
Optimistic planning for nonlinear

optimal control and

networked systems

Habilitation thesis

Lucian Buşoniu

Contents

List of algorithms v

I Preliminaries 1

1 Introduction 3

1.1 Research overview . 3

1.2 Advising and management activities 6

1.3 Teaching activities . 6

1.4 Outline of the thesis . 7

1.5 Acknowledgments . 8

1.6 List of acronyms . 9

2 Background 11

2.1 Optimal control problem and Markov decision process 11

2.2 Optimistic optimization . 12

2.3 Optimistic planning for deterministic systems 16

II OP for optimal control: Algorithms and fundamentals 25

3 Advances in deterministic systems 29

3.1 OP with continuous actions . 29

3.1.1 Problem statement and Lipschitz planning background . . . 30

3.1.2 SOO for planning . 33

3.1.3 Experimental results . 35

3.2 Optimistic best-first search for minimax control 42

3.2.1 Problem statement and examples 43

3.2.2 Optimistic minimax search 47

3.2.3 Analysis . 49

3.2.4 Experimental results . 54

3.3 Summary and conclusions . 58

i

ii CONTENTS

4 Solving stochastic problems 59

4.1 OP for Markov decision processes 59

4.1.1 Problem statement and proposed OP algorithm 61

4.1.2 Analysis . 64

4.1.3 Some interesting values of ψ 69

4.1.4 Experimental results . 74

4.2 OP with continuous transition distributions 77

4.2.1 Problem statement and OP with sigma-point discretization . 77

4.2.2 Analysis . 79

4.2.3 Experimental results . 81

4.3 Summary and conclusions . 84

5 Planning: Related topics & outlook 85

5.1 Related directions . 85

5.2 Open issues and ongoing work . 86

III Applications to nonlinear networked systems 93

6 OO and OP for multiagent consensus 97

6.1 OO for consensus . 98

6.1.1 Consensus problem statement 99

6.1.2 Consensus approach and analysis 100

6.1.3 Analysis and simulations in representative cases 105

6.2 OP for flocking . 111

6.2.1 Flocking problem statement 112

6.2.2 Flocking approach and analysis 113

6.2.3 Experimental results . 120

6.3 Summary and conclusions . 125

7 OP for networked control systems 127

7.1 Problem statement . 128

7.2 Algorithms and analysis . 129

7.3 Experimental results . 134

7.4 Summary and conclusions . 137

8 Networked systems: Related topics & outlook 139

8.1 Related directions . 139

8.2 Open issues and ongoing work . 140

CONTENTS iii

IV Other topics and future plans 147

9 Other directions 149

9.1 Reinforcement learning . 149

9.2 Robotics applications . 151

10 Overall plans for the future 153

10.1 Introduction and main objective 153

10.2 Research plan . 154

10.3 Long-term research goals . 155

iv CONTENTS

List of Algorithms

2.1 Deterministic optimistic optimization (DOO) 14

2.2 Simultaneous optimistic optimization (SOO) 16

2.3 Optimistic planning for deterministic systems (OPD) 18

3.1 Simultaneous optimistic optimization for planning (SOOP) 34

3.2 Optimistic minimax search (OMS) 48

4.1 Optimistic planning for Markov decision processes (OPMDP) . . . 63

4.2 OPMDP: Implementable version 64

6.1 Optimistic-optimization consensus at agent i 102

6.2 Optimistic-planning flocking at agent i – theoretical variant. 116

6.3 Optimistic-planning flocking at agent i – practical variant. 120

7.1 Clock-triggered optimistic planning (COP) 129

7.2 Self-triggered optimistic planning (STOP) 130

v

vi LIST OF ALGORITHMS

Part I

Preliminaries

1

Chapter 1

Introduction

1.1 Research overview

My research work revolves around the overarching goal of developing control meth-

ods for complex, possibly unknown systems. This is motivated by the high com-

plexity of modern controlled systems, manifested in properties such as nonlinearity,

stochasticity, large scale, and distributed nature. Moreover, some of these systems

cannot be accurately modeled, e.g. due to being insufficiently understood. For such a

case where the model is unknown, I worked during my PhD research on the promising

class of reinforcement learning (RL) methods (Sutton and Barto, 1998; Szepesvári,

2010; Lewis and Liu, 2012), which learn how to control a nonlinear stochastic system

without requiring a model. Even when the model is known, the nonlinear stochas-

tic control problem remains highly challenging: model-based counterparts to RL, like

planning and dynamic programming (La Valle, 2006; Bertsekas, 2012; Powell, 2012),

can address this setting. The focus of my recent, post-PhD work has been placed on

this latter case, and specifically on optimistic planning algorithms and their applica-

tions.

Optimistic planning (OP) methods (Munos, 2014) solve optimal control problems

modeled as Markov decision processes (MDPs) (Puterman, 1994). In this framework,

a controller measures at each discrete time step the state of a process, and applies an

action according to a control policy. As a result of this action, the process transits into

a new state, and a scalar reward signal is sent to the controller to indicate the quality

of this transition. The controller measures the new state, and the whole cycle repeats.

The goal is to find an optimal policy, i.e., a policy that maximizes the cumulative

reward over the course of interaction (the return). This framework can be applied to

lower-level control problems such as regulation to a desired state, where the rewards

are defined based on the distance to this state. It works also in higher-level problems

such as a robot learning to solve a task in an unknown environment, where the rewards

encode success or failure in the desired task.

3

4 CHAPTER 1. INTRODUCTION

OP techniques work in a local fashion by finding actions on demand for each

encountered state. The local nature of planning methods reduces their dependence

on state dimensionality in comparison to dynamic programming or RL, and allows

most methods to naturally deal with continuous state variables, which is essential in

the control of physical systems. At each step, an explorative search is made through

the space of possible action sequences from the current state, represented as a tree.

Then, the best first action found is applied, and entire process repeats at the next step.

Planning techniques are thus a very general type of model-predictive control. Since

computation is limited in the online setting, the search must be efficient, and a good

way to achieve this is by applying the principle of optimism in the face of uncertainty:

given the choice between action sequences having uncertain values, more promising

sequences are explored first. Formally, the most promising sequence is one with the

largest upper bound on its return. Optimistic methods combine in a novel way ideas

from optimization, planning and graph search (La Valle, 2006), and RL (Sutton and

Barto, 1998) with bandit theory in particular playing an important role (Auer et al.,

2002).

Several OP algorithms had already been developed when I entered the field,

mostly in the discrete-action case (Kocsis and Szepesvári, 2006; Hren and Munos,

2008; Bubeck and Munos, 2010; Walsh et al., 2010), with Upper Confidence Trees

perhaps the most widely known technique (Kocsis and Szepesvári, 2006). Several

algorithms also worked for continuous actions (Mansley et al., 2011; Weinstein and

Littman, 2012). Some of these methods have very useful features: they are appli-

cable to general, nonlinear dynamics with general, nonquadratic cost functions; and

they provide near-optimality guarantees that are placed in a tight relationship with the

computational budget invested by the algorithm (Hren and Munos, 2008; Bubeck and

Munos, 2010). However, they achieved this under restrictive conditions: discrete ac-

tions; and either for deterministic systems without uncertainties and disturbances, or

for stochastic systems but only searching in the suboptimal class of open-loop action

sequences. The first major part of this thesis will present my research to overcome

these limitations.

Specifically, two deterministic algorithms are introduced: one that works for con-

tinuous actions, and one for handling disturbances in a robust, minimax approach

that treats them as the actions of an opponent. Then, the case of stochastic systems is

considered, which can be used to model e.g. noises or disturbances with known prob-

ability distributions. An algorithm is first provided for distributions with discrete and

finite support, which is then extended to a class of continuous density functions via

sigma-point discretization. The near-optimality of all the algorithms with the excep-

tion of the continuous-action one is characterized, introducing several novel measures

of problem complexity appropriate for each particular class of problem. Additionally,

all the algorithms are extensively evaluated in simulation experiments.

Beyond their fundamental interest in optimal control, the generality of OP meth-

ods also makes them useful to address other challenges in nonlinear control. In par-

1.1. RESEARCH OVERVIEW 5

ticular, networked systems are becoming extremely important in today’s world: com-

munication networks, power and transport grids, decentralized computing networks,

and social networks are just some examples of such systems influencing everyday

life. The second major part of the thesis therefore investigates applications of opti-

mistic methods to the control of networked systems, treating these systems from two

complementary perspectives. The first perspective tackles the coordinated behavior

of multiple, interconnected systems called agents, under the constraints imposed by

the interconnection topology. In this context, an algorithm based on optimistic opti-

mization of fixed-length action sequences is first proposed, in order to achieve con-

sensus over the agents’ state variables under a fixed communication topology. Then,

OP over variable-length action sequences is applied to achieve flocking, where the

topology is dictated by a proximity relationship between the agents; here the main

analytical aim is to guarantee the preservation of the interconnection topology under

this constraint.

The second perspective deals with communication constraints induced by a net-

work interposed between a single system and its controller. Two optimal, networked

control strategies using OP are proposed to reduce the number of transmissions over

the network. In the first strategy, action sequences are transmitted to the plant at

a fixed period. In the second strategy, the algorithm decides the next transmission

instant according to the last state measurement (leading to a self-triggered policy),

working within a fixed computation budget. The algorithms are thoroughly analyzed,

showing that they effectively solve the problems they target.

In addition to their analysis, all the algorithms for networked systems are evalu-

ated in numerical examples.

The above two directions, into OP algorithms and their applications to nonlinear

control, comprise the main thrust of my post-PhD research. Additional directions in

RL, applications, and secondary planning and control topics are reviewed in separate

chapters. Direct offshoots of my PhD research are not discussed, even if they were

done or published after the PhD. The same applies to work where I participated but

did not take a leading role.

In the future, I will start from the planning and control research presented in this

thesis and I will integrate novel control insights, together with machine learning and

RL ideas, in order to approach my overall objective of an algorithmic framework

for the learning and planning control of complex systems. An important component

will be the integration of OP with RL ideas from my previous expertise, in order to

achieve hybrid algorithms with the advantages of both techniques. Stability guaran-

tees for the solution obtained will also be very important. Applicative directions will

be continued and new applications will be sought, both in general classes of nonlinear

control problems and also in the specific area of assistive robotics. All these results

will serve as a solid platform from which to explore new directions in decision and

control on the one hand, and machine learning and artificial intelligence on the other.

6 CHAPTER 1. INTRODUCTION

1.2 Advising and management activities

Throughout my research I have been managing a wide group of student projects,

both in the Netherlands and in Romania. I have been leading as coadvisor 2 PhD

students, one of whom graduated in March 2015; 9 Master and 9 Bachelor students;

among these, two Master projects finalized cum laude in the Dutch system. With my

students, I investigated an agenda of planning, learning, and control topics comple-

mentary to my main research lines, see Chapters 5, 8, and 9.

I have successfully acquired funding for my research in one national project

which is funding a young team over the period 2013-2016; two bilateral, interna-

tional cooperation projects (one PHC-Brâncuşi and a PICS, the latter funded by the

French side); as well as an internal grant within a funding initiative of the Research

Center for Automatic Control of Nancy, France. I have also been involved in local

project management in French, Dutch, and Romanian research projects.

Recently, I have initiated a new research group on “Robotics and Nonlinear Con-

trol” at the Department of Automation of the Technical University of Cluj-Napoca.

I have been coorganizing the 2014 (Orlando) and 2015 (Cape Town) editions of the

main event at the intersection of reinforcement learning and engineering: the IEEE

Symposium on Adaptive Dynamic Programming and Reinforcement Learning. In

addition, I have been leading several special sessions in previous years.

1.3 Teaching activities

In my work so far, I have been involved in three different academic systems: Roma-

nian, Dutch, and French, in several complementary roles: professor, student, project

advisor, and researcher. My teaching career has begun 12 years ago, during my post-

graduate studies at the Technical University of Cluj-Napoca, when I taught practi-

cal classes for the disciplines Reliability and diagnosis, Computer-aided design, and

Programming. At the same place, but in the complementary role of student, I was

exposed directly to the scientific literature, in course projects that required the critical

investigation and evaluation of methods proposed in published papers. This experi-

ence widened my horizons and was essential in my decision to follow an academic

career. Later, at the Technical University of Delft, I experimented myself with this

way of stimulating critical thinking in students, using a literature project that I helped

develop and coordinate. This was for a Master-level course on Knowlege-based con-

trol systems, within which I also taught invited lectures on reinforcement learning. I

was also invited to hold such a lecture for the course Control methods for robotics. In

general, my teaching work at TUDelft taught me to coordinate projects and exams for

a large number of students, and introduced me to the development and presentation

of new lectures.

My independent teaching career started in 2011 at the Technical University of

1.4. OUTLINE OF THE THESIS 7

Cluj-Napoca, where I was first an invited lecturer (March 2011), then lecturer (Oc-

tober 2011), and finally associate professor (October 2014). Here, I was responsible

with creating from the grounds up a new Master discipline on Learning control. I

also fully restructured the English-line Bachelor discpline of System identification.

I am currently leading both disciplines, including lecture, laboratory, project, and

examination work.

In addition, I was invited to present at several workshops and tutorials at top

conferences in the control and robotics fields, an experience which combines cutting-

edge research with a didactic approach. Overall, my expertise familiarized me with

the full spectrum of teaching skills needed in a University teaching career.

1.4 Outline of the thesis

Figure 1.1 shows a roadmap of the thesis in a graphical form. The main content

is structured hierarchically along the two major threads of work presented above.

Namely, Part II focuses on fundamental developments in planning algorithms for

optimal control, and Part III on applications of these algorithms to the control of

networked systems. Before this, Part I describes some necessary background, after

the present introduction. At the end, in Part IV, other research directions are outlined,

and an overall plan for the future is delineated. For easy reference, local lists of

references are provided at the end of each part.

1. Introduction

5. Related topics
& outlook

3.1. SOO
for planning

3.2. Optimistic
minimax search

4.1. OP for MDPs

4.2. Sigma-OP

2. Background

8. Related topics
& outlook

7. OP for networked
control systems

6.1. OO for
consensus

6.2. OP for
flocking

Algorithms & fundamentals

Applications to
networked systems

9. Other directions

10. Conclusions & plans

Figure 1.1: A roadmap for the thesis. Arrows indicate dependencies between topics.

Chapter and section numbers are provided.

8 CHAPTER 1. INTRODUCTION

Both of the main Parts, II and III, are structured in a similar way: after a brief

outline (not shown in the figure), the major research contributions in that direction

are presented, while at the end secondary topics are briefly discussed, together with

an outlook of open issues and ongoing work. In particular, the main algorithmic

developments in Part II concern simultaneous optimistic optimization for planning,

which handles continuous control actions; optimistic minimax search for adversarial

problems; and OP for MDPs together with sigma-OP for stochastic problems. In

Part III, optimistic optimization and planning are applied to the control of multiagent

systems to achieve consensus or flocking goals; and optimistic planning is used in

(single-controller) networked control systems.

The two parts can be read largely independently, with the first one being tai-

lored more for planning and RL researchers; while the second part is more directly

palatable to control engineers. Within each part, some of the topics are themselves

independent so they can be read separately. All these interdependencies are shown in

Figure 1.1, and each possibility of following the arrows from the top to the bottom of

this figure indicates one short way of reading the thesis. In addition, one can interrupt

such a thread at any time in order to jump back to the black disks and follow another

arrow. One particular way of doing this leads to reading the thesis sequentially.

There are some minor cross-dependencies that are left out of the figure, but these

do not affect the main flow. E.g. OP for MDPs (Section 4.1) is needed to understand

some of the related topics for networked systems in Chapter 8; and some occasional

backtracking may be necessary to find the description of example problems, because

the same example is used multiple times but in order to avoid redundancy it is only

presented in detail once, the first time it is used.

1.5 Acknowledgments

I am grateful to all my students and collaborators for their contributions to the work

presented here. Among the students, I would like to mention especially my PhD stu-

dents Ivo Grondman and Koppány Máthé; and my Master students Elöd Páll, Sander

Adam, Lex Daniels, Maarten Vaandrager, and Thijs Wensveen, all of whom did

significant work ending up in journal and conference publications. Long-term, ex-

tremely fruitful collaborations with Rémi Munos, Jamal Daafouz, Constantin Moră-

rescu, Romain Postoyan, and Damien Ernst should also be highlighted; and of course,

the contribution of my PhD advisors Robert Babuška and Bart De Schutter did not

stop with my degree – instead, we are continuing to work together and coauthor pa-

pers. Countless other people have contributed, formally or informally, with scientific

ideas, material, and opportunities, including for example Dragan Nešic, Frank Lewis,

Dimitri Bertsekas, Michail Lagoudakis, Csaba Szépesvari, Warren Powell, Raphael

Fonteneau, Boris Defourny, Liviu Miclea, Levente Tamás, and on and on – too many

to mention here. All this is without even mentioning the help of family and friends,

1.6. LIST OF ACRONYMS 9

which has been and is absolutely fundamental.

I would also like to acknowledge funding from the Romanian National Authority

for Scientific Research, CNCS-UEFISCDI (projects PNII-RU-TE-2012-3-0040 and

PHC Brâncuşi 781/2014), CNRS (PICS project No 6614), CRAN, and Siemens Ger-

many (reference no. 7472/3202246859); and my host institutions after my PhD, in

chronological order: TUDelft, INRIA Lille, CRAN Nancy, and the Technical Uni-

versity of Cluj-Napoca.

Finally, much of this thesis is based on existing papers and books with several

publishers, including among others IEEE, Elsevier, Springer, and Wiley. The copy-

right for the material remains with the respective publishers, and I am grateful to

them for hosting my publications and reusing the material here.

To recognize that the work presented here is the result of the concerted effort and

contributions of all these individuals and organizations, the remainder of the thesis

will be written in the first person plural.

