense) is
given by the solution of:

arg max
v

Evτ−1
I(s(φ) ≥ λτ) ln p(φ; v) (11)

Algorithm 1 CE optimization

Input: density family p(·; v), parameter v0, function s
Input: ρCE ∈ (0, 1), NCE ≥ 2, dCE ≥ 2, τmax ≥ 2, ε ≥ 0
1: τ = 1
2: repeat
3: Draw samples φ1, . . . , φNCE

from p(·; vτ−1)
4: Compute sample scores s(φl), l = 1, . . . , NCE

5: Order and index scores s.t. s1 ≤ · · · ≤ sNCE

6: λτ = s⌈(1−ρCE)NCE⌉, the (1 − ρCE) quantile of the
sample scores

7: vτ = arg maxv
1

NCE

∑NCE

l=1 I(s(φl) ≥ λτ) ln p(φl; v)
8: τ = τ + 1
9: until (τ > dCE and 0 ≤ λτ−i − λτ−i−1 ≤ ε, for

i = 1, . . . , dCE − 1) or τ > τmax

Output: φ̂∗, the best sample; and ŝ∗ = s(φ̂∗)

An approximate solution of (11) is computed by:

vτ = arg max
v

1

NCE

NCE∑

l=1

I(s(φl) ≥ λτ) ln p(φl; v) (12)

CE optimization proceeds then with the next iteration
using the new density parameter vτ (the probability (10)
is never actually computed). The updated density aims
at generating good samples with higher probability, thus
bringing λτ+1 closer to the optimum s∗. The goal is to
eventually converge to a density which generates samples
close to optimal value(s) of φ with very high probability.
The highest score among the samples generated at all
the iterations is taken as the approximate solution of the
optimization problem, and the corresponding sample as an
approximate optimum location.

Algorithm 1 summarizes the CE method for optimization.
The algorithm is stopped when the improvement in the
(1 − ρCE)-quantile does not exceed ε for dCE successive
iterations, or when the maximum number of iterations
τmax is reached. The number of samples NCE is usually
taken equal to a multiple of the dimension of v.

In certain cases, (12) has a closed-form solution. This
is true e.g., when {p(·; v)} is the family of Gaussians
parameterized by the mean µ and standard deviation σ
(so, v = [µ, σ]T). In this case, the solution of (12) is the
mean and standard deviation of the best samples:

µτ =

∑NCE

l=1 I(s(φl) ≥ λτ)φl∑NCE

l=1 I(s(φl) ≥ λτ)
(13)

στ =

√√√√
∑NCE

l=1 I(s(φl) ≥ λτ) |φl − µ̂τ |
2

∑NCE

l=1 I(s(φl) ≥ λτ)
(14)

Another advantage of using the Gaussian family for CE
optimization is that the algorithm can find a precise
optimum location φ∗. This is because the Gaussian density
can converge, for σ → 0 and µ = φ∗, to a degenerate
(Dirac) distribution that assigns all the probability mass
to the value φ∗.

3. FUZZY PARTITION OPTIMIZATION

Fuzzy Q-iteration (see Section 2.2) requires the fuzzy
partition to be designed beforehand. In general, prior

knowledge about the shape of the optimal Q-function is
needed in this design process. When prior knowledge is
not available, a large number of MFs have to be defined
to provide a good coverage and resolution over the entire
state space, even in areas that will eventually be irrelevant
to the optimal policy.

In this section, we propose to optimize the shape of the
MFs, while keeping their number constant. The proposed
approach can be used when prior knowledge about the
shape of the optimal Q-function is not available and the
number of MFs is limited.

Let the MFs be parameterized by the vector φ ∈ Φ.
Usually, φ includes information about the location and
shape of the MFs. Denote the MFs by ϕi(x;φ) : X → R,
i = 1, . . . , N , to highlight their dependence on φ. The goal
is to find a parameter vector φ∗ that maximizes the return
from a set of representative initial states:

s(φ) =
∑

x0∈X0

w(x0)Rh(x0) (15)

where Rh is the return of the policy h (8) computed by
running fuzzy Q-iteration to convergence with the fuzzy
partition specified by the parameter value φ, and X0 is a
finite set of representative states, weighted by w : X0 →
(0, 1]. Initial states that are deemed more important can
be assigned larger weights, or identical weights equal to

1
|X0|

can be assigned to all the states (|·| denotes set

cardinality).