1.6 List of acronyms

This list below collects the most frequently used acronyms in this thesis. To avoid

clutter, acronyms that are only used locally are not included.

MDP Markov decision process

RL reinforcement learning

OO optimistic optimization

DOO, SOO deterministic, simultaneous optimistic optimization

OP optimistic planning

OPD optimistic planning for deterministic systems

OPMDP optimistic planning for Markov decision processes

SOOP simultaneous optimistic optimization for planning

LP Lipschitz planning

HOLOP, OLOP (hierarchical) open-loop optimistic planning

OMS optimistic minimax search

COP, STOP clock-triggered, self-triggered optimistic planning

NCS networked control systems

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background

Several technical preliminaries from the preexisting literature are necessary to con-

struct the rest of the thesis, and we present them here. We start in Section 2.1 with

the optimal control problem that most algorithms we develop aim to solve, either in

its general form or in some specific cases. Then, we present in Section 2.2 two op-

timistic algorithms for optimization problems, which form the basis of the planning

algorithms for control that the thesis focuses on. One such algorithm, optimistic plan-

ning for the specific case of deterministic systems with discrete actions, is described

and characterized in Section 2.3.

2.1 Optimal control problem and Markov decision process

Throughout this thesis, we consider problems in which a nonlinear, possibly stochas-

tic dynamic system must be optimally controlled in discrete time. Optimality is mea-

sured by a cumulative reward signal which must be maximized: the return. Such

problems arise in many fields, including artificial intelligence, automatic control, op-

erations research, economics, medicine, etc. They are often modeled as Markov

decision processes (MDPs).

In an MDP, the system is described by a state signal x varying in the state space

X , and can be influenced by actions u in the action space U . State space X may be

countable or uncountable (e.g. continuous). The probability of reaching next state x′

after action u is taken in state x is given by the probability density f (x,u, ·), where

f : X×U×X→ [0,∞) is called a transition function. It collects the density functions

for all pairs (x,u) and describes the dynamics of the system. After the transition to x′,
a reward r′ = ρ(x,u,x′) is received, where ρ : X×U×X→R is the reward function.

A control policy π : X →U indicates how the controller chooses actions to interact

with the system. Denoting by k the discrete time index, the expected infinite-horizon

11

12 CHAPTER 2. BACKGROUND

discounted return of state x under a policy π is:

V π(x) = Exk+1∼ f (xk,π(xk),·)

{
∞

∑
k=0

γkrk+1

}
(2.1)

where x0 = x, rk+1 = ρ(xk,π(xk),xk+1), γ ∈ (0,1) is the discount factor, and the

notation xk+1 ∼ f (xk,π(xk), ·) means that after each step k, xk+1 is drawn from the

density f (xk,π(xk), ·) over next states. Other types of return can also be used, such

as finite-horizon or averaged over time, but we will only consider discounted returns

in this thesis. We call V π : X → R a value function.

The goal is to control the system using an optimal policy π∗, so that the value

function is maximized for every x ∈ X . This maximal, optimal value function is de-

noted by V ∗ and is unique, so it does not depend on the particular optimal policy.

It is also useful to consider an action-dependent optimal value function, the optimal

Q-function:1 Q∗(x,u) = Ex′∼ f (x,u,·) {ρ(x,u,x′)+ γV ∗(x′)}. Note that optimal control

problems are often stated so that a cost is minimized, rather than a return being max-

imized – but the two formulations are equivalent. For the technical conditions under

which the expectation in (2.1) is well-defined and an optimal solution is guaranteed

to exist, see Bertsekas and Shreve (1978).

We make a standing assumption of reward boundedness, that will be required to

hold for all the optimal control algorithms in this thesis.

Assumption 2.1 Rewards are bounded in [0,1].

Reward boundedness is often assumed in the MDP literature, see e.g. Ch. 4 of

(Bertsekas and Shreve, 1978) and (Szepesvári, 2010), since it ensures boundedness

of the value in (2.1). The main way to achieve boundedness is by saturating a possibly

unbounded original reward function. This changes the optimal solution, but is often

sufficient in practice. Then, the resulting bounded rewards can be normalized to

[0,1]. On the other hand, the physical limitations of the system may be meaningfully

modeled by saturating the states and actions. In this case, a reward bound follows

from the saturation limits.

2.2 Optimistic optimization

Next, two optimistic optimization (OO) algorithms are introduced (Munos, 2011).

The problem is to maximize some function g(z), g : Z → R. The optimization pro-

ceeds by hierarchically partitioning the domain Z. This partitioning is represented by

a tree structure T in which each node (d, i) is labeled by a point zd,i and represents

a subset of Z denoted Zd,i, and containing zd,i. Here, d ≥ 0 is the depth in the three

1Note the “prime” notation, as in e.g. x′, is used to generically indicate variables at the next step,

whereas if the actual time step is important, it is included as a subscript, e.g. xk.

2.2. OPTIMISTIC OPTIMIZATION 13

and i is the node index at a given depth. The root of the tree represents the entire

domain Z, and the tree is defined so that the children of a node form a partition of

the set represented by their parent. From a computational perspective the partitioning

should be easy to generate. Figure 2.1 exemplifies such a partitioning. Finally, the

set of leaves of the currently explored tree is denoted by L .

z

z z

z z

Z Z

g(z)

z

x
x

x

x

Figure 2.1: Illustration of the tree structure that is used by optimistic optimization. In

this example, Z is an interval and binary partitions are used.

The core requirements of the algorithms are stated in terms of a semimetric ℓ :

Z×Z→ [0,∞), where a semimetric is a function with all the properties of a metric

except possibly the triangle inequality.

Assumption 2.2 The objective function and the partitioning satisfy the following

conditions:

2.2.i There exists an optimum z∗ so that:

g(z∗)−g(z)≤ ℓ(z,z∗) ∀z ∈ Z (2.2)

2.2.ii There exist c > 0 and λ ∈ (0,1) such that for any d, δd, j ≤ cλ d for all nodes j

at depth d, where δd, j := supz∈Zd, j
ℓ(zd, j,z) is a pseudo-diameter of Zd, j.

2.2.iii There exists a constant µ such that any subset Zd, j contains a ball with center

zd, j and radius µcλ d in the semimetric ℓ.

Intuitively, Assumption 2.2.i is a local, one-sided Lipschitz property. The other

two conditions define the properties of a good partitioning procedure, which should

provide well-shaped sets (Assumption 2.2.iii) that shrink with the depth in the tree

(Assumption 2.2.ii). E.g. Assumption 2.2.iii forbids sets that, as the number of splits

grows, become infinitely thin along some directions but remain of a constant size

along others. Note that the guarantees can be generalized to the case of diameters

that decrease in a different way than exponentially, but for simplicity we only handle

the exponential case here.

14 CHAPTER 2. BACKGROUND

Denote δ (d) = cλ d , the upper bound on diameters at d. OO for Deterministic

functions (DOO) works by partitioning a set that may contain the optimum of g. It

does this by assigning upper bounds to all leaf sets Zd,i,(d, i) ∈L :

b(Zd,i) = g(zd,i)+δ (d) (2.3)

so that b(Zd,i)≥ g(z), ∀z ∈ Zd,i. Then at each iteration, an optimistic leaf set, which

maximizes the upper bound, is further partitioned. At the end, the point with the

largest value in the tree is returned. DOO is summarized in Algorithm 2.1.

Algorithm 2.1 Deterministic optimistic optimization (DOO)

Input: function g, computation budget n, partitioning of Z

1: initialize T with root Z0,0

2: for t = 1 to n do

3: (d†, i†)← argmax(d,i)∈L b(Zd,i)

4: expand (d†, i†) by partitioning Zd†,i† , and add children to T

5: end for

Output: ẑ = zd∗,i∗ where (d∗, i∗) = argmax(d,i)∈T g(zd,i)

DOO assumes knowledge of ℓ by using δ (d) in the upper bounds. The alternative,

Simultaneous OO (SOO), does not require this knowledge. Instead, at each round,

SOO simultaneously expands all potentially optimal leaf sets: those for which the

upper bound could be largest under any semimetric ℓ satisfying the conditions. With a

little thought, a set can only contain a largest upper bound if its sample value is at least

as good as the values of all sets with diameters larger than its own; we say that the set

is not dominated by larger sets. Since further, δ (d) decreases with d, we only have

to compare with leaves higher up the tree. At each iteration t, the algorithm expands

at most one leaf set at each depth. If we define L≤d as the set of leaf nodes having

depths d′ ≤ d, then a leaf (d, i) is only expanded if g(zd,i) = max(d′,i′)∈L≤d
g(zd′,i′);

if there are several such leaves one is chosen arbitrarily. This selection procedure is

illustrated in Figure 2.2. SOO additionally limits the tree depth at each iteration t with

a function dmax(t), a parameter of the algorithm that controls the tradeoff between

deeper or more uniform exploration. Algorithm 2.2 summarizes SOO. Note that in

the form given here, SOO may take more than the budget n to finish the last iteration.

The convergence of DOO and SOO depends on the smoothness of the func-

tion g in the semimetric ℓ, formalized next. Define first the near-optimal sets Zε =
{z ∈ Z |g(z∗)−g(z)≤ ε }. For any ε , the packing number of Zε is defined as the

maximal number of disjoint ℓ-balls with centers in Zε and equal radii µε (recall µ

from Assumption 2.2.iii). Finally, the near-optimality dimension is the smallest β > 0

so that there exists a positive constant C, such that the packing number is smaller than

Cε−β . The optimization problem is easier to solve when the semimetric ℓ captures

2.2. OPTIMISTIC OPTIMIZATION 15

x
x
x
x

x

x
x

x

x
x

x
x

x

x

x
x

x
x
x
x

g(z)

d
δ

Figure 2.2: Illustration of set selection in SOO. Depth d increases to the left, while

set diameter δ increases to the right. Samples are shown as ’z’, and the samples of

sets selected for expansion are circled and colored red.

more closely the smoothness of the objective function g around z∗, in which case

β is smaller, with the ideal β being 0. In some contrived cases β may be infinite,

e.g. when g is constant and a ‘malicious’ semimetric is defined that shrinks super-

exponentially around z∗. In order to eliminate these edge cases, another technical

assumption is needed.

Assumption 2.3 A finite β exists.

Then, the following results hold (Munos, 2011).

Proposition 2.1 (Near-optimality) Given a budget n, DOO returns a solution ẑ sat-

isfying: 2

g(z∗)−g(ẑ) =

{
O(n−1/β) if β > 0

O(λ n/C) if β = 0

where C is the constant from the near-optimality dimension. SOO returns a solution

ẑ satisfying:

g(z∗)−g(ẑ) =

{
O(n−(1−a)/β) if β > 0

O(λ
√

n/C′) if β = 0

where C′ ≥ 1 is a constant, and we choose dmax(t) = ta (with a > 0) when β > 0 and

dmax(t) =
√

t when β = 0.

Thus, sub-optimality decreases as a power of n which depends on the problem

complexity as expressed by β ; and when β = 0, the decrease is faster – exponential,

2Let g,h : (0,∞)→R. Statement g(t) = O(h(t)) (or g(t) = Ω(h(t))) for large t means that ∃t0,c > 0

so that g(t) ≤ ch(t) (or g(t) ≥ ch(t)) ∀t ≥ t0. When the statement is made for small t, it means that

∃t0,c > 0 so that the same inequalities hold for ∀t ≤ t0. f (t) = Õ(g(t)) for large (or small) t when

∃a,b, t0 > 0 so that f (t) ≤ a(logg(t))bg(t) ∀t ≥ t0 (or ∀t ≤ t0). The logarithmic term asymptotically

becomes negligible compared to g(t).

16 CHAPTER 2. BACKGROUND

Algorithm 2.2 Simultaneous optimistic optimization (SOO)

Input: function g, depth function dmax(·), budget n,

partitioning of Z

1: initialize T with root Z0,0; t← 1

2: while t ≤ n do

3: gmax←−∞

4: for d = 0 to min(depth(T),dmax(t)) do

5: i†← argmaxi g(zd,i)
6: if g(zd,i†)≥ gmax then

7: expand (d, i†), add children to T

8: gmax← g(zd,i†)
9: t← t +1

10: end if

11: end for

12: end while

Output: ẑ = zd∗,i∗ where (d∗, i∗) = argmax(d,i)∈T g(zd,i)

confirming that the problem is ‘easy’ and solved efficiently by the algorithm. Note

that DOO and SOO have similar guarantees. Since it does not use the semimetric,

SOO must expand more sets, and it converges at a somewhat slower rate. However,

for the same reason, SOO has a surprising advantage: it converges at the fastest rate

allowed by any valid semimetric.

2.3 Optimistic planning for deterministic systems

In this section we consider a deterministic variant of the problem in Section 2.1,

where the transition function reduces to x′ = f (x, u), since a single state x′ is reached

with probability 1; and the reward function to r′= ρ(x,u), since the next state x′ – and

hence the reward – are fully determined by x and x.3 Because the system is determin-

istic, a solution from a given initial state x can be represented by an infinitely-long

sequence of actions uuu∞ = (u0,u1, . . .) ∈U∞, and the discounted return (value) of this

sequence is:

V uuu∞(x) =
∞

∑
k=0

γkrk+1 =
∞

∑
k=0

γkρ(xk,uk) (2.4)

where x0 = x,xk+1 = f (xk,uk) for k ≥ 0, and γ ∈ [0,1) is the discount factor. Then,

the optimal value function satisfies V ∗(x) = supuuu∞
V uuu∞(x). Note that action sequences

3Here as well as in the sequel, we slightly abuse the notation by using the same symbols to denote

analogous but mathematically different objects in the stochastic and deterministic case. For example,

the deterministic ρ(x,u) is obtained by plugging x′ in the stochastic reward function, ρ(x,u,x′). It will

usually be clear from the context to which variant the text refers; when it is not, we make it explicit.

2.3. OPTIMISTIC PLANNING FOR DETERMINISTIC SYSTEMS 17

are more general than a state-feedback policy π , which would also be sufficient to

represent the solution, as in Section 2.1. We will nevertheless use the sequence-based

formulation since it better fits our approach.

In addition to reward boundedness from Assumption 2.1, we restrict U to a finite

set.

Assumption 2.4 The action space is discrete (or discretized), U =
{

u1, . . . ,uM
}

.

Many systems have inherently discrete and finitely-many actions, because they

are controlled by switches. This is the case e.g. in traffic signal control (De Schut-

ter and De Moor, 1998) or water level control by barriers and sluices (van Ekeren

et al., 2013). When the actions are originally continuous, discretization reduces per-

formance, but the loss is often manageable. Discretized actions may sometimes even

be preferable, e.g. actuator saturation can be dealt with by simply discretizing within

the operating ranges.

To introduce the algorithm, we focus on a particular state x where it must be

applied, and by convention set the current time to 0, so that x0 = x. Of course, the

procedure works at any time step.

u0

1

u0

2

ρ x u(,)0 0

2

L T()

f x u(,)0 0

2

ρ x u(,)0 0

1

f x u(,)0 0

1

u1

1
u1

2

d = 1

d = 2

d = 3

Figure 2.3: Illustration of an OPD tree T . Nodes are labeled by actions, arcs repre-

sent transitions and are labeled by the rewards and next states resulting by applying

the corresponding action. Subscripts are depths, superscripts index the M possible

actions/transitions from a node (here, M = 2). The leaves L (T) are enclosed in a

dashed line, while the thick path highlights an action sequence. Note that the root

corresponds to the empty sequence.

Optimistic planning for deterministic systems (OPD) (Hren and Munos, 2008)

explores a tree representation of the possible action sequences from the current state,

as illustrated in Figure 2.3. OPD starts with an unlabeled root node, and iteratively

expands nodes, where each expansion adds new children nodes corresponding to

all the M actions u1, . . . ,uM. Each node at some depth d is reached via a unique

path through the tree, and can thus be uniquely associated to the sequence of actions

18 CHAPTER 2. BACKGROUND

Algorithm 2.3 Optimistic planning for deterministic systems (OPD)

Input: state x, budget n or depth d (set the other to ∞)

1: initialize tree: T ←{root}, i = 0

2: repeat

3: find optimistic sequence: uuu† ∈ argmaxuuu∈L (T) bx(uuu)

4: add children u j, j = 1, . . . ,M to the node of uuu†

5: i← i+1

6: until i = n or ∆(T) = d +1

7: n← i; d← ∆(T)−1

Output: uuu∗ ∈ argmaxuuu∈L (T) lx(uuu), d, n

uuud = (u0,u1, . . . ,ud−1) on this path. In what follows, we will work interchangeably

with sequences and paths, keeping this equivalence in mind.

For a sequence uuud , we define three quantities:

lx(uuud) =
d−1

∑
d′=0

γd′ρ(xd′ ,ud′), bx(uuud) = lx(uuud)+
γd

1− γ

vx(uuud) = lx(uuud)+ γdV ∗(xd)

where the states are generated with the action sequence uuud , like in (2.1). Subscript x

indicates that the three quantities depend on the state x = x0 where OPD is applied.

Due to Assumption 2.1, the rewards below depth d are in [0,1], so lx(uuud) provides a

lower bound on the value of any infinite sequence that starts with uuud , while bx(uuud) is

an upper bound. Value vx(uuud) is obtained by continuing optimally after uuud . We call

functions b and l respectively “b-values” and “l-values” in the text.

Recall notation L (T) for the set sequences corresponding to leaves of T . OPD

optimistically explores the space of action sequences, by always expanding further

a most promising leaf sequence: one with the largest upper bound bx(uuu). At the

end, a sequence that maximizes the lower bound lx(uuu) among the leaves is returned.

Since leaves sit at varying depths d in the tree so that γd/(1− γ) varies, maximizing

lx(uuu) is different from maximizing bx(uuu), and can intuitively be seen as making a safe

choice. Algorithm 2.3 summarizes the entire procedure, where function ∆(·) gives

the depth of a tree, and any ties among several sequences maximizing upper or lower

bounds are broken arbitrarily. We allow the algorithm to terminate either after a given

number of expansions, or after a node at given depth d has been expanded, leading

to ∆(T) = d +1. Sometimes a sequence of length ∆(T) may be returned, in which

case the last action is removed for uniformity of analysis.

The computational budget is measured by the number of expansions, since an ex-

pansion takes M calls to the model f and to the reward function ρ , and for nonlinear

systems computing f dominates the execution time. Other tree operations (such as

computing b-values or traversing the tree to find the optimistic sequence) are signifi-

2.3. OPTIMISTIC PLANNING FOR DETERMINISTIC SYSTEMS 19

cantly cheaper, but can be bounded between O(n logn) and O(n2), depending on the

branching factor κ(x) defined in the next section.

To characterize the complexity of finding the optimal sequence from a given state

x, we use the branching factor κ(x) (average number of children per node) of the near-

optimal subtree. This subtree contains only nodes that, given the rewards obtained

down to them in the tree, cannot be ruled out as belonging to optimal sequences. In

general, exploring these nodes is unavoidable, and κ(x) is in this sense necessary to

characterize the problem. OPD only explores the near-optimal subtree, leading to a

priori guarantees on the relation between computation, sequence length, and near-

optimality. Since κ(x) is generally unknown, actual values for e.g. near-optimality

cannot be determined in advance. Nevertheless, the analysis provides confidence that

OPD automatically adapts to the complexity of the problem at state x, described by

κ(x). We return to detail these properties after the formal development is in place.

The near-optimal subtree is defined as:

T
∗(x) = {uuud |d ≥ 0,V ∗(x)− vx(uuud)≤ γd/(1− γ)} (2.5)

Let T ∗
d (x) be the set of nodes at depth d on T ∗(x) and |·| denote set cardinality, then

the asymptotic branching factor is defined as κ(x) = limsupd→∞

∣∣T ∗
d (x)

∣∣1/d
.

A sequence uuud is said to be ε-optimal when V ∗(x)− vx(uuud) ≤ ε . The upcoming

theorem is a consequence of the analysis in (Hren and Munos, 2008; Munos, 2014).

Part (i) of the theorem shows that OPD returns a long and near-optimal sequence,

and parts (ii), (iii) show that sequence length and near-optimality are closely related

to the computation budget, via branching factor κ(x).

Theorem 2.2 Let x ∈ X. When OPD is called at x:

(i) The length of the sequence uuu∗ returned is d = ∆(T)− 1. Denoting ε(x) =

V ∗(x)− lx(uuu
∗), we have ε(x)≤ γd

1−γ .

(ii) When OPD is called with large target depth d: • If κ(x) > 1 it will require a

number of expansionsn(x) = O(κ(x)d). • If κ(x) = 1, n(x) = O(d).

(iii) When OPD is called with large budget n: • If κ(x) > 1 it will reach a depth

of d(x) = Ω(logn

logκ(x)), and ε(x) = O(n
− log1/γ

logκ(x)). • If κ(x) = 1, d(x) = Ω(n) and

ε(x) = O(γc(x)n), where c(x) is a constant. �

Proof:(sketch) Item (i) follows from the proof of Theorem 2 in (Hren and Munos,

2008), (ii) from the proof of Theorem 3 in (Hren and Munos, 2008), and (iii) from

the proofs of Theorems 2 and 3 in (Hren and Munos, 2008). An outline for part (ii) is

given here, since it will be useful later in our analysis. OPD has the important prop-

erty that it only expands nodes in T ∗(x), although it uses solely reward information

from the current tree (Hren and Munos, 2008; Munos, 2014). According to item (i),

20 CHAPTER 2. BACKGROUND

performance is dominated by the depth reached. Thus the worst case is when nodes in

T ∗(x) are expanded in the order of their depth. Now, T ∗(x) contains n = O(κ(x)d)
nodes up to depth d when κ > 1, and n = O(d) otherwise. Inverting these rela-

tionships obtains the formulas for d in the Theorem statement, and replacing these

expressions for d into γd

1−γ provides the corresponding near-optimality bounds. �

The sequence returned is immediately ε(x)-optimal, since V ∗(x)− vx(uuu
∗) ≤

V ∗(x)− lx(uuu
∗) ≤ ε(x) in view of part (i); the second inequality here is stronger than

ε(x)-optimality.

To build more intuition on T ∗(x) and κ(x), note that T ∗(x) contains sequences

for which it is impossible to tell, from their rewards down to d, whether or not they are

part of an optimal solution, because their near-optimality is smaller than the amount

of reward γd/(1− γ) they might accumulate below depth d. Usually only some se-

quences have this property, therefore T ∗(x) is smaller than the complete tree and

κ(x) is smaller than the number of actions M. The smaller κ(x), the more easily

near-optimal sequences can be distinguished, and the better OPD does. The best case

is κ(x) = 1, obtained e.g. when a single sequence always obtains rewards of 1, and all

the other rewards are 0. In this case the algorithm must only develop this sequence,

and suboptimality decreases exponentially. In the worst case, κ(x) = M, obtained e.g.

when all the sequences have the same value, the algorithm must explore the complete

tree in a uniform fashion, expanding nodes in order of their depth.

OPD is closely related to the classical A* heuristic search algorithm, see Ch. 2

of (La Valle, 2006), and can in fact be seen as an extension of A* to infinite-horizon

problems using the heuristic γd/(1− γ) on the leaf values.

It is also instructive to examine the relation between OPD and DOO. OPD is, in

fact, DOO applied to optimize the return g(z) = V uuu∞(x), for fixed x, over the space of

infinitely-long action sequences z = uuu∞. The semimetric is:

ℓ(uuu∞,uuu′∞) =
γdiff(uuu∞,uuu′∞)

1− γ

where diff(uuu∞,uuu′∞) is the smallest depth where the two sequences are different. This

is equal to the largest difference between the returns provided by the two sequences

in any possible MDP, so clearly the objective function V uuu∞ satisfies the required

Lipschitz-like property of Assumption 2.2 with respect to semimetric ℓ. The set

of sequences Zd corresponding to each node uuud consists of all infinitely-long se-

quences starting with uuud . Under the chosen metric, the diameter of each such set

is δ (Zd) = γd

1−γ since any two sequences in Zd can differ at the earliest at index d.

Each such set is split by making the choices for ud definite, so that we obtain M dif-

ferent children sets Zd+1 which are specified up to d + 1 actions, one set for every

value of ud ∈
{

u1, ...,uM
}

. There is one technical difference from DOO: an exact

point cannot be sampled inside a set Zd , since any such point is an infinitely long

sequence of actions. This is fortunately not a problem, since upper and lower bounds

2.3. OPTIMISTIC PLANNING FOR DETERMINISTIC SYSTEMS 21

bound on the values of sequences in the can still be obtained with (2.5), and they can

be used in place of the DOO b-values and function values, respectively, as show in

Algorithm 2.3.

22 BIBLIOGRAPHY

Bibliography

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multi-

armed bandit problem. Machine Learning, 47(2-3):235–256.

Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control, volume 2.

Athena Scientific, 4th edition.

Bertsekas, D. P. and Shreve, S. E. (1978). Stochastic Optimal Control: The Discrete

Time Case. Academic Press.

Bubeck, S. and Munos, R. (2010). Open loop optimistic planning. In Proceedings

23rd Annual Conference on Learning Theory (COLT-10), pages 477–489, Haifa,

Israel.

De Schutter, B. and De Moor, B. (1998). Optimal traffic light control for a single

intersection. European Journal of Control, 4(3):260–276.

Hren, J.-F. and Munos, R. (2008). Optimistic planning of deterministic systems.

In Proceedings 8th European Workshop on Reinforcement Learning (EWRL-08),

pages 151–164, Villeneuve d’Ascq, France.

Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In

Proceedings 17th European Conference on Machine Learning (ECML-06), pages

282–293, Berlin, Germany.

La Valle, S. M. (2006). Planning Algorithms. Cambridge University Press.

Lewis, F. and Liu, D., editors (2012). Reinforcement Learning and Adaptive Dynamic

Programming for Feedback Control. Wiley.

Mansley, C., Weinstein, A., and Littman, M. L. (2011). Sample-based planning for

continuous action Markov decision processes. In Proceedings 21st International

Conference on Automated Planning and Scheduling, pages 335–338, Freiburg,

Germany.

Munos, R. (2011). Optimistic optimization of a deterministic function without the

knowledge of its smoothness. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L.,

Pereira, F. C. N., and Weinberger, K. Q., editors, Advances in Neural Information

Processing Systems 24, pages 783–791.

Munos, R. (2014). The optimistic principle applied to games, optimization and plan-

ning: Towards foundations of Monte-Carlo tree search. Foundations and Trends in

Machine Learning, 7(1):1–130.

Powell, W. B. (2012). Approximate Dynamic Programming: Solving the Curses of

Dimensionality. Wiley, 2 edition.

BIBLIOGRAPHY 23

Puterman, M. L. (1994). Markov Decision Processes—Discrete Stochastic Dynamic

Programming. Wiley.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.

MIT Press.

Szepesvári, Cs. (2010). Algorithms for Reinforcement Learning. Morgan & Claypool

Publishers.

van Ekeren, H., Negenborn, R., van Overloop, P., and De Schutter, B. (2013). Time-

instant optimization for hybrid model predictive control of the Rhine-Meuse delta.

Journal of Hydroinformatics, 15(2):271–292.

Walsh, T. J., Goschin, S., and Littman, M. L. (2010). Integrating sample-based plan-

ning and model-based reinforcement learning. In Proceedings 24th AAAI Confer-

ence on Artificial Intelligence (AAAI-10), Atlanta, US.

Weinstein, A. and Littman, M. L. (2012). Bandit-based planning and learning

in continuous-action Markov decision processes. In Proceedings 22nd Interna-

tional Conference on Automated Planning and Scheduling (ICAPS-12), São Paulo,

Brazil.

24 BIBLIOGRAPHY

Part II

Optimistic planning for optimal

control: Algorithms and

fundamentals

25

Introduction and outline

The optimistic planning algorithm from Section 2.3 has very useful features: it is

applicable to systems with general, nonlinear dynamics and general, nonquadratic

cost functions; it provides near-optimality guarantees that are placed in a tight rela-

tionship with the computational budget invested by the algorithm via Theorem 2.2;

and, as a side-benefit, it also gives sequences of actions that are guaranteed to be

long, which will prove useful later, in Chapter 7. However, it achieves all this under

restrictive conditions: the actions must be discrete and finitely many, and the system

must be fully known, without any disturbances. Many real control problems do not

satisfy these conditions, and therefore we dedicate Part II of this thesis to developing

algorithms that do not require them.

Specifically, we start by discussing two deterministic algorithms in Chapter 3:

one that works for continuous actions (Section 3.1), and one for handling distur-

bances in a robust, minimax approach that treats them as the actions of an opponent

(Section 3.2). Then, in Chapter 4, we consider the case of stochastic systems, where

the dynamics are affected by noises or disturbances with known probability distribu-

tions. We provide first an algorithm for distributions with discrete and finite support

in Section 4.1, and then we extend it to a class of continuous density functions via

sigma-point discretization, in Section 4.2. We analyze the near-optimality of all the

algorithms with the exception of the continuous-action one, for which work is ongo-

ing. This ongoing direction is outlined in Chapter 5, together with future work and

other related directions of research, which are not discussed in detail in the thesis.

The material in this part is based on the following publications:

(P1) L. Buşoniu, A. Daniels, R. Munos, R. Babuška, “Optimistic Planning for Conti-

nuous-Action Deterministic Systems”, Proceedings 2013 Symposium on Adap-

tive Dynamic Programming and Reinforcement Learning (ADPRL-13), Singa-

pore, 15–19 April 2013 (Section 3.1).

(P2) L. Buşoniu, R. Munos, E. Páll, “An analysis of optimistic, best-first search for

minimax sequential decision making”, Proceedings 2014 IEEE Symposium on

Adaptive Dynamic Programming and Reinforcement Learning (ADPRL-14),

Orlando, USA, 10–13 December 2014 (Section 3.2).

27

28

(P3) L. Buşoniu, R. Munos, “Optimistic Planning for Markov Decision Processes”,

accepted at the 15th International Conference on Artificial Intelligence and

Statistics (AISTATS-12), Canary Islands, Spain, 21–23 April 2012 (Section 4.1).

(P4) L. Buşoniu, R. Munos, B. De Schutter, R. Babuška, “Optimistic Planning for

Sparsely Stochastic Systems”. Proceedings 2011 IEEE International Sympo-

sium on Adaptive Dynamic Programming and Reinforcement Learning

(ADPRL-11), pages 48–55, Paris, France, 11–15 April 2011 (Section 4.1).

(P5) L. Buşoniu, R. Munos, R. Babuska, “A Survey of Optimistic Planning in Mar-

kov decision processes”. In Reinforcement Learning and Adaptive Dynamic

Programming for Feedback Control, F. Lewis and D. Liu, Editors, series Com-

putational Intelligence, Wiley, 2012 (parts of Section 4.1).

(P6) L. Buşoniu, L. Támas, “Optimistic Planning for the Near-Optimal Control of

General Nonlinear Systems with Continuous Transition Distributions”. Pro-

ceedings 19th IFAC World Congress (IFAC-14), Cape Town, South Africa, 24–

29 August 2014 (Section 4.2).

Chapter 3

Advances in deterministic systems

3.1 Optimistic planning with continuous actions

In this section we consider deterministic problems with continuous, scalar actions.

In these problems, an infinite-dimensional space of action sequences must be ex-

plored. We devise an optimistic planning algorithm to perform the search starting

from Lipschitzian planning (LP), see Chapter 5 of (Hren, 2012). LP splits the infinite-

dimensional space into hyperboxes of increasing dimensionality, guided by upper

bounds on the return of all sequences within a hyperbox. To compute the bounds, LP

requires globally Lipschitz dynamics and rewards, with a known Lipschitz constant.

This is an important limitation, since the system may not be Lipschitz, or even if it

is, its smoothness will usually vary across the state-action space. In the latter case,

the Lipschitz constant will be conservative, leading to poor performance in smoother

regions.

We therefore propose a method that does not rely on the restrictive assumption of

a known, global Lipschitz constant. To achieve that, we exploit the principles behind

simultaneous optimistic optimization (SOO) (Munos, 2011), see Section 2.2, which

only requires local smoothness around an optimum, without knowing the Lipschitz

constant or indeed even the metric. We develop a nontrivial extension of SOO to the

optimization of the return over infinitely long action sequences, and call the resulting

algorithm SOO for planning (SOOP). The main idea is to select at every iteration all

hyperboxes that are potentially optimal for any metric – rather than the box with the

largest upper bound in the given metric, like LP. Then for each selected box, a choice

is made on the dimension to split further, guided by a tuning parameter.

Compared to SOO, the main novelty introduced by SOOP is a relaxed selec-

tion procedure for potentially optimal boxes. This is necessary because (roughly

speaking) SOO would require sorting boxes by their diameter in the unknown metric,

which is not possible. The relaxation works under a weaker, reasonable assumption

on the ordering of diameters. Due to this difference and other particularities of plan-

29

30 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

ning, the analysis of SOOP is currently open. However, we expect good performance

due to the features of SOO, which guarantee convergence to an optimum at the most

favorable rate given by any valid metric.

Concerning related work, several OP methods for continuous actions existed prior

to SOOP. HOOT (Mansley et al., 2011) and SP (Hren, 2012) rely on the principle of

Upper Confidence Trees: they explore the space of sequences of a given length (plan-

ning horizon) K, optimizing for the kth action the return obtained over subsequent

steps. HOLOP1 (Weinstein and Littman, 2012) optimizes directly the K-horizon re-

turn relative to the initial state (at k = 0). All three methods are limited by searching

for a sequence that is only optimal over horizon K, whereas the control problem is

infinite-horizon. In principle, K can be taken sufficiently large, but this will waste

computation, and in practice K is a problem-dependent parameter. The actual space

that should be explored is that of infinitely long continuous-action sequences. To our

knowledge, the only existing OP algorithm that does this is LP, discussed above. Note

that HOOT and HOLOP also work in stochastic problems, whereas SOOP works in

deterministic ones.

3.1.1 Problem statement and Lipschitz planning background

Like for OPD in Section 2.3, we consider a current state x0 and by convention set the

current time to 0. A sequence of K actions is denoted uuuK = (u0,u1, . . . ,uK−1) ∈UK .

It is important to note that here we do not use notation d for the sequence length,

because this length no longer corresponds to depth in a tree. The discounted value

of an infinitely-long sequence uuu∞ ∈ U∞ is given by V uuu∞(x0) from (2.4), while the

truncated return of a sequence with finite length K is taken from (2.5):

l(uuuK) =
K−1

∑
k=0

γkρ(xk,uk) (3.1)

In addition to the standing Assumption 2.1 on bounded rewards, the following

structure of the action space is required.

Assumption 3.1 The action space is the scalar unit interval: U = [0,1].

Scalar actions are only assumed for convenience, as they allow us to introduce the

derivations and the algorithm in a simple fashion. The unit interval can accommodate

any other closed interval by translation and scaling, but noncompact action spaces

cannot be considered.

In the scalar case, U∞ can be visualized as an infinite dimensional hypercube on

which each dimension represents the action space at that step. The goal of continuous-

action planning is to explore U∞ in such a way that after a computational bud-

get is exhausted, a near-optimal action sequence uuu is returned. The method we

1The acronyms stand for: hierarchical optimistic optimization applied to trees (HOOT), hierarchical

open-loop optimistic planning (HOLOP), and sequential planning (SP).

3.1. OP WITH CONTINUOUS ACTIONS 31

develop explores U∞ by iteratively splitting it into hyperboxes (boxes, for short).