The return (1) from each initial state x0 is computed by
simulating the system with the policy h. The discounted
infinite-horizon return of a state can be approximated in
finite time by simulating only the first K steps and assum-
ing that all the subsequent rewards are 0. To guarantee
that an error of at most ε is introduced, K must be:

K =

⌈
logγ

ε(1 − γ)

‖ρ‖∞

⌉
(16)

where ‖ρ‖∞ = maxx,u,x̄ |ρ(x, u, x̄)| is assumed finite, and
⌈·⌉ produces the first integer larger than or equal to the
argument.

Because the policy in the score function (15) is computed
by running fuzzy Q-iteration to convergence for the pa-
rameter value φ, this approach does not suffer from the
convergence problems associated with altering the basis
functions simultaneously with running the RL algorithm.
Also note that the score function (15) is directly related
to the performance of the computed policy in the task.

The approach is not restricted to a particular optimization
algorithm to search for φ∗. However, the score function
(15) is a complicated function of φ, and is in general
likely to have many local optima. This means a global
optimization technique is preferable. The cross-entropy
method described in Section 2.3 is chosen in this paper.

3.1 Cross-Entropy Fuzzy Q-iteration

In this section, a complete algorithm is given to optimize
the fuzzy partition for fuzzy Q-iteration.

First, the shape of the MFs is specified. Let the state
space dimension be n. In the sequel, it is assumed that

the state space is a hyperbox centered on the origin, i.e.,
X = [−x1

max, x
1
max] × · · · × [−xn

max, x
n
max] where xm

max ∈
(0,∞), m = 1, . . . , n. This assumption can be relaxed and
is made here for simplicity.

Separately for each state variable xm, a triangular fuzzy
partition is defined. Such a partition is completely deter-
mined by an array of core values cm

1 < · · · < cm
Nm

, which
generates Nm triangular MFs ϕim

, im = 1, . . . , Nm. The
first and last core values are always equal to the limits of
the domain, cm

1 = −xm
max, cm

Nm
= xm

max. Figure 1 presents
an example of a single-dimensional triangular partition.

−3 −1.9 0 1 3
0

0.5

1
ϕ1(x) ϕ2(x) ϕ3(x) ϕ4(x) ϕ5(x)

x

ϕ
(x

)

Fig. 1. Triangular fuzzy partition for a variable x ∈ [−3, 3].
Each fuzzy set is plotted in a different style. Core
values are given on the horizontal axis.

The fuzzy partition of the n-dimensional state space is
then defined as follows. The partition contains a fuzzy
set for each combination (i1, . . . , in) of single-dimensional
sets. The MF of such a composite set is defined as
the product of the individual MFs:

∏n
m=1 ϕim

(xm). This
composite MF has the core [c1

i1
, . . . , cn

in
]T. It is easy to

verify that the fuzzy partition computed in this way still
satisfies Assumptions 1, 2 from Section 2.2. The resulting
approximator F is equivalent to multi-linear interpolation
on the grid of cores.

The parameters to optimize are the scalar free cores
on all the axes (the first and last core values on each
axis are not free). The number of free cores is there-
fore Nφ =

∑n
m=1(Nm − 2). The parameter vector φ

can be obtained by concatenating the free cores, φ =
[c1

2, . . . , c
1
N1−1, , c

n
2 , . . . , cn

Nn−1]
T. The domain of φ is

Φ = (−x1
max, x

1
max)

N1−2 × · · · × (−xn
max, x

n
max)

Nn−2.

The goal is to find a parameter vector φ∗ that maximizes
the score function (15), using CE optimization. To this
end, a family of probability density functions has to be cho-
sen. We choose a density with independent Gaussian com-
ponents for each of the Nφ parameters. 2 The Gaussian
density is a usual choice for continuous CE optimization,
mainly for the reasons stated at the end of Section 2.3.
The density parameter v therefore consists of the mean
µ and standard deviation σ, each of them a vector with
Nφ elements. Because the support of this density is R

Nφ ,
which is larger than Φ, samples that do not belong to Φ
are rejected and generated again. Equations (13) and (14)
can be used to update µ and σ.

Finally, the initialization of µ and σ is specified as:

µ0 = 0

σ0 = [x1
max, . . . , x

1
max, , x

n
max, . . . , x

n
max]

T

2 If for a sample of the CE algorithm two or more core values on an
axis m are identical, a single triangular MF with that core value is
used in the fuzzy Q-iteration algorithm.

where each bound xm
max is replicated Nm − 2 times, for

m = 1, . . . , n. These values ensure a good coverage of the
state space with samples in the first iteration.