Such a box Ui ⊆ U∞ is the cross-product of a sequence of subspaces (intervals)

(µ i
0, . . . ,µ i

Ki−1,U,U, . . .) where µ i
k ⊆U and Ki− 1 is the deepest discretized dimen-

sion; for all further dimensions µ i
k = U . Thus Ki is the number of discretized dimen-

sions, and might be seen as a “length” of Ui. A box is further explored by trisecting

either the subspace of an already discretized dimension, or the space U for the first

undiscretized dimension, Ki. Thus trisecting dimension k corresponds to refining

further the action at step k. In Figure 3.1 an example of exploring U∞ is shown.

7

7

7

7

k = 0

k = 2

k = 1

Figure 3.1: Example partition of U∞ after 3 trisections. Dimensions 4 and higher are

left out of the figure.

Define δ i
k to be the size of subspace µ i

k in box Ui:

δ i
k =

{
maxu∈µ i

k
|ui

k−u| for 0≤ k < Ki,

1 for k ≥ Ki

(3.2)

where ui
k is the action at the center of µ i

k.

Lipschitz planning (LP) (Hren, 2012) applies DOO to optimize the return (2.4)

over the space U∞ of infinite action sequences. The form of LP we introduce makes

some mild changes to the version in (Hren, 2012), which we point out later. The

dynamics f and rewards ρ need to be Lipschitz with a known constant L (we do not

make this a formal assumption since our method does not require it):

‖ f (x,u)− f (x′,u′)‖ ≤ L(‖x− x′‖+ |u−u′|)
|ρ(x,u)−ρ(x′,u′)| ≤ L(‖x− x′‖+ |u−u′|)

(3.3)

To apply DOO, first a semimetric ℓ is needed. After some simple calculations that

exploit the Lipschitz property, the difference between the rewards obtained at step k

by two sequences uuu∞,uuu′∞ is bounded as follows:

|ρ(xk,uk)−ρ(x′k,u
′
k)| ≤

k

∑
j=0

Lk− j+1|u j−u′j|

32 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

Using this, we construct the semimetric as the following upper bound on the differ-

ence between the returns of the sequences:

ℓ(uuu∞,uuu′∞) =
∞

∑
k=0

γk min{1,
k

∑
j=0

Lk− j+1|u j−u′j|} (3.4)

where the reward difference bounds are additionally capped by 1, since rewards are

bounded in [0,1].

The partitioning scheme is trisection-based. Since the samples are infinite ac-

tion sequences, the algorithm never has access to a complete sample or its value (the

infinite-horizon return), which would be needed for a “vanilla” implementation of

DOO. Nevertheless, like in OPD the metric ℓ can still be used to provide an upper

bound on the returns of sequences in a box discretized only up to some finite dimen-

sion Ki−1:

b(Ui) =
Ki−1

∑
k=0

γk min{1,ρ i
k +

k

∑
j=0

Lk− j+1δ i
j}+

γKi

1− γ
(3.5)

where ρ i
k is the reward obtained at step k by applying the (finite) sequence uuui

Ki
at the

center of the box, and δ i
k are the subspace sizes. Each term of the outer sum bounds

the reward attainable at step k by any sequence in the box, while the fraction covers

the reward attainable from step Ki onwards. The difference b(Ui)− l(uuui
Ki

), see (3.1),

can be informally thought of as the diameter of Ui.

LP works by following the principle of DOO: at each iteration, it selects an op-

timistic box Ui† that has the largest upper bound b(Ui), and further refines this box

by trisecting one of its dimensions. To complete the algorithm, we only have to spec-

ify the dimension selection procedure. Each dimension k < Ki† in turn is assumed

trisected, and the upper bound for the resulting middle box is computed, which will

be smaller due to the reduced subspace size δ i†

k /3. To rank the first undiscretized

dimension Ki† , the center reward is assumed to be 0, and the subspace size will be

1/3. Finally, the selected dimension is one that reduces the bound the most. Once

an imposed budget n of calls to the model (f ,ρ) has been depleted, the algorithm

returns a center sequence with the largest return among all the boxes.

The original LP in (Hren, 2012) is different in the following ways. (i) The semi-

metric (3.4) and upper bound (3.5) are changed to cap individual reward bounds to

1 only after reaching the last k for which the reward bound is smaller than 1 (denote

it by K′); thus (3.4) and (3.5) are tighter. (ii) If K′ < Ki† − 1 for the optimistic box,

only dimensions up to K′ are considered for trisection, whereas we still consider all

dimensions including Ki† . This avoids some pathological behavior such as when the

first-step rewards ρ0 are always 1, in which case the original LP would keep refining

the first action dimension without ever going deeper. Finally, (iii) when a dimension

k < Ki†−1 is trisected, we compute all the rewards up to Ki†−1 for the left and right

center action sequences, whereas original LP only computes the kth rewards. This

3.1. OP WITH CONTINUOUS ACTIONS 33

allows a fair comparison with SOOP, which trisects in the same way. It may either

increase or decrease performance with respect to the original LP (increase because

the initial upper bounds of the left and right boxes are tighter, decrease because more

model calls are spent).

3.1.2 Sequential optimistic optimization for planning

Determining the Lipschitz L constant is hard, and, in fact, it must usually be treated

as a tuning parameter of LP. Even so, f or ρ may simply not be Lipschitz. If they are,

a global Lipschitz constant may underestimate their smoothness in large parts of the

domain, leading to inefficient partitioning. Conversely, overestimating the smooth-

ness (taking L too small) is dangerous because the upper bounds become invalid and

the DOO guarantees are lost. Therefore, we now propose an optimistic planning

method that does not require a Lipschitz constant or knowing the semimetric, by ex-

ploiting the principles of SOO. Since the trisection scheme of LP is also used, many

of the building blocks for the new method are already available. We still have to

introduce the main insight that connects the pieces together into the overall, novel

algorithm. We call this algorithm SOOP (Simultaneous Optimistic Optimization for

Planning).

The main step in SOO is selecting potentially optimal sets. This is ideally done

by sorting the sets by their diameters, and then only selecting sets with values undom-

inated by the values of larger-diameter sets. Note that the diameters themselves need

not be known, only their ordering; in Algorithm 2.2, because diameter decreases with

increasing depth, the depth d acts as a proxy for the ordering. Unfortunately, such a

global ordering is very difficult to define for the planning problem. To address this

difficulty, we relax the SOO set selection procedure.

First, because depth no longer translates into a diameter ranking, we stop looking

at the sets as being organized into a tree. Instead, the algorithm just works with a

collection of sets (boxes in the planning context), which does not affect its validity.

We define a notion of partial ordering on these boxes, and impose an assumption. For

any box Ui, denote by sk
i ≥ 0 the number of times the box has been trisected along

dimension k.

Definition 3.1 A box U j is said to be partially greater than Ui, denoted U j �Ui, iff

∀k ≥ 0, s
j

k ≤ si
k.

Assumption 3.2 If U j � Ui, then diameters δ (U j) ≥ δ (Ui), where: δ (U) =
supuuu∞,uuu′∞∈U ℓ(uuu∞,uuu′∞) is the box diameter in the unknown semimetric ℓ.

We expect that many useful semimetrics will satisfy Assumption 3.2. For in-

stance, it can be shown that the Lipschitz semimetric (3.4) satisfies it. Under As-

sumption 3.2, we modify the box selection procedure as follows: a box Ui is poten-

tially optimal and will be expanded if it is undominated by any U j �Ui; that is, if for

34 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

all U j � Ui, l(uuui
Ki

) ≥ l(uuu j
K j

). So, Ui will be compared only with some of the boxes

with larger diameters: those that are partially greater than it. It will still be expanded

if it is dominated by some larger box that is not partially greater. Thus the new crite-

rion is safe (all boxes that should be expanded are indeed expanded) but conservative

(some boxes that ideally should not be expanded perhaps will be). Conservativeness

implies the algorithm requires more samples than an ideal application of SOO.

The final step is specifying how to select the dimension (action step) for trisec-

tion. Ideally, the dimension that leads to the largest decrease of the diameter in ℓ
should be trisected, but of course finding this decrease is not possible since ℓ is un-

known. We leave this procedure open in the general method, summarized as Algo-

rithm 3.1, and discuss alternatives below. Note that the algorithm may take more

than n transitions to complete the last iteration (expand the last batch of potentially

optimal boxes); alternatively, if running time is strictly limited, the latest iteration can

simply be interrupted immediately upon reaching the budget n.

Algorithm 3.1 Simultaneous optimistic optimization for planning (SOOP)

Input: state x0, model (f ,ρ), budget of model calls n

1: initialize collection of boxes with U1 = U∞

2: repeat

3: select potentially optimal boxes:

I† = {i |∀ j s.t. U j �Ui, l(uuu
i
Ki

)≥ l(uuu j
K j

)}
4: for i ∈ I† do

5: select dimensions κ ⊆ {0,Ki} to trisect

6: for k ∈ κ do

7: trisect dimension k,

add resulting boxes to the collection

8: end for

9: remove parent Ui from the collection

10: end for

11: until budget n has been depleted

Output: best sequence found uuui∗
Ki∗

, i∗ ∈ argmaxi l(uuuKi

i)

(i) The simplest alternative for dimension selection is to just trisect all dimensions

{0,Ki}. This is safe, but very costly in terms of model calls and computation. Oth-

erwise, one can conjecture that due to the discounting, which makes earlier actions

more important, these actions should be discretized more finely. Thus a second alter-

native is to (ii) trisect those dimensions for which the resulting boxes are discretized

more finely for smaller k, formally: si
k ≥ si

k+1 ∀k ≥ 0. Then by induction, all boxes

created by the algorithm satisfy the property. (iii) With the same conjecture, an even

less costly heuristic may be derived that only selects one dimension. This is done by

3.1. OP WITH CONTINUOUS ACTIONS 35

ranking dimensions with a new discount factor α ∈ (0,1):

κ = min{arg max
k∈{0,Ki}

αk(1/3)sk
i } (3.6)

The tuning parameter α trades off discretization accuracy and planning depth: small

values will lead to finer discretizations close to the root, while with a larger value

larger planning horizons are reached. In this sense, α is similar to the depth function

dmax in SOO. With this criterion as well, all boxes produced are discretized more

finely for smaller k.

Since in preliminary experiments trisecting many dimensions greatly increased

computational costs without large performance benefits, we use (iii) in the sequel.

To extend the algorithm to multiple action variables, the partial ordering and the

dimension selection must be changed. Denoting the action variable index by m, the

partial ordering can be changed by requiring that all variables m at every step k are

split at most as many times in U j as in Ui. Dimension selection can be performed

by extending (3.6) to compare also between the variables at each k; thus a pair (k,m)
that maximizes the discounted size would be selected, breaking ties in favor of small

k and arbitrarily among m.

We close this section by discussing the amount of model calls required for trisec-

tions. Trisecting a box U of depth K along dimension k requires 3 model calls when

k = K, and 2(K− k) if k < K. This is because in the former case all three new boxes

inherit the entire center sequence uuuK of U , with the associated rewards, and must

only simulate the next action (step K). When k < K, the center box retains again the

complete information, whereas the left and right boxes only inherit the subsequence

and rewards up to k−1, and the tails from k to K−1 must be simulated.

3.1.3 Experimental results

To determine the practical effectiveness of SOOP, it will be tested on three problems,

in which it will be compared with three other OP algorithms. The first algorithm is

OPD, which serves as a discrete-action baseline. The other two algorithms support

continuous actions: they are LP, the closest relative of SOOP, and HOLOP (Weinstein

and Littman, 2012). The latter is selected as a representative for the class of finite-

horizon planning algorithms, which also includes HOOT (Mansley et al., 2011) and

SP (Hren, 2012).

For each problem, the algorithms are executed for several values of the budget n

of model calls. Like for SOOP above, the algorithms are not stopped mid-iteration, so

they may take more than n calls to complete. For each value of n, the other algorithm

parameters are optimized over a grid, and the best performance is reported. The

parameters are: for SOOP, the discount factor α for dimension selection; for OPD,

the number of discrete actions M (for every M, a uniform grid of actions is generated,

36 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

covering the whole action space); for LP, the Lipschitz constant L; and for HOLOP,

the horizon K. The following parameter values are tested in all problems: for SOOP,

α ∈ {0.1,0.2, . . . ,0.9}; for OPD, M ∈ {3,5, . . . ,15}; for LP, L ∈ {0.1,0.2, . . . ,1.5};
and for HOLOP, K ∈ {5,10,15,20,25,30,40,50,75,100}. Since HOLOP generates

solutions randomly, it is run 10 times for each experiment and a 95% confidence

interval on the mean performance is computed. The best HOLOP experiment is then

the one with the largest upper confidence bound.

DC motor. Consider a DC motor with two state variables: shaft angle x1 ∈ [−π,π] rad,

angular velocity x2 ∈ [−15π,15π] rad/s, and one action variable: voltage u∈ [−10,10] V.

The dynamics are linear:

f (x,u) = Ax+Bu, A≈
[

1 0.0095

0 0.9100

]
, B≈

[
0.0084

1.6618

]

The goal is to stabilize both states at zero, and is described by the unnormalized

reward function:

ρ̃(x,u,x′) =−xT Qrewx−uT Rrewu, Qrew = diag(1,0.001), Rrew = 0.05 (3.7)

with discount factor γ = 0.95. Using the known variable bounds, the reward is nor-

malized (scaled and translated) into [0,1], and for the sake of applying the continuous-

action algorithms, the same is done for the action.

This first problem is chosen because it is simple and can be solved with short

planning horizons. Nevertheless, continuous (or finely discretized) actions are nec-

essary for good performance, due to the quadratic action penalty. The four planning

algorithms are applied in receding horizon, from the initial state [−π,0]T and for a

duration of 1 s (100 steps). Table 3.1 shows the best parameters of the algorithms.

Each row corresponds to an algorithm, and each column to a budget value n, and the

content cells show the best value of each algorithm’s parameter for the corresponding

n. Figure 3.2 shows the best returns obtained.

Table 3.1: DC motor: the best values of the algorithm parameters for each n.

n = 100 500 1000 2500 5000

SOOP, α = 0.8 0.7 0.8 0.7 0.7
OPD, M = 3 3 3 3 5

LP, L = 0.9 0.6 0.6 0.7 0.5
HOLOP, K = 5 5 5 5 5

SOOP is clearly better than OPD, as expected from the fact that coarse actions

are not sufficient. An interesting observation is that despite this, discretizing finely is

not worth the additional price paid in terms of model calls in OPD (since a larger tree

3.1. OP WITH CONTINUOUS ACTIONS 37

0 1000 2000 3000 4000 5000
14.5

15

15.5

16

16.5

n

re
tu

rn
SOOP, return

OPD, return

LP, return

HOLOP, mean return

Figure 3.2: Performance for the DC motor. For HOLOP, the mean performance with

its 95% confidence interval is shown.

must be explored), not even for larger budgets. Only for n = 5000 do we get better

performance by taking M = 5 discrete actions.

SOOP and LP are performing similarly: LP is better for small budgets, while

SOOP overtakes it for larger ones. Apparently, a global Lipschitz assumption works

in this problem, which is not surprising due to its simplicity.

HOLOP is doing worse than all others, and looking at controlled trajectories (not

shown here due to space limitations) this is due to very coarse actions which are not

able to stabilize the system. Thus, for the budgets considered here, HOLOP cannot

sufficiently refine the solution.

m

motor

α

Figure 3.3: Inverted pendulum schematic.

Inverted pendulum swingup. The second problem is swinging up and stabilizing

an underactuated inverted pendulum rotating in a vertical plane, see Figure 3.3. Due

to limited power, from certain states (e.g., pointing down) the pendulum needs to be

swung back and forth to gather energy, prior to being pushed up and stabilized. The

first state x1 = α is the angle and wraps around in the interval [−π,π) rad; the second

state is the angular velocity x2 = α̇ ∈ [−15π,15π] rad/s. The action u ∈ [−3,3] V is

the motor voltage, see (Buşoniu et al., 2010a), Section 4.5.3 for the dynamics. The

goal of stabilizing the pendulum pointing up is expressed by quadratic rewards of the

form (3.7) with Qrew = diag(1,0), Rrew = 0.3, and the discount factor is γ = 0.95.

38 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

Like before, rewards and actions are normalized into [0,1].

While it is a standard benchmark in control and dynamic programming, this prob-

lem nevertheless supplies an interesting challenge to planning algorithms: the solu-

tion must be planned over a longer horizon, and solutions that seem good over a short

horizon will not work, instead just pushing the pendulum in one direction. Further-

more, continuous actions are necessary, firstly due to the action penalty, and secondly

to properly stabilize the pendulum in the unstable, pointing-up position. The plan-

ning algorithms are applied from an initially pointing down position, x = [−π,0]T ,

for a duration of 5 s (100 steps). Table 3.2 shows the algorithm parameters and Figure

3.4 the best returns.

Table 3.2: Parameters for the inverted pendulum.

n = 500 1000 5000 10000 15000

SOOP, α = 0.9 0.8 0.7 0.7 0.7
OPD, M = 3 3 3 3 5

LP, L = 0.1 0.2 0.1 0.1 0.7
HOLOP, K = 10 10 10 10 10

0 5000 10000 15000
11.5

12

12.5

13

13.5

14

14.5

n

re
tu

rn

SOOP, return

OPD, return

LP, return

HOLOP, mean return

Figure 3.4: Performance for the inverted pendulum.

The relationships between SOOP, OPD, and HOLOP mirror those in the DC mo-

tor problem. However, LP now ranks as poorly as HOLOP. Figure 3.5 (on the next

page) shows representative controlled trajectories with SOOP and LP. LP applies very

coarse actions, while SOOP uses fine discretization to behave near-optimally.2 The

reason is found in the small values of L: LP prefers to search longer-horizon solu-

tions rather than discretize finely. Unfortunately, even for this coarse discretization

it does not manage a good swing-up. While the reasons are not entirely clear, one

hypothesis is that unlike for the DC motor, in the swing-up problem the Lipschitz

2This is determined by comparing with near-optimal solutions found with dynamic programming,

which is possible in this low-dimensional problem.

3.1. OP WITH CONTINUOUS ACTIONS 39

0 1 2 3 4 5
−5

0

5

α
 [

ra
d

]

0 1 2 3 4 5
−10

0

10

20

α
’
[r

a
d

/s
]

0 1 2 3 4 5
−5

0

5

u
 [

V
]

0 1 2 3 4 5
0

0.5

1

r
[−

]

t [s]

0 1 2 3 4 5
−5

0

5

α
 [

ra
d

]

0 1 2 3 4 5
−20

0

20

α
’
[r

a
d

/s
]

0 1 2 3 4 5
−2

0

2

u
 [

V
]

0 1 2 3 4 5
0

0.5

1

r
[−

]

t [s]

Figure 3.5: Swing-ups of the inverted pendulum with SOOP and LP, for n = 5000

and optimized parameters.

0 1000 2000 3000 4000 5000
10

−2

10
0

10
2

10
4

10
6

n

e
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

SOOP, execution time

OPD, execution time

LP, execution time

HOLOP, mean execution time

Figure 3.6: Execution time for the inverted pendulum, for optimized parameters.

constant varies, with the system behaving differently around equilibria than around

the critical swing-up points; and that LP cannot deal with that.

Regarding α in SOOP, for tight budgets larger values are preferred, which means

a longer horizon is sought at the expense of discretization; as more samples become

available and a sufficient horizon is ensured, the balance shifts back towards dis-

cretization. This behavior is intuitive, since for too short horizons a good swing-up

cannot be achieved, and fine actions become irrelevant.

Finally, we look at the computational cost of the algorithms, see Figure 3.6. Be-

sides the fact that in our Matlab implementation the algorithms are not yet ready for

real-time control, we notice that SOOP and OPD have similar costs, and HOLOP is

somewhat faster. LP is slower, but this is at least partly due to our implementation,

40 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

which is optimized for many sequences with similar lengths; whereas around the goal

state, LP typically expands a few very long sequences.

m1

l2

l1

motor

Figure 3.7: Robot arm.

Two-link robot arm. Finally, we consider a two-link robot arm actuated only in

the middle joint, which has 4 states (angles θ1, θ2 of the joints plus their angular

velocities) and 1 action u (motor torque). It can also be seen as a horizontally-oriented

acrobot. The model equations are found in (Buşoniu et al., 2010a), Section 4.5.2. The

link lengths are 0.15 and 0.25 m, both masses are 1 kg and concentrated at the ends

of the links, and there is neither inertia nor friction. The task is stabilization to zero

starting with both links at rest at angle −π , and the reward is quadratic with Qrew =
diag(1,0,1,0) and no action penalty. Table 3.3 and Figure 3.8 show the results. OPD

and discrete actions do well also in this problem, with SOOP trailing closely behind

and doing better than LP and HOLOP.

Looking at Table 3.3 and Figure 3.8, OPD and discrete actions do well in this

problem, with SOOP trailing close behind. Note that in problems where discrete ac-

tions work well, SOOP cannot be expected to outperform OPD, mainly because OPD

searches the smaller space of discrete-action sequences, which still contains a good

solution. Nevertheless, here SOOP still manages to find a good solution in the larger,

continuous-action space, obtaining similar performance to OPD and still outperform-

ing LP and HOLOP, which apparently search the larger space less efficiently.

Table 3.3: Parameters for the two-link robot arm.
n = 500 1000 5000

SOOP, α = 0.5 0.6 0.5
OPD, M = 5 7 7

LP, L = 0.1 0.9 1.1
HOLOP, K = 5 5 5

3.1. OP WITH CONTINUOUS ACTIONS 41

0 1000 2000 3000 4000 5000
36

37

38

39

n

re
tu

rn

SOOP, return

OPD, return

LP, return

HOLOP, mean return

Figure 3.8: Performance for the two-link robot arm.

42 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

3.2 Optimistic best-first search for minimax control

We consider next the extension of optimistic ideas to sequential, adversarial decision-

making problems, see e.g. Chapter 10 of (La Valle, 2006). Two adversarial agents

take discrete actions in turn, one of them aiming to maximize the infinite-horizon cu-

mulative value of the actions, and the other to minimize it. This framework can model

important classes of problems, including e.g. turn-based games such as go or chess,

as well as our main interest: optimal control under uncertainty, where the uncertainty

is conservatively treated as the action of the opponent agent. It turns out that apply-

ing optimism in the adversarial setting naturally leads to the best-first search variant

(Palay, 1982) of B*, a classical minimax algorithm proposed by (Berliner, 1979) in

1979. The name “best-first search” has been used for many other methods (including

A* and even two minimax techniques: fixed-depth (Plaat et al., 1996) and adaptive-

depth best-first search (Korf and Chickering, 1996)), so to avoid confusion we call

the algorithm optimistic minimax search (OMS), always keeping in mind its relation

to B*.

OMS explores a tree representation of the possible sequences of max and min

agent actions, as do other minimax search algorithms such as alpha-beta pruning

(Knuth and Moore, 1975) or those in (Plaat et al., 1996; Korf and Chickering, 1996).

At each leaf node, OMS requires lower and upper bounds on the values of action

sequences passing through that node, and it propagates these bounds upwards in the

tree by maximization or minimization according to the type of node. The next leaf to

expand is selected optimistically, by starting from the root and recursively moving to

a child that maximizes the upper bound at max nodes, or minimizes the lower bound

at min nodes. OMS can stop after any number of iterations, after which it returns the

deepest expanded node. Thus it is an adaptive-depth, anytime algorithm.

By exploiting the optimistic framework, we are able to develop theoretical per-

formance guarantees for OMS – which to our best knowledge were missing from

the literature on B* search. Specifically, we provide conditions under which OMS

is guaranteed to approach the minimax-optimal solution as the budget of node ex-

pansions increases. These conditions impose structure on the value function so that

earlier decisions are more important than later ones, and require this structure to be

reflected in the bounds. A posteriori, OMS is then near-optimal to the extent of the

gap between the upper and lower bounds at the deepest expanded node. To obtain

an a priori bound, we characterize the size of the subset of nodes that OMS expands

by its asymptotic branching factor, and use this factor to provide a tight relation-

ship between computation invested and near-optimality. In particular, when the gaps

decrease exponentially with the depth, the convergence rate is directly characterized.

Throughout this section, we illustrate the theoretical framework in several classes

of problems, including function optimization, games, and optimal control under un-

certainty. In these examples, we study the value of the branching factor, illustrating

that it is a meaningful measure of problem complexity. An empirical study illustrates

3.2. OPTIMISTIC BEST-FIRST SEARCH FOR MINIMAX CONTROL 43

the analytical properties of OMS, and also includes the control problem of optimal

treatment of HIV infection under uncertainty on drug effectiveness.

The importance of the effective branching factor in the analysis of minimax al-

gorithms was understood as early as (Knuth and Moore, 1975; Pearl, 1982), where it

was applied to alpha-beta pruning, see also (Korf, 1998). However, OMS is adaptive-

depth and behaves quite differently from fixed-depth methods like alpha-beta. It is

closer to the adaptive-depth best-first method of (Korf and Chickering, 1996), which

does not have an analysis and in fact may converge to suboptimal solutions, as we

will show in an example. Here we provide a general analysis of OMS near-optimality

and branching factor, placing them in direct connection with (smoothness) properties

of the value function – something that is largely missing in works analyzing classical

minimax methods. From this perspective our branching factor is closer to other com-

plexity measures in optimistic methods, such as the branching factor in (Hren and

Munos, 2008a), the near-optimality dimension in Section 2.2 and (Munos, 2011), the

near-optimality exponent in Section 4.1, etc. Different from these however, it works

in minimax problems and filters nodes using a nontrivial, nonlocal property, which

must hold for the entire path to the node. Finally, it must be noted that the B* search

algorithm, of which OMS is a special case, aims only to find the optimal action at the

root, whereas OMS as applied here further refines the value at the root even after the

first action is clear, which is useful in optimization.

Throughout this section we preserve the full generality of the approach, by stay-

ing in the high-level setting of an adversarial decision-making process. We provide

several examples of problems to which this setting can be applied. In particular, in

Example 3.3, we specialize it to an optimal control problem with disturbance, which

is closely related to the framework of Section 2.1.

3.2.1 Problem statement and examples

Consider an adversarial, sequential decision-making problem where a maximizer

(max) and a minimizer (min) agent take actions in turn. The max and min actions

are respectively denoted u and w, and belong to action spaces U and W . We assume

that U and W contain finitely many elements, M and M respectively. A generic action

is denoted z ∈ Z := U ∪W , and can be either a max or min action. Denote an infinite

sequence of actions by zzz∞ = (z0,z1,z2,z3, . . .) = (u0,w0,u1,w1, . . .)∈ (U×W)∞, and

a finite sequence of d actions by zzzd = (z0,z1, . . . ,zd−1), with zzz0 the empty sequence by

convention. The truncation of zzz∞ to d initial elements is denoted zzz∞|d . Finally, define

a sequence of reward functions rd : (U×W)⌊d⌋×U⌈d⌉→R, d ≥ 1 were notation ⌊d⌋
means the result of the integer division of d by 2 and ⌈d⌉ the remainder. Here, the

convention is that a set to power 0 is omitted. The meaning of rd(zzzd) is that of imme-

diate reward following a sequence of d decisions. Then, the overall infinite-horizon

44 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

value of sequence zzz∞ is:

v(zzz∞) :=
∞

∑
d=1

rd(zzz∞|d) (3.8)

The goal is to find the minimax-optimal value, defined as:

v∗ := lim
k→∞

[
max

u0

min
w0

· · ·max
uk−1

min
wk−1

2k

∑
d=1

rd(zzzd)

]
(3.9)

when this limit exists.3 This problem is similar e.g. to the one in Chapter 10 of La

Valle (2006).

Define Z (zzzd) =
{

zzz∞

∣∣zzz∞|d = zzzd

}
, the set of sequences starting with zzzd . The

following requirement sits at the core of our approach.

Assumption 3.3 There exist functions l and b and a decreasing sequence {δ (d)}d≥0

of positive real numbers so that for any action sequence zzzd:

l(zzzd)≤ v(zzz∞)≤ b(zzzd),∀zzz∞ ∈Z (zzzd) (3.10)

b(zzzd)− l(zzzd)≤ δ (d) (3.11)

Thus, (3.10) says that l and b are lower and upper bounds on values of sequences

starting with zzzd . Our algorithm will require access to such bounds. Equation (3.11)

intuitively restricts to problems where later decisions matter less than earlier ones.

We will also call δ (d) the gap (between the two bounds).

Example 3.1 Adversarial optimization. Our first example is academic, and will later

provide important insight into the behavior of the algorithm. Consider a function

g(x,y), g : [0,1]× [0,1]→R. Both agents take binary decisions, U =W = {0,1}, with

the following meaning. The max agent takes the domain [0,1]× [0,1] and splits it in

half along dimension x, selecting the first half if u = 0 and the second if u = 1. The

min agent then takes the resulting set and similarly splits it in half along dimension

y. The max agent takes over and splits along x, and so on, see Figure 3.9. An infinite

sequence zzz∞ corresponds to a point and its value is v(zzz∞) = g(x,y), assuming that g

can be decomposed in the form (3.8).

Take, for example, function g(x,y) = x + y, which satisfies this property. For

this function, upper and lower bounds can be easily found as follows. Each finite

sequence zzzd corresponds to a box (X ,Y,∆x,∆y) where X ,Y are the lower-left coor-

dinates and ∆x, ∆y the lengths of the sides. Then, l(zzzd) = X +Y , b(zzzd) = X +Y +
∆x + ∆y. Further, ∆x = 2−⌊d+1⌋,∆y = 2−⌊d⌋, so that b(zzzd)− l(zzzd) ≤ 2 · 2−d/2+1 ≤
4 · (1/

√
2)d =: δ (d). The minimax-optimal value is v∗ = maxx miny g(x,y) = 1 and

the corresponding minimax solution is the lower-right corner of the domain. �

3Decisions u, w, and index k are used when the max and min actions are regarded separately; other-

wise, we use generic decision z and index d. Note that d corresponds to depth in a planning tree.

3.2. OPTIMISTIC BEST-FIRST SEARCH FOR MINIMAX CONTROL 45

0,0

y

u0=1

w0=0

u1=0

...

x1

1

Figure 3.9: Adversarial optimization. The max agent takes action 1 choosing the

continuous-outline box, the min agent 0 choosing the dashed box, and the max agent

then applies 0 to choose the dotted box. Any infinite sequence of decisions is uniquely

associated to a point.

Example 3.2 Two-player games with discount. Consider a turn-based game such as

go, where the state of the board is represented by vector x. At turn k ≥ 0, the player

takes decision uk = z2k and the opponent responds with wk = z2k+1. These decisions

affect the board according to a transition function, xd+1 = f (xd,zd), and the player

attains rewards ρ(xd ,zd,xd+1), e.g., in go related to the territory and the number of

pieces taken. The goal is to achieve discounted, minimax-optimal play:

lim
k→∞

[
max

u0

min
w0

· · ·max
uk−1

min
wk−1

2k

∑
d=0

γdρ(xd ,zd,xd+1)

]

This is modeled in our framework by taking ρd(zzzd) := γd−1ρ(xd−1,zd−1,xd), while

noting that the dependence of the rewards on the sequence of previous actions is

collapsed into the state signal.

To ensure Assumption 3.3, we impose the following:

Assumption 3.4 Rewards are bounded to the unit interval, ρ : X×Z×X → [0,1].

This may require rescaling the original, nonunit rewards. Since all rewards after ap-

plying zzzd are in [0,1], we have l(zzzd) = ∑d−1
j=0 γ jρ(x j,z j,x j+1) and b(zzzd) = l(zzzd)+

γd

1−γ ,

with the convention that an empty sum is 0. Therefore, δ (d) = γd

1−γ , and Assump-

tion 3.3 is satisfied.

There may be terminal, game-over states, from which any transition ends up in

the same state with reward 0. �

46 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

Example 3.3 Discounted optimal control with disturbance. Finally, take an optimal

control problem for a system affected by disturbances. The dynamics at discrete-

time step k are: xk+1 = f (xk,uk,wk), where u is now the applied action and w is

the disturbance. A reward rk+1 = ρ(xk,uk,wk,xk+1) is obtained, and the goal is to

achieve the best possible discounted return, conservatively taking into account the

worst possible disturbances, as usually done in robust control:

lim
k→∞

[
max

u0

min
w0

· · ·max
uk−1

min
wk−1

k−1

∑
j=0

γ jρ(x j,u j,w j,x j+1)

]

To place this in our framework, take:

ρd(zzzd) :=

{
0, if d = 2k +1

γkρ(xk,uk,wk,xk+1) if d = 2k +2

We again impose reward boundedness to the unit interval:

Assumption 3.5 The reward function satisfies ρ : X×U×W ×X → [0,1].

Then, l(zzzd) = ∑
⌊d⌋−1
k=0 γkρ(xk,uk,wk,xk+1) and b(zzzd) = l(zzzd)+

γ⌊d⌋

1−γ , so that δ (d) =

γ⌊d⌋

1−γ ≤
γ

1−γ

√
γd , and Assumption 3.3 is satisfied.

To make an explicit link with the optimal control problem of Section 2.1, con-

sider the case where the disturbance wk is a random variable with a probability dis-

tribution that may depend on the current state and action: p(w|x,u). Then, we can

eliminate the explicit dependence on the disturbance by defining the stochastic dy-

namics: f̃ (x,u, f (x,u,w)) := p(w|u,x) and the reward function ρ̃(x,u, f (x,u,w)) :=
ρ(x,u,w, f (x,u,w)). Functions f̃ and ρ̃ define a Markov decision process as in Sec-

tion 2.1. Of course, the goal imposed there, of maximizing the expected discounted

return (2.1), only makes sense because w is assumed to be a random variable. In the

more general setting here, we do not make this assumption – instead, the disturbance

w can have any behavior and we solve the problem for the worst-case behavior. �

It must be emphasized that in contrast to Example 3.1, Examples 3.2 and 3.3

comprise entire classes of practical problems.

More generally, lower and upper bounds can be derived if v is Lipschitz under a

metric ℓ on the space of sequences:

∣∣v(zzz∞)− v(zzz′∞)
∣∣≤ ℓ(zzz∞,zzz′∞)

and if for any set Z (zzzd), we have access to the value of a sample zzz∞ ∈Z (zzzd). Define

diam(Z (zzzd)) := supzzz′∞∈Z (zzzd) ℓ(zzz∞,zzz′∞), then ∀zzz′∞ ∈Z (zzzd):

v(zzz′∞)≥ v(zzz∞)−diam(Z (zzzd)) =: l(zzzd)

v(zzz′∞)≤ v(zzz∞)+diam(Z (zzzd)) =: b(zzzd)

3.2. OPTIMISTIC BEST-FIRST SEARCH FOR MINIMAX CONTROL 47

Then, δ (d) = 2 ·diam(Z (zzzd)) and the condition on δ (d) from Assumption 3.3 turns

into a requirement on the diameters and thus on the smoothness of v.

In fact, in e.g. Example 3.1 the bounds follow from the Lipschitz property of

g(x,y) = x + y in the L1 metric. In Example 3.2, a Lipschitz property of v holds

for the metric ℓ(zzz∞,zzz′∞) = γd(zzz∞ ,zzz′∞)

1−γ , where d(zzz∞,zzz′∞) is the first index where the two

sequences are different (a similar property holds for Example 3.3). However, the

bounds in the examples were computed in a smarter way that did not require access

to the exact value of a sample; indeed such a value will often be difficult to obtain

since it is an infinite sum.