4. EXAMPLE: CAR ON THE HILL

In this section, we apply the algorithm developed in Sec-
tion 3 to the car-on-the-hill problem. This is a classical
benchmark for approximate RL. For instance, Munos and
Moore (2002) used this problem as a primary bench-
mark for their variable-resolution value iteration tech-
nique. Ernst et al. (2005) used the car on the hill, among
other examples, to validate an RL algorithm that approx-
imates value functions with ensembles of regression trees.

In this problem, a point mass (the ‘car’) has to be driven
past the top of a frictionless hill by applying a horizontal
force (Figure 2). For some initial states, the maximum
available force is not sufficient to drive the car straight up
the hill. Instead, it has to be driven up the opposite slope
(left) and gain momentum prior to accelerating towards
the goal (right).

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

0.6

p

H
(p

) u

mg

Fig. 2. The car on the hill. The ‘car’ is represented as a
black bullet, its goal is to drive out of the figure to
the right.

The horizontal position of the car (in meters) is denoted
by p, and the shape of the hill is:

H(p) =






p2 + p if p < 0
p√

1 + 5p2
if p ≥ 0

The dynamics of this problem are (Ernst et al., 2005):

p̈ =
u

1 + H ′(p)2
−

g H ′(p)

1 + H ′(p)2
−

ṗ2 H ′(p)H ′′(p)

1 + H ′(p)2
(17)

where a unity mass was assumed and g = 9.81 is the
gravitational acceleration. The notations ṗ and p̈ indicate
the first and second time derivatives of p, while H ′(p) and
H ′′(p) denote the first and second derivatives of H with
respect to p.

The state signal consists of the horizontal position and
speed of the car, x = [p, ṗ]T, and the control signal u is
the applied force. The state space is X = [−1, 1] × [−3, 3]
plus a terminal state (see below), and the discrete action
space is U = {−4, 4}. Whenever xk+1 is not in X (i.e.,
the position or speed exceed the bounds), it is considered
that the terminal state has been reached. The goal is drive
past the top of the hill to the right with a speed within the
allowed limits. Reaching the terminal state in any other
way is considered a failure. The reward function chosen to
express this goal is (Ernst et al., 2005):

ρ(xk, uk) =






−1 if pk+1 < −1 or |ṗk+1| > 3

1 if pk+1 > 1 and |ṗk+1| ≤ 3

0 otherwise

(18)

The discount factor is γ = 0.95. A discrete time step
Ts = 0.1 s is chosen.

To apply CE fuzzy Q-iteration, the following grid of
representative initial states is used:

X0 = {−1,−0.75,−0.5, . . . , 1} × {−3,−2,−1, . . . , 3}

where each point is uniformly weighted by 1
|X0|

in (15). The

parameters of the algorithm are set as follows: NCE = 5 ·2 ·
Nφ (5 times the number of parameters needed to describe
the probability density used inside the CE optimization
algorithm), ρCE = 0.05, dCE = 5, τmax = 50, ε = 10−3.
This same value of ε is used as admissible error in the score
evaluation [see (16)], the fuzzy Q-iteration convergence
threshold, and the CE convergence threshold. These are
typical default values, with little or no tuning performed.

The algorithm is run with an identical number of MFs for
each state variable, N1 = N2, and this number is gradually
increased from 3 to 20. 3 Each such experiment is run 10
times, and the average score, together with the maximum
and the minimum score in any run, are reported for
every value of N1 = N2. Figure 3-left compares the score
obtained by CE optimization with the score of the policies
computed with fuzzy Q-iteration with equidistant MFs,
for N1 = N2 varying from 3 to 50. Figure 3-right gives a
detailed view of the CE optimization scores. The graphs
also show the optimal score, computed by an exhaustive
search for optimal open-loop control sequences.

For the same number of MFs, CE fuzzy Q-iteration
consistently and reliably provides better performance than
fuzzy Q-iteration with equidistant MFs. Starting with
15 MFs on each axis, the worst performance of the CE
algorithm is still better than the best performance of
equidistant MFs for any N1 = N2 ≤ 50. For N1 = N2 ≥
12, the performance of CE fuzzy Q-iteration is very close
to the optimal one.

Figure 4 presents a typical convergence plot. Note that
the convergence is not monotonous; this is because the
algorithm uses random samples in every iteration.