For more insight, the bounds l and b can be compared to those in DOO (Sec-

tion 2.2), where they were also obtained from a Lipschitz condition; and to those in

OPD (Section 2.3) where they had to be obtained directly due to the infinite sum, like

in Examples 3.2 and 3.3, but they were again related to a Lipschitz condition.

In general, Assumption 3.3 allows any procedure for computing the bounds (3.10)

as long as they satisfy together with v the smoothness property (3.11).

3.2.2 Optimistic minimax search

Optimistic minimax search (OMS) explores a tree representation of the possible ac-

tion sequences, as illustrated in Figure 3.10. OMS starts with a root node correspond-

ing to the empty sequence, and iteratively expands n nodes. Expanding a node adds

new children nodes corresponding to all the M max actions (for max nodes) or N

min actions (for min nodes). Each node at some depth d is reached via a unique

path through the tree, and is thus uniquely associated to the sequence of actions

zzzd = (z0,z1, . . . ,zd−1) on this path. In what follows, we will work interchangeably

with sequences and nodes, keeping this equivalence in mind.

(1)

d 0=

d = 3

d = 1

(1,0) (1,1)(0,0) (0,1)

(1,0,0) (1,0,1)

d = 2
[.5,1.5][0,1]

[0,1]

[.75,1.5]

[.75,1.5]

[1,2]

[.5,1.25]

[.75,1.5]

[.75,1.5]

(0)

()

Figure 3.10: Illustration of a minimax tree developed by the algorithm when applied

to Example 3.1. Squares are max nodes, and circles min nodes. Nodes are labeled

by action sequences, shown inside the node, as well as by the interval [L,B], shown

outside. Four nodes have been expanded, and the thick path leads to the node that the

algorithm would expand at iteration five.

Using the same notation as for the other trees so far, let T denote the current tree,

48 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

L (T) the leaf nodes of this tree, and C (zzz) the children of node zzz. The algorithm

computes lower and upper bounds L(zzz) and B(zzz) for each node. They are initialized

at the leaves using l and b from Assumption 3.3, and propagated upwards in the tree:

L(zzz) =






l(zzz), if zzz ∈L (T)

maxzzz′∈C (zzz) L(zzz′), if zzz is a max node, zzz /∈L (T)

minzzz′∈C (zzz) L(zzz′), if zzz is a min node, zzz /∈L (T)

B(zzz) =






b(zzz), if zzz ∈L (T)

maxzzz′∈C (zzz) B(zzz′), if zzz is a max node, zzz /∈L (T)

minzzz′∈C (zzz) B(zzz′), if zzz is a min node, zzz /∈L (T)

(3.12)

To choose the next leaf to expand, the algorithm starts from the root and con-

structs a path by recursively selecting an optimistic child for the agent at the current

node. That is, at max nodes a child with the largest upper bound is selected (opti-

mistic for the max agent), while at min nodes the algorithm moves to a child with the

smallest lower bound, which is optimistic for the min agent (it is pessimistic for the

max agent).

OMS stops after n node expansions, and returns the deepest node expanded: its

sequence ẑzz and bounds. Algorithm 3.2 summarizes the entire procedure, where (·, ·)
means the concatenation of the argument sequences and d(·) yields the depth (length)

of the argument sequence. Ties in the maximizations and minimizations can be bro-

ken arbitrarily. Measuring computation by the number of node expansions is moti-

Algorithm 3.2 Optimistic minimax search (OMS)

Input: budget n

1: initialize: T ←{zzz0}, the root

2: for iteration t = 1 to n do

3: zzz← zzz0

4: while zzz /∈L (T) do

5: zzz←
{

argmaxzzz′∈C (zzz) B(zzz′), if zzz is a max node

argminzzz′∈C (zzz) L(zzz′), if zzz is a min node

6: end while

7: zzz(t)← zzz

8: expand zzz(t), by adding to T its children:

(zzz(t),u) ∀u ∈U , if zzz(t) is a max node

or (zzz(t),w) ∀w ∈W , if zzz(t) is a min node

9: compute bounds for all zzz ∈T with (3.12)

10: end for

11: ẑzz← argmaxzzz(t),t=1,...,n d(zzz(t))
Output: ẑzz, l(ẑzz), b(ẑzz)

3.2. OPTIMISTIC BEST-FIRST SEARCH FOR MINIMAX CONTROL 49

vated by the fact that these operations are often the most expensive, such as e.g. in

the control problem of Example 3.3, where expansion requires the simulation of the

dynamics. OMS is an anytime algorithm: n does not have to be specified in advance,

and the algorithm can be stopped after any number of expansions.

Sometimes, OMS will be used with the intention of finding a decision to apply,

rather than an approximation of the optimal value. In this case, the first action of

the sequence ẑzz is applied by the max agent, which then waits for the min agent’s

response and then reapplies OMS from the resulting situation (e.g., state). This can be

seen as receding-horizon control (Maciejowski, 2002). Note that the min agent could

itself apply OMS to find the actions, simply by starting with a min root node and

then applying the algorithm as usual. Finally, the bounds L and B can be efficiently

maintained by only updating at iteration t the path from the last expanded node zzz(t)
to the root.

3.2.3 Analysis

Let us first establish a basic property of OMS.

Lemma 3.2 At any iteration t, for any nodes zzz, zzz′ ∈ C (zzz) on the optimistic path, we

have [L(zzz),B(zzz)]⊆ [L(zzz′),B(zzz′)].

Proof: If zzz is a max node, B(zzz) = B(zzz′) and L(zzz)≥ L(zzz′) since L(zzz) is the maximum

among the children’s L-values. The situation is symmetrical at min nodes. �

Define for any node zzzd of finite depth d the minimax value v(zzzd) among infinite

sequences starting with zzzd . Formally:

v(zzzd) =
d

∑
j=1

ρ j(zzz j)+






lim
k→∞

[max
u0

min
w0

· · ·max
uk−1

min
wk−1

2k

∑
j=1

ρd+ j((zzzd ,zzz↑ j))]

if zzzd is a max node

lim
k→∞

[min
w0

· · ·max
uk−1

min
wk−1

2k−1

∑
j=1

ρd+ j((zzzd ,zzz↓ j))]

if zzzd is a min node

(3.13)

again assuming that the limits exist. Here, zzz↑ j = (u0,w0, . . . ,uk−1,wk−1), while zzz↓ j =
(w0, . . . ,uk−1,wk−1).

The second and final Lemma is essential to the analysis below, since it character-

izes a restricted subset of nodes outside which the algorithm will never expand.

Lemma 3.3 At depth d in the tree, OMS only expands nodes in the set:

T
∗

d :=
{

zzzd

∣∣ |v∗− v(zzzp)| ≤ δ (d),∀zzzp on path from root to zzzd

}
(3.14)

50 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

Proof: We will show by induction from leaves to the root that:

v(zzz) ∈ [L(zzz),B(zzz)], ∀zzz ∈T

At any leaf, the base case holds by definition: v(zzz) ∈ [l(zzz),b(zzzd)] = [L(zzzd),B(zzzd)].
For the general case, consider an inner node zzz, and assume the property is true at all

its children zzz′. We have by definition (3.13):

v(zzzp) =

{
maxzzz′∈C (zzzp) v(zzz′) if zzzp is a max node

minzzz′∈C (zzzp) v(zzz′) if zzzp is a min node

We first show that L(zzz)≤ v(zzz). If zzz is a max node, take child zzz′ so that L(zzz) = L(zzz′),
then L(zzz) = L(zzz′) ≤ v(zzz′) ≤ v(zzz). If zzz is a min node, take child zzz′ so that v(zzz′) =
v(zzz), therefore: L(zzz) ≤ L(zzz′) ≤ v(zzz′) = v(zzz). Property B(zzz) ≥ v(zzz) is shown in a

symmetrical way: If zzz is a max node, take child zzz′ so that v(zzz′) = v(zzz), therefore

B(zzz) ≥ B(zzz′) ≥ v(zzz′) = v(zzz). If zzz is a min node, take child zzz′ so that B(zzz) = B(zzz′),
then B(zzz) = B(zzz′)≥ v(zzz′)≥ v(zzz).

Consider now any leaf zzzd selected for expansion on the current tree, and any an-

cestor node zzzp at depth p on the path from the root to this leaf. Applying Lemma 3.2

iteratively from zzzp down to the leaf zzzd , we have [L(zzzp),B(zzzp)] ⊆ [L(zzzd),B(zzzd)] =
[l(zzzd),b(zzzd)]. Then:

v(zzzp) ∈ [l(zzzd),b(zzzd)] (3.15)

At the root, v(zzz0) = v∗. For any zzzp the values v∗ and v(zzzp) are in the interval

[l(zzzd),b(zzzd)], which has length at most δ (d), so the property in (3.14) holds. This

concludes the proof. �

At this point, we can already provide an a posteriori bound for the algorithm that

can be directly evaluated after the algorithm has run.

Theorem 3.4 Let d∗ be the largest depth of any expanded node. Then, |v∗− v(ẑzz)| ≤
δ (d∗) and v∗ ∈ [L(zzz0),B(zzz0)].

Proof: Follows immediately from (3.15) and Algorithm 3.2. �

Note again that B(zzz0)−L(zzz0) ≤ b(ẑzz)− l(ẑzz) = δ (d∗). To obtain a more refined

bound, which works a priori, we characterize the size of the expanded subset T ∗ =⋃
d≥0 T ∗

d . Let |·| denote the cardinality of the argument set.

Definition 3.5 Let ϑ be the smallest positive number so that ∃C > 0,
∣∣T ∗

d

∣∣ ≤Cϑ d ,
∀d ≥ 0.

The quantity ϑ is an asymptotic branching factor of T ∗, and it quantifies the

complexity of the search problem. The smaller ϑ , the simpler the problem. The

smallest possible value for ϑ is 1, when T ∗
d contains a constant number of nodes at

every d (e.g., just one minimax-optimal path), and the largest value is
√

MN, when

3.2. OPTIMISTIC BEST-FIRST SEARCH FOR MINIMAX CONTROL 51

T ∗
d contains all the nodes at d, namely M⌊d+1⌋N⌊d⌋ nodes. Below we exemplify ϑ

in several problems. Note that ϑ is similar with other complexity measures used in

optimistic optimization and planning (Munos, 2014), such as the branching factor κ

in OPD (see Section 2.3), or the near-optimality dimension β in OO (see Section 2.2).

A crucial feature of ϑ and T ∗ is the nonlocal character of the inequality in (3.14),

which must hold for any parent and not just the expanded node. This is important

since it significantly reduces the size of the tree in some problems, as we will illustrate

in Example 3.4.

Theorem 3.6 (i) Let d(n) be the smallest depth d so that ∑d
j=0Cϑ j ≥ n. Then,

|v∗− v(ẑzz)| ≤ δ (d(n)). (ii) Further, when ∃c > 0,λ ∈ (0,1) so that δ (d) ≤ cλ d , i.e.

when the gap sequence decreases exponentially fast, then:

δ (d(n))≤
{

c(ϑ−1
Ck
·n)−

log1/λ
logϑ = O(n−

log1/λ
logϑ) if ϑ > 1

cλ n/C−1 = O(λ n/C) if ϑ = 1
(3.16)

Proof: For arbitrary d, OMS expands at most all the nodes up to d in T ∗ before

expanding a node at d + 1. Hence, since T ∗ contains at most ∑
d(n)−1
j=0 Cϑ j nodes

until d(n)−1, and the algorithm expands more nodes than this (since by assumption

n > ∑
d(n)−1
j=0 Cϑ j). So, at least one node at d(n) is expanded. From this d∗ ≥ d(n) and

since sequence δ (d) is decreasing, part (i) follows from Theorem 3.4.

To show part (ii), let ϑ > 1. Then n≤∑
d(n)
j=0 Cϑ j =C ϑ d(n)+1−1

ϑ−1 , and solving this for

d(n) we get d(n) ≥ logn(ϑ−1)/Cϑ
logϑ , which when replaced in δ (d(n)) gives the desired

inequality. Similarly, if ϑ = 1, we have n ≤ ∑
d(n)
j=0 C = C(d(n) + 1), from where

d(n) = n
C
−1 which is substituted in δ (d(n)). �

Part (ii) of Theorem 3.6 is of practical importance, since in many problems the

gap δ (d) will decrease exponentially with d, as e.g. in Examples 3.1–3.3, where λ

is respectively 1/
√

2, γ , and
√

γ . The big-O expressions in (3.16) highlight the qual-

itative, asymptotic behavior of the algorithm, whereas the detailed expressions pre-

ceding them make the constants explicit. Suboptimality decreases as a logarithmic

power of the computation n when ϑ > 1 (since the expanded tree grows exponen-

tially), and exponentially fast with n when ϑ = 1 (since only a constant number of

paths must be explored). Since ϑ is generally unknown, the near-optimality of OMS

cannot be determined in advance. However, Theorem 3.6 provides confidence that

the algorithm automatically adapts to the complexity of the problem.

Example 3.4 Adversarial optimization: branching factor. We will find ϑ for Exam-

ple 3.1 with g(x,y) = x + y. For any finite sequence zzzd the minimax-optimal value

v(zzzd) is the value of g in the lower-right corner of the corresponding box. Consider

some arbitrary odd depth d; boxes zzzd at this depth are small tall rectangles like those

shown in continuous outline at the bottom-right of Figure 3.11. Then the gap of these

52 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

x=1,
y=0

2

3

4

D

1

Figure 3.11: Counting the nodes in T ∗
d . Some minimax-optimal points are high-

lighted with black disks.

boxes is δ (d) = 3∆ = 3 · 2−(d+1)/2. Recall (3.14): if we can find a larger box con-

taining zzzd which is more than δ (d) away from the optimal value, then zzzd will not be

expanded. Now the suboptimality of any box is the distance between its lower-right

corner and the main diagonal of the unit square. Since boxes 1 and 2 are 4∆-away

from optimum, no subbox zzzd inside these larger boxes will be expanded. Boxes 3 and

4 are 8∆-away so no subbox will be expanded there either, and continuing iteratively

like this we can fill the entire domain except the lower-right corner, which contains 8

boxes. At depth d +1, boxes are square and have diameter 2∆ (shown in gray dotted

line) so we can eliminate in a similar way all of them except the 16 in the corner.

It follows that
∣∣T ∗

d

∣∣ ≤ 16,∀d, and ϑ = 1: the problem is easy. The regret bound,

including constants, is 4(1√
2
)n/16−1.

It must be emphasized that checking the suboptimality of parent boxes is crucial:

if we only checked boxes for their own suboptimality |v∗− v(zzzd)|, no box with the

lower-right corner on the main diagonal could be eliminated, leading to a number

of boxes growing with the depth and a large branching factor: the difficulty of the

problem would be misrepresented.

Note that such applications of tree search methods to minimax optimization have

been studied before, see e.g. (Ratschan, 2002), although that paper uses a different

theoretical framework. �

Example 3.5 Two-player games: branching factor. We will illustrate the meaning of

ϑ and the regret bounds for Example 3.2 with discount factor γ , in two representative

special cases.

Consider first that all rewards are equal, say they are all 1. Then, v∗ = 1/(1− γ)
and any sequence has this value. So no nodes can be eliminated with the condition in

(3.14), T ∗ contains the whole tree, and OMS will in fact explore nodes uniformly,

in the order of their depth. As shown above, in this case ϑ =
√

MN. Therefore, this

3.2. OPTIMISTIC BEST-FIRST SEARCH FOR MINIMAX CONTROL 53

uniform type of problem is an interesting worst case, where ϑ is the largest possible.

From Theorem 3.16 with λ = γ , near-optimality is O(n
− log1/γ

log
√

MN).

Next, an example with ϑ = 1 is constructed, see Figure 3.12. At each max node

along the path on the left of the tree, one child has reward 1 and all other children

have reward 0, and the same is true of their complete subtrees. The situation is

reversed at min nodes. Thus, the leftmost path is minimax-optimal, with value v∗ =
γ0 + γ2 + . . . = 1

1−γ2 .

...

...

...
1

1 1

1 1

0

0 00

00

1 0

.0 0
x

x

+

d

d h+

Figure 3.12: A game tree with ϑ = 1. Rewards are shown along the transitions and

inside subtrees where they remain constant. The thick path is minimax-optimal.

To study T ∗, consider an arbitrary node zzzd+h at depth d + h that is not on the

optimal path, but does belong to the subtree of some max node zzzd which is on this

path at an even depth d. Two examples of such nodes are shown by ‘x’ symbols in

the figure. Then, the value of zzzd+h is v(zzzd+h) = γ0 + γ2 + . . .+ γd−2 = 1−γd

1−γ2 . Since

δ (d +h) = γh+d

1−γ , see Example 3.2, node zzzd+h can be excluded when:

|v∗− v(zzzd+h)|>
γh+d

1− γ
, i.e.

γd

1− γ2
>

γh+d

1− γ

which boils down to h > log(1−γ2)/(1−γ)
log1/γ , a positive constant which we call H. Sim-

ilarly, take now a node at depth d + h on a non-optimal subtree of a min node

at an odd d, as exemplified by a ‘+’ in the figure. The value of such a node is

γ0 + γ2 + . . .+ γd−1 + γd + γd+1 + γd+2 + . . . = γ0 + γ2 + . . .+ γd−1 + γd+1 + γd+3 +

. . .+ γd + γd+2 + . . . = 1+γd

1−γ2 where the intermediate step separated the odd and even

powers of γ at depth d and larger. Solving the exclusion condition results in the same

lower bound H on h as for max nodes.

Defining N = max(M,N), at some arbitrary depth d′ the set T ∗
d′ contains at most

the following amount of children coming from optimal nodes at various depths d < d′,
which cannot be excluded via the conditions above:

1+N +N2 + . . .+NH =: C

54 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

so that T ∗
d′ ≤C and the branching factor ϑ = 1. So this is an easy problem for OMS,

and suboptimality is O(γn/C). �

3.2.4 Experimental results

First, in the optimization problem of Examples 3.1 and 3.4, we experimentally illus-

trate the practical effects of the theoretical properties studied above. Then, we show

that OMS also works well in a challenging problem different from the games where it

(and other minimax search algorithms) are usually applied: controlling infection with

the human immunodeficiency virus (HIV), under uncertainty on the effectiveness of

the drugs. This problem is in the class of Example 3.3.

Adversarial optimization. In addition to illustrating the properties of OMS, in this

example we also compare it with two classical minimax search algorithms: alpha-

beta pruning (Knuth and Moore, 1975) and adaptive-depth best-first minimax search

(BFMS) (Korf and Chickering, 1996). Alpha-beta pruning is well-known so we do

not review it here. BFMS is less widely used but it is an anytime algorithm similar

to OMS. It develops the tree of Figure 3.10, but instead of maintaining an interval at

each node it uses just one value, which is initialized using a heuristic function at the

leaves and then propagated upwards as in (3.12). At each iteration, BFMS expands

the leaf of the principal variation, a path along which the root inherited its value.

After expanding a given amount of nodes it returns the principal variation. For both

alpha-beta pruning and BFMS, we use l and b as a heuristic at respectively max and

min leaves.

The computational requirements of alpha-beta pruning are not directly controlled,

instead it searches until a given depth in the tree. It also expands a varying amount

of children per node. Thus, to keep the comparison fair, we vary the depths d in

the range 3,4, . . . ,15 and measure for each d the required computation, in the form

of the number of nodes nt created on the tree. Figure 3.13, top shows the resulting

values of nt . Then, we allow OMS and BFMS to create as many nodes. This is

different from the number n of expanded nodes that we used in the theory above, but

only up to a constant factor so there are no changes in the asymptotic behavior. We

only show OMS and BFMS results corresponding d ≤ 9, since for the other budgets

upper and lower bounds can become equal in double precision, and the results are not

meaningful.

Figure 3.14, top shows the depths reached by OMS and BFMS. Clearly, expand-

ing nodes in the order of their importance is better than up to a fixed depth like in

alpha-beta: the depths reached by OMS and BFMS, as well as the corresponding

confidence in the solution, are much better. Finally, Figures 3.13 and 3.14, bottom

show the near-optimality of the returned solutions. This is measured here by the re-

gret, defined for alpha-beta and BFMS as the distance between v∗ = 1 and the value

3.2. OPTIMISTIC BEST-FIRST SEARCH FOR MINIMAX CONTROL 55

4 6 8 10 12 14
0

1000

2000

3000

4000

h

n
t

4 6 8 10 12 14

10
−10

10
0

h

re
g
re

t

Figure 3.13: Results of alpha-beta pruning for adversarial optimization.

0 50 100 150 200 250 300
0

20

40

60

80

100

n
t

tr
e
e
 d

e
p
th

OMS, tree depth

BFMS, tree depth

0 50 100 150 200

10
−10

10
0

n
t

re
g

re
t

OMP, regret

best−first, regret

Figure 3.14: Results of OMS and BFMS. BFMS regrets because they are 0 for all

nt > 12 in this problem, so they are not shown.

returned by the algorithm, and for OMS as half the size of the interval [L(zzz0),B(zzz0)]
at the root (equal to the average distance of L and B to v∗).

As expected from the analysis and the branching factor ϑ = 1 obtained in Ex-

ample 3.4, OMS depths grow linearly with the computation budget and its regret

shrinks exponentially with this depth. BFMS behaves surprisingly well: it often finds

the optimal solution, and its depth also grows linearly with a larger slope than for

OMS (in contrast, in alpha-beta nt grows fast with d due to the exhaustive nature

of the search, see again Figure 3.13, top). Unfortunately, unlike for OMS, a good

behavior of BFMS cannot be guaranteed, and indeed BFMS is inconsistent over the

class of problems satisfying Assumption 3.3, which means that for some problems it

may entirely fail to converge to the optimal solution. The following counterexample

illustrates this property.

Example 3.6 BFMS is inconsistent. Consider again adversarial optimization, Ex-

ample 3.1, but with a different function g(x,y), equal to 0.8 when x ≤ 0.5, and x + y

otherwise. Take l(zzz) = b(zzz) = 0.8 for any box zzz in the left half of the domain, and use

the bounds from Example 3.1 elsewhere. These l and b functions satisfy Assump-

tion 3.3. BFMS develops the right (optimal) branch of the tree only until iteration

2, see Figure 3.15, and at any subsequent iteration it only expands nodes in the left

branch of the root. Thus for any budget n ≥ 2 it returns value 0.8, a constant away

from the optimum v∗ = 1. �

56 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

(1)

(1,0) (1,1)

0.8

2 0.8

2 0.5

10.5

(0)

()

0.8

Figure 3.15: BFMS tree in the counterexample. Struck-through values are those

changed after iteration 1.

HIV infection control. We consider the HIV infection dynamics described by

Adams et al. (2004), with six state variables: T1 and T2 [cells/ml], the counts of

healthy type 1 and type 2 target cells, T t
1 and T t

2 [cells/ml] the counts of infected

type 1 and type 2 target cells, V the number of free virus copies [copies/ml], and E

[cells/ml] the number of immune response cells. The system is controlled in discrete

time with a sampling time of 5 days. In the strategy of structured treatment interrup-

tions, two drugs are independently either fully administered (they are ‘on’), or not

at all (they are ‘off’); thus there are two binary control variables u1 and u2, leading

to M = 4. In other authors’ work a one-to-one mapping was assumed between drug

application and effectiveness. Here we use a variant where the effectiveness values

ε1 and ε2 of the two drugs are, more realistically, uncertain by depending randomly

on the inputs:

ε1 =






0 w.p. 1, if u1 = 0

0.77 w.p. 0.5, if u1 = 1

0.63 w.p. 0.5, if u1 = 1

ε2 =






0 w.p. 1, if u2 = 0

0.33 w.p. 0.5, if u2 = 1

0.27 w.p. 0.5, if u2 = 1

(3.17)

where “w.p.” stands for “with probability”. So depending on action u, there can be

up to N = 4 possible outcomes. OMS is easy to modify for this varying-N case.

The system is initialized to the unhealthy equilibrium xu = [163573,5,11945,46,
63919,24]T, which represents a patient with dangerous infection levels and low im-

mune response. STI is used to control the drugs such that the immune response of

the patient is maximized and the number of virus copies is minimized, while penal-

izing the drugs administered due to their side-effects. We use the reward function of

Adams et al. (2004) and normalize it to [0,1]. An ideal solution would drive the state

to the healthy equilibrium xd = [967839,621,76,6,415,353108]⊤, which represents

a patient whose immune system controls the infection without the need of drugs.

OMS is applied to plan a solution in receding horizon, while treating the uncer-

tainties as an opponent that aims to minimize the return, like in Example 3.3. The

budget is nt = 9000, specified again as the number of created nodes, since the amount

3.2. OPTIMISTIC BEST-FIRST SEARCH FOR MINIMAX CONTROL 57

0 500 1000
10

4

10
5

10
6

t [days]

T
1
 [

c
e

lls
/m

l]

0 500 1000
10

−5

10
0

10
5

t [days]

T
2
 [

c
e

lls
/m

l]

0 500 1000
10

0

10
5

10
10

t [days]

T
1t
 [

c
e

lls
/m

l]

0 500 1000
10

0

10
2

10
4

t [days]

T
2t
 [

c
e

lls
/m

l]

0 500 1000
10

2

10
4

10
6

t [days]

V
 [

c
o

p
ie

s
/m

l]
0 500 1000

10
0

10
5

10
10

t [days]

E
 [

c
e

lls
/m

l]

0 500 1000
0

0.5

1

t [days]

u
1
 [

−
]

0 500 1000
0

0.5

1

t [days]

u
2
 [

−
]

0 500 1000
10

−4

10
−3

10
−2

t [days]

r
[−

]

Figure 3.16: HIV system controlled online with OMS. The trajectories of the six

system states are shown on the top and middle rows, while the two applied actions

and the (normalized) rewards obtained are shown on the bottom row.

N of children of min nodes varies and using n would not result in a consistent com-

putational load. The resulting trajectory is shown in Figure 3.16.4 As hoped, the

algorithm eventually stops administering drugs (u1 = u2 = 0), and the state reaches

the healthy equilibrium xd (although this particular solution has a ‘lucky’ disturbance

realization for which the equilibrium is reached quickly).

4This experiment was run with a variant of OMS where the node to expand was directly selected

to satisfy the interval inclusion property in Lemma 3.2, rather than by selecting bound extrema as in

Algorithm 3.2.

58 CHAPTER 3. ADVANCES IN DETERMINISTIC SYSTEMS

3.3 Summary and conclusions

In the first part of this chapter, we described SOO for Planning, a planning algo-

rithm for deterministic, continuous-action Markov decision processes. In extensive

experiments, SOOP consistently ranked among the best algorithms, fully dominating

competing methods when the problem requires both long horizons and fine discretiza-

tion. In problems where discrete actions do well, discrete-action planning starts at an

advantage; nevertheless, in our example that had this property, SOOP could still be

applied with minimal loss of performance, unlike its continuous-actions competitors.

In the second part, we have showed analytically that, under appropriate condi-

tions, optimistic minimax search (also known as the best-first search variant of B*)

converges in a well-characterized way towards the optimal minimax value, and illus-

trated the analysis in an empirical evaluation. This is useful among others in control

problems with disturbance, where OMS can be applied by treating the disturbance as

an opponent, but also in other settings such as two-player games.

Chapter 4

Solving stochastic problems

4.1 Optimistic planning for Markov decision processes

In this section we move away from the deterministic problems considered so far.

We describe and study an online, optimistic planning algorithm for problems that

have a finite number M of actions, and in addition a finite number N of possible ran-

dom next states for every transition. This includes complete, finite MDPs (Puterman,

1994) as well as infinite (e.g. continuous-state) MDPs that satisfy the condition on

the next states. The algorithm is thus called optimistic planning for Markov decision

processes (OPMDP).

At a given step of interaction with the system, OPMDP develops a tree start-

ing from a node containing the current system state and then iteratively expanding

well-chosen nodes. Rather than the open-loop action sequences of OPD, a solution

here must be a closed-loop assignment of actions to stochastic state outcomes, rep-

resented as a subtree. To choose which node to expand, first an optimistic subtree is

constructed. Then, among the leaves of this subtree, a node is selected that maximizes

the contribution of the node to the uncertainty on the value. After n such iterations,

the algorithm returns a tree policy by maximizing a lower bound.

Our analysis revolves around a near-optimality guarantee for OPMDP as a func-

tion of the number of expansions n. We show that OPMDP adapts to the complexity

of the planning problem, by only expanding nodes with significant contributions to

near-optimal policies. This notion is formalized so that the quantity of nodes with ε

contribution to ε-optimal policies is of order ε−ψ , with ψ a positive near-optimality

exponent. Then, we show that the near-optimality is of order n−1/ψ for large n. When

there are few near-optimal policies, as well as when the transition probabilities are

nonuniform — both corresponding to having more structure in the MDP — ψ is

small and the bound is better. To our knowledge, this is the first near-optimality

bound available for closed-loop planning in stochastic MDPs.

While the bound does not directly depend on N and M, in practice they should not

59

60 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

be too large, e.g. the probability mass should be concentrated on a few discrete next

states. Fortunately this is true in many problems of interest. For example, combining

continuous-state deterministic dynamics with random variables that only take a few

discrete values leads to a small N. Such variables could be failure modes, job arrivals

into a resource management system (e.g., elevator scheduling, traffic signal control),

user input, etc.

OPMDP extends OPD to stochastic problems, and in fact, in the deterministic

case, OPMDP and the bounds we derive here reduce to OPD and its bounds, respec-

tively. OPMDP can also be seen as an application of classical AO* heuristic search

(Nilsson, 1980) to infinite-horizon discounted MDPs, similar to the AO* variant from

(Hansen and Zilberstein, 1999). AO* builds a complete plan, which can only be done

in finite MDPs with goal states and may require arbitrarily long computation. OP-

MDP finds general near-optimal solutions while the expansion budget is limited to n.

It can actually be applied in an any-time fashion, without fixing n in advance, which

gives it potential for online real-time control.

The exponent ψ is related to other measures of complexity used in the literature

on bandits with many arms (Kleinberg et al., 2008; Bubeck et al., 2009; Wang et al.,

2008). However, a direct application of those results would look at the closed-loop

policies as the elementary entity (arm), and would thus not take into account essential

problem structure: the fact that a node belongs to many policies, and expanding it

improves knowledge about all these policies. A more refined notion of complexity is

needed to capture this global structure, and ψ serves this purpose.

OPMDP requires the full MDP model, including probability distributions over

next states, whereas the class of sample-based planning methods only need to gen-

erate next states according to this distribution. Kearns et al. (2002) first proposed a

“sparse-sampling” method that builds a uniform planning tree by sampling a fixed

number of states for each action, up to some horizon, without adapting to the struc-

ture of the MDP. An adaptive-horizon extension was given by Péret and Garcia

(2004). An optimistic sample-based algorithm is “upper-confidence-trees” (Kocsis

and Szepesvári, 2006), which travels an optimistic path along the planning tree by

choosing actions with maximal upper confidence bounds on the returns, and sam-

pling states independently. UCT often works well in practice (Wang and Gelly,

2007) but good performance cannot be guaranteed in general since it may exhibit

pathological behavior (Coquelin and Munos, 2007). Walsh et al. (2010) avoid this

problem with an optimistic extension of sparse sampling that comes with so-called

probably-approximately-correct guarantees, of a different nature from the bounds we

introduce here. Bubeck and Munos (2010) do provide bounds for optimistic plan-

ning in stochastic problems, but only for open-loop sequences of actions, which are

generally suboptimal.

4.1. OP FOR MARKOV DECISION PROCESSES 61

4.1.1 Problem statement and proposed optimistic planning algorithm

We are now in the setting of Section 2.1, with stochastic dynamics xk+1 ∼ f (xk,uk, ·)
and rewards rk+1 = ρ(xk,uk,xk+1). We still require bounded rewards and discrete ac-

tions, per Assumptions 2.1 and 2.4. Moreover, we focus on the case where transitions

have a finite number of outcomes with known probabilities.

Assumption 4.1 For any pair (x,u), the number of next states reachable with non-

zero probability is at most integer N > 0.

This class of problems disallows continuous next-state distributions, see Sec-

tion 4.2 for an extension to a class of such distributions. Even discrete distributions

are however very relevant, since they include many discrete-event systems (Cassan-

dras and Lafortune, 1999) such as Markov jump systems (Costa et al., 2005), and

have important applications in power systems (Billinton and Allan, 1996), fault de-

tection (Mahmoud et al., 2001), and building automation (Meyer et al., 2013).

Some preparatory steps are necessary. Like OPD, OPMDP works at the current

system state, conventionally denoted x0. It explores iteratively an infinite tree that

represents all possible stochastic evolutions of the system starting from x0. Denote a

state node by s, labeled by an actual state x. The planning tree T∞, of which Figure 4.1

only shows a few top nodes, is defined recursively as follows. First, the root node s0

is labeled by the current state x0, and then each node s is expanded by adding, for

any state x′ for which f (x,u,x′) > 0 for some u, a new child node s′ labeled by x′. So

each node has at most NM children, corresponding to all possible states reachable by

applying all possible actions. Note that Figure 4.1 explicitly includes also the action

nodes.

x
1

1

x0

x
2

1

u
2

0

f(x , ,x)0 1

2
u

u

1

1
0

0r(x , ,x)0 1

2

f(x , ,x)0 1

1
u

u

1

1
0

0r(x , ,x)0 1

1
u

1

0

d 0=

d = 2

d = 1

Figure 4.1: Illustration of OPMDP tree for N = M = 2. The squares are state nodes

labeled by states x, and the actions u are explicitly included as circle nodes. Transition

arcs to next states are labeled by probabilities f and rewards ρ . Superscripts index the

possible actions and state outcomes, while subscripts are depths, which only increase

with the state node levels. The thick subtree highlights a tree policy.

A closed-loop local solution concept called a tree policy is needed to react to the

realization of the random transitions. At depth d, this tree policy is an assignment

62 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

of actions to all state outcomes under the previous action choices, thereby selecting

only some nodes of T∞:

T0 = {s0} , and for any d ≥ 0: hd : Td →U,

Td+1 = {s′ ∈T∞|s′ is a child of s along action hd(s)}
where hd assigns actions as desired. Then, the overall selected tree is Th∞

=
⋃

d≥0 Td ,

and the policy itself is h∞ : T∞→U , h∞(s) = hd(s)(s) with d(s) the depth of s.

The objective is then to find, locally at x0, a policy h∞ maximizing the expected

return:

V h∞(x0) = Eh∞

{
∞

∑
k=0

γkrk+1

}
(4.1)

where the expectation is taken over all trajectories in Th∞
. The optimal value is then

V ∗(x0) = suph∞
V h∞(x0). The optimal value is the same as in Section 2.1, but the class

of solutions is larger than the state-feedback policies π considered there, since tree

policies are allowed to apply different actions when they encounter the same state at

a different node. While this extra generality is not necessary to represent an optimal

solution, tree policies are convenient for planning so they will be used throughout

this section.