5. CONCLUSION

In this paper, we have proposed an approach to optimize
the shapes of MFs for approximate fuzzy Q-iteration. The
optimization criterion measures the actual performance
of the computed policy in the task, using simulation to
compute the return from a representative set of initial
states. Using the cross-entropy method for optimization,
an algorithm was designed to optimize the locations of
triangular MFs. For the car-on-the-hill benchmark, this al-
gorithm showed better performance than fuzzy Q-iteration
with equidistant triangular sets.

The triangular MFs used in this paper make fuzzy Q-
iteration exponentially complex in the number of state
dimensions. Since fuzzy Q-iteration is run for every set
3 The experiments stop at 20 MFs to limit computation times per
experiment in the order of hours on our 3 GHz P-IV machine, using
MATLAB 7.1.

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of fuzzy sets on each axis

S
co

re

3 6 9 12 15 20 25 30 35 40 45 50

fuzzy Q−iteration score
optimal score
CE mean score
CE max score
CE min score

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

Number of fuzzy sets on each axis

S
co

re

mean score
max score
min score
optimal score

Fig. 3. Left: Comparison between CE fuzzy Q-iteration, and fuzzy Q-iteration with equidistant fuzzy sets. Right:
Detailed view of the CE fuzzy Q-iteration scores.

0 5 10 15 20 25
0.1

0.15

0.2

0.25

Iteration t

S
co

re
 s

Mean score

Max score

(1 − ρCE) quantile

Fig. 4. Convergence for a typical run of CE fuzzy Q-
iteration (N1 = N2 = 12). The algorithm converged
in 25 iterations.

of MFs considered by the CE optimization, the resulting
optimization procedure is very computationally intensive.
Other types of MFs (e.g., Gaussian) could be used to
obtain a fuzzy partition with less than exponential com-
plexity. However, even for such MFs, a good solution might
generally require exponentially many MFs.

While in this paper the CE method for optimization was
employed, there is no obstacle in principle to applying any
optimization technique to determine a good set of MFs.
In particular, other metaheuristic optimization techniques
like genetic algorithms, tabu search, pattern search, etc.,
could be used.

REFERENCES

Dimitri P. Bertsekas. Dynamic Programming and Optimal
Control, volume 2. Athena Scientific, 2nd edition, 2001.

Lucian Buşoniu, Damien Ernst, Bart De Schutter, and
Robert Babuška. Fuzzy approximation for convergent
model-based reinforcement learning. In Proceedings
2007 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE-07), pages 968–973, London, UK, 23–26
July 2007.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-
based batch mode reinforcement learning. Journal of
Machine Learning Research, 6:503–556, 2005.

Geoffrey Gordon. Stable function approximation in dy-
namic programming. In Proceedings Twelfth Inter-
national Conference on Machine Learning (ICML-95),
pages 261–268, Tahoe City, US, 9–12 July 1995.

Philipp W. Keller, Shie Mannor, and Doina Precup. Au-
tomatic basis function construction for approximate dy-
namic programming and reinforcement learning. In Pro-
ceedings Twenty-Third International Conference on Ma-
chine Learning (ICML-06), pages 449–456, Pittsburgh,
US, 25–29 June 2006.

Sridhar Mahadevan. Samuel meets Amarel: Automating
value function approximation using global state space
analysis. In Proceedings 20th National Conference on
Artificial Intelligence and the 17th Innovative Appli-
cations of Artificial Intelligence Conference (AAAI-05),
pages 1000–1005, Pittsburgh, US, 9–13 July 2005.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Basis
function adaptation in temporal difference reinforce-
ment learning. Annals of Operations Research, 134:215–
238, 2005.

Rémi Munos and Andrew Moore. Variable-resolution
discretization in optimal control. Machine Learning, 49
(2-3):291–323, 2002.

Dirk Ormoneit and Saunak Sen. Kernel-based reinforce-
ment learning. Machine Learning, 49(2–3):161–178,
2002.

Bohdana Ratitch and Doina Precup. Sparse distributed
memories for on-line value-based reinforcement learning.
In Proceedings 15th European Conference on Machine
Learning (ECML-04), volume 3201 of Lecture Notes in
Computer Science, pages 347–358, Pisa, Italy, 20–24
September 2004.

Reuven Y. Rubinstein and Dirk P. Kroese. The Cross
Entropy Method. A Unified Approach to Combinatorial
Optimization, Monte-Carlo Simulation, and Machine
Learning. Information Science and Statistics. Springer,
2004.

Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

Csaba Szepesvári and William D. Smart. Interpolation-
based Q-learning. In Proceedings Twenty-First Inter-
national Conference on Machine Learning (ICML-04),
pages 791–798, Bannf, Canada, 4–8 July 2004.