OPMDP works of course with finite tree policies, exemplified in Figure 4.1. We

denote such finite policies simply by h, and to keep the difference clear, we always

write h∞ explicitly when referring to an infinitely deep, complete policy tree. Nota-

tion h∞ ∈ h means that h∞ “starts with” h (the subtree of h is fully contained in that of

h∞, so when h is regarded as a set of policies, h∞ belongs to this set). Finite policies

must correspond to well-defined subtrees Th at the top of T∞, so that any node is

either fully expanded or not at all. The leaves of Th are denoted by Lh. We will

treat policies h and their corresponding trees Th interchangeably. Similarly to OPD,

define three values:

l(h) = ∑
s∈Lh

P(s)R(s)

b(h) = ∑
s∈Lh

P(s) [R(s)+
γd(s)

1− γ
]

v(h) = ∑
s∈Lh

P(s) [R(s)+ γd(s)V ∗(x(s))]

(4.2)

where function x(s) returns the state label associated to node s, R(s) is the discounted

return accumulated along the path from the root to s, and P(s) is the probability of

reaching leaf s:

R(s) =
d−1

∑
d′=0

γd′ρ(x(sd′),ud′ ,x(sd′+1))

P(s) =
d−1

∏
d′=0

f (x(sd′),ud′ ,x(sd′+1))

4.1. OP FOR MARKOV DECISION PROCESSES 63

So, l(h) is the expected partial return accumulated by h, and is a lower bound on the

expected returns of all complete, infinite policies h∞ starting with h; b(h) is an upper

bound on these expected returns; and v(h) is the expected return when continuing op-

timally below h. It is important to note that b(h) = l(h)+∑s∈Lh
P(s) γd(s)

1−γ . We denote

the sum in this expression by δ (h), called the diameter of h; and c(s) = P(s) γd(s)

1−γ , the

contribution of node s to the diameter. Since the lower and upper bounds on the val-

ues of policies starting with h are separated by δ (h), this diameter is an uncertainty

on v(h), and c(s) quantifies the contribution of s to this uncertainty.

OPMDP builds a subtree T of T∞ by refining at each iteration an optimistic

policy that maximizes b; and at the end, it returns a policy maximizing l. Thus the

approach is similar to OPD, with the major difference that now a policy has multiple

leaf nodes so a choice between them must be made. This is resolved by selecting for

expansion a node with maximal contribution to the diameter. Algorithm 4.1 summa-

rizes the approach. The algorithm stops after n node expansions. Note that expanding

a node takes N times more simulations than in the deterministic case.

Algorithm 4.1 Optimistic planning for Markov decision processes (OPMDP)

Input: state x, budget n

1: initialize tree: T0←{root}, i = 0

2: for t = 1, . . . ,n do

3: find optimistic policy h
†
t ∈ argmaxh∈Tt

b(h)
4: expand node st ∈ argmaxs∈L

h
†
t

c(s), obtaining Tt+1

5: end for

Output: h∗ ∈ argmaxh∈Tn
l(h)

To develop more intuition, note that δ (h) is indeed a diameter, δ (h) =
suph∞,h′∞∈h ℓ(h∞,h′∞), under the following metric on the space of policies:

ℓ(h∞,h′∞) = ∑
s∈L (Th∞∩Th′∞)

c(s)

The sum is taken over the shallowest nodes where h∞ and h′∞ are different. The

formula follows by noticing that for any s and u, ∑s′∈C (s,u) c(s′) = γc(s) and so the

contribution decreases monotonically with the depth, which implies that to maximize

the distance between h∞ and h′∞, we should make these policies different at the shal-

lowest possible places in the tree. Since the policies must be the same at inner nodes

of Th, the leaves of this tree are the shallowest nodes where we can make h∞ and

h′∞ different. So, OPMDP is similar to an application of DOO to search the space

of tree policies, with the selection of the maximally-contributing node st correspond-

ing to splitting the set h along the largest dimension. However, a highly nontrivial

new effect is that splitting this node also refines many other policies, which the DOO

analysis does not take into account.

64 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

The algorithm form above clearly brings out how the solution space is explored.

However, it does not immediately make obvious how an implementation should pro-

ceed, e.g. how to search through all the tree policies compatible with the current tree.

Fortunately efficient implementations exist, and in Algorithm 4.2 we provide one

based on lower and upper bounds on the optimal values of the states at the nodes,

rather than entire policies. These are computed for an existing tree as follows:

B(s) =

{
1

1−γ , if s is leaf

maxu ∑s′∈C (s,u) f (x(s),u,x(s′))[ρ(x(s),u,x(s′))+ γB(s′)], else

L(s) =

{
0, if s is leaf

maxu ∑s′∈C (s,u) f (x(s),u,x(s′))[ρ(x(s),u,x(s′))+ γL(s′)], else

(4.3)

where C (s,u) are the next-state children for action u at node s. The expansion rules

of this algorithm are equivalent to those in original version, but they can be directly

implemented, since they involve working with individual nodes rather than tree poli-

cies. For simplicity this version only returns the first action of the tree policy h∗, but

the full h∗ can be constructed as the optimistic subtree in lines 3-8, but by navigating

towards maximal L-values instead of B-values.

Algorithm 4.2 OPMDP: Implementable version

1: initialize tree: T0←{s0}
2: for t = 0, . . . ,n−1 do

3: starting from s0, build optimistic subtree T
†

t :

4: while L (T †
t) 6⊆L (Tt) do

5: retrieve a node s ∈L (T †
t)\L (Tt)

6: find optimistic action at s:

u† = argmaxu ∑s′∈C (s,u) f (x(s),u,x(s′))[ρ(x(s),u,x(s′))+ γB(s′)]

7: add children C (s,u†) to T
†

t

8: end while

9: select leaf to expand: st ← argmax
s∈L (T †

t) c(s)

10: create C (st) and add them to Tt , obtaining Tt+1

11: update B and L-values upwards along the path from st to s0

12: end for

13: output u0 = argmaxu ∑s′∈C (s0,u) f (x(s0),u,x(s′))[ρ(x(s0),u,x(s′))+ γL(s′)]

4.1.2 Analysis

The complexity of a given MDP will be characterized in terms of a constant called

near-optimality exponent. Then, the dependence of the sub-optimality of OPMDP on

this exponent and the number of expansions n will be studied.

4.1. OP FOR MARKOV DECISION PROCESSES 65

Consider any node s on the complete, infinite planning tree T∞. Define n(s) to

be the largest number, for any policy h∞ whose subtree contains s, of leaves of the

subtree Th∞s ∈Th∞
containing only nodes with larger contributions than s:

n(s) = sup
Th∞∋s

|L (Th∞s)| , Th∞s =
{

s′ ∈Th∞

∣∣c(s′)≥ c(s)
}

Th∞s is indeed a proper subtree since c(s) decreases monotonically along paths in

Th∞
. A policy subtree is schematically represented in Figure 4.2, together with an

example of subtree Th∞s.

Define using n(s) also the quantity α(s) = n(s)c(s). An essential property of α

is that it relates s to the diameter of some policies that have it as a leaf. Specifically,

the diameter of any policy among whose leaves c(s) is largest, is upper-bounded by
N
γ α(s).

Th
∞

L()Th s
∞

s

Th s
∞

Figure 4.2: An infinite policy tree Th∞
, and a subtree Th∞s for some s.

Define for each ε the set of nodes:

Sε =
{

s ∈T∞

∣∣(i) α(s)≥ ε and (ii) ∃h∞ ∋ s,V ∗(x0)−V h∞(x0)≤
N

γ
α(s)

}
(4.4)

Condition (i) requires the node to have a sizable contribution in terms of α , and (ii)

that the node belongs to a near-optimal policy.

Definition 4.1 The near-optimality exponent is the smallest constant ψ ≥ 0 so that

∃a > 0,b≥ 0 for which:

|Sε |= Õ(ε−ψ), i.e. |Sε | ≤ a

(
log

1

ε

)b

ε−ψ (4.5)

Note that if ψ = 0, then b > 0, because |Sε | cannot remain constant as ε shrinks.

A policy h is called ε-optimal if V ∗(x0)− v(h) ≤ ε . Let ε = V ∗(x0)− l(h∗) where

h∗ is the policy returned by OPMDP, which immediately means that h∗ is ε-optimal,

since v(h∗)≥ l(h∗). The following main result holds.

66 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

Theorem 4.2 The near-optimality of the tree policy chosen by OPMDP after n node

expansions satisfies for large n:

εn =

{
Õ(n−

1
ψ) if ψ > 0

O(exp[−(n
a
)

1
b]) if ψ = 0

It is important to note that OPMDP does not require knowledge of the value of

ψ , and yet, as the result shows, it automatically adapts to this value.

The measure ψ is connected to other complexity measures from optimistic op-

timization (bandits) and planning, such as the zooming dimension (Kleinberg et al.,

2008), the near-optimality dimension (Bubeck et al., 2009), or the branching factor

of near-optimal action sequences for OPD (Hren and Munos, 2008a) and open-loop

optimistic planning (OLOP) (Bubeck and Munos, 2010). Characterizing the com-

plexity of the planning problem by using these measures would essentially look at

the individual tree policies as the elementary entity, and the analysis could only in-

terpret the algorithm as a hierarchical search in the space of such policies. OPMDP

has this hierarchical component, which is realized by refining the optimistic policy

h
†
t . However, OPMDP does more than just this: since the chosen node st belongs to

all the policies that reach it with a positive probability, expanding it refines all these

classes, not just the optimistic one. This subtler, global effect must be captured in

the definition of problem complexity, and this is achieved by introducing the quantity

α(s) to describe the global impact of a node on the policies it belongs to, and by

defining Sε and ψ in terms of individual nodes and not directly policies.

Therefore, the analysis intuitively says that OPMDP finds a near-optimal policy

by only expanding those nodes that have a large impact on near-optimal policies.

As the number of such nodes decreases, the sets Sε grow more slowly, which is

characterized by a smaller ψ , and the problem becomes easier. In particular, ψ = 0

means Sε grows logarithmically instead of polynomially. The definition (4.4) of Sε

highlights two ways in which a problem can be easier: the transition probabilities are

less uniform, leading to fewer nodes with large α ; or the rewards are concentrated on

a few actions, leading to fewer near-optimal policies. To formalize these intuitions,

the next section will provide values of ψ for several representative types of MDPs,

exhibiting varying degrees of structure in the rewards and probabilities.

Regarding the time complexity of OPMDP, at the expense of some extra mem-

ory, each iteration can be brought down to O(d(st)), the depth of the expanded node.

Depths generally depend on ψ , but to obtain a range notice they are between O(logn)
when the tree is developed uniformly and O(n) when a single path is developed (see

also next section). So the overall complexity is between O(n logn) and O(n2). Fur-

thermore, while here we focus on the near-optimality perspective, our result can also

be interpreted the other way around: to achieve ε-optimality, a budget n on the order

of ε−ψ should be spent.

4.1. OP FOR MARKOV DECISION PROCESSES 67

To prove Theorem 4.2, it must first be shown that the suboptimality of the algo-

rithm is upper-bounded by the smallest α among expanded nodes, denoted α∗, which

will be done in Lemma 4.4. Then, we will show in Lemma 4.5 that the algorithm al-

ways does useful work to decrease α , by only expanding nodes in Sα∗ . Expressing

the size of this set using the near-optimality exponent ψ will complete the proof.

Before all this, a preliminary result is needed.

Lemma 4.3 The l-values of the near-optimal policies on the tree increase over iter-

ations: l(h∗t+1)≥ l(h∗t), where h∗t ∈ argmaxh∈Tt
l(h).

Proof: Consider first one policy h, split by expanding some leaf node s ∈ L (Th).
One child policy h′ is obtained for each action u, and we have L (Th′) = (L (Th)\
{s})∪C (s,u). By easy calculations, since the rewards are positive, the terms that

nodes C (s,u) contribute to l(h′) add up to more than the term of s in l(h), and the

other terms remain constant. Thus l(h′) ≥ l(h). Then, among the policies ht ∈ Tt ,

some are split in Tt+1 and some remain unchanged. For the children of split classes

l-values are larger than their parents’; while l-values of unchanged classes remain

constant. Thus, the maximal l-value increases across iterations. �

Note it can similarly be shown that b(h†
t+1)≤ b(h†

t).

Lemma 4.4 Define αt = α(st), the α value of the node expanded at iteration t; and

α∗ = mint=0,...,n−1 αt . The near-optimality after n expansions satisfies εn = V ∗(x0)−
l(h∗n)≤ N

γ α∗.

Proof: We will first bound, individually at each iteration t, the suboptimality of l(h∗t),
by showing:

V ∗(x0)− l(h∗t)≤ δ (h†
t)≤

N

γ
αt (4.6)

To this end, observe that:

l(h†
t)≤ l(h∗t)≤V ∗(x0)≤ b(h†

t) (4.7)

The inequality l(h∗t) ≤ V ∗(x0) is true by definition: l(h∗t) is a lower bound on the

value of some policy, itself smaller than V ∗(x0). For the leftmost inequality, h∗t maxi-

mizes the lower bound across all policies compatible with the current tree, so its lower

bound is at least as large as that of the optimistic policy h
†
t . Similarly, for the right-

most inequality, since h
†
t maximizes the upper bound, its upper bound is immediately

larger than the true optimal value. Using this string of inequalities, we get:

V ∗(x0)− l(h∗t)≤ b(h†
t)− l(h†

t) = δ (h†
t) = ∑

s∈L (T
h
†
t
)

c(s) (4.8)

We now investigate the relationship between this diameter and αt . Consider the

subtree T
h

†
t

of policy h
†
t , exemplified in Figure 4.3 using thicker lines (this subtree

68 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

has a branching factor of N). We are thus interested in finding an upper bound for

∑s∈L (T
h
†
t
) c(s) as a function of αt . Consider the tree Th∞st

, as introduced earlier in the

definition of n(s), which is included in T
h

†
t

and is the same for any h∞ ∈ h
†
t . To see

this, recall that st maximizes c among the leaves of T
h

†
t
. Since additionally c strictly

decreases along paths, any node with a contribution larger than c(st) must be above

these leaves, and this holds for any h ∈ h
†
t .

Denote in this context Th∞st
more simply by T ′, shown in gray in the figure, and

its leaves by L ′, shown as a gray outline. Denote the children of L ′ by L ′′, shown

as a dashed line.

T '

L"
L'

xt

Tht
†

Figure 4.3: Tree of the optimistic policy and various subtrees.

Recall that for any h and s ∈ Th, ∑s′∈C (s,h(s)) c(s′) = γc(s). This also means the

sum of contributions for the leaves of any subtree of Th having some s as its root is

smaller than c(s). Using these properties, we have:

∑
s∈L (T

h
†
t
)

c(s)≤ ∑
s′∈L ′

c(s′) =
1

γ ∑
s′′∈L ′′

c(s′′)≤ 1

γ ∑
s′′∈L ′′

c(st)

≤ 1

γ
N

∣∣L ′∣∣c(st)≤
1

γ
Nn(st)c(st) =

N

γ
αt

where we additionally exploited the facts that c(s′′)≤ c(st) (otherwise s′′ would have

been in T ′), that each node in L ′ has N children in L ′′, and that by the definition

of n(s) |L ′| ≤ n(st). From this and also (4.8), the desired intermediate result (4.6) is

obtained.

Using now (4.6), as well as the fact that l(h∗n)≥ l(h∗t) ∀t < n due to Lemma 4.3,

the desired conclusion is immediate. �

Lemma 4.5 All nodes expanded by the algorithm belong to Sα∗ , so that n≤ |Sα∗ |.

Proof: We show first that st ∈ Sαt
at any iteration t. Condition (i) in the definition

(4.4) of Sαt
is immediately true. For condition (ii), an N

γ αt-optimal policy h∞ whose

4.1. OP FOR MARKOV DECISION PROCESSES 69

tree Th∞
contains st is needed. Choose any h∞ starting with h

†
t , then st ∈Th∞

and:

V ∗(x0)−V h∞(x0)≤ b(h†
t)− l(h†

t) = δ (h†
t)≤

N

γ
αt

where we used some of the inequalities derived in the proof of Lemma 4.4. Thus

st ∈ Sαt
. Furthermore, α∗ ≤ αt implies Sαt

⊆ Sα∗ , and we are done. �

With these lemmas established, we can now prove Theorem 4.2.

Proof:[Theorem 4.2] Exploiting Lemma 4.5 in combination with (4.5):

• if ψ > 0, n = Õ(α∗−ψ), thus for large n, α∗ = Õ(n−
1
ψ);

• if ψ = 0, n≤ a
(
log 1

α∗
)b

, thus α∗ ≤ exp[−(n
a
)

1
b].

By Lemma 4.4, εn ≤ N
γ α∗ which immediately leads to the desired results. �

4.1.3 Some interesting values of ψ

To add meaning to the near-optimality exponent ψ , in this section we provide its

value for several interesting special cases. We obtain smaller values when the MDP

has “more structure”, namely when there are non-uniform probabilities or rewards.

The earlier OPD bounds (Hren and Munos, 2008a) are recovered in the deterministic

case, showing that the OPMDP guarantees encompass those of OPD as a special case.

Uniform rewards and probabilities. In this case, the rewards of all transitions are

equal, and for any action, the probability of reaching one of the N next states is 1
N

.

Proposition 4.6 In the uniform case, ψunif = logNM

log1/γ and εn = O(n−
log1/γ
logNM).

Proof: We study the size of Sε . Due to the equal rewards all the policies are

optimal, and condition (ii) in (4.4) does not eliminate any nodes. The contribution

of a node is c(s) = P(s) γd(s)

1−γ = (γ
N
)d(s) 1

1−γ since the probability of reaching a node at

depth d(s) is (1
N
)d(s). This also means that, for any policy h, the tree Ths consists of

all the nodes s′ up to the depth of s. The number of leaves of this tree is Nd(s) (recall

that a policy tree has only branching factor N), and since this number does not depend

on the policy, n(s) is also Nd(s). Therefore, α(s) = n(s)c(s) = γd(s)

1−γ and condition (i)

eliminates nodes with depths larger than D = logε(1−γ)
logγ . The remaining nodes in the

whole tree, with branching factor NM, form Sε , which is of size:

|Sε |= O((NM)D) = O((NM)
logε(1−γ)

logγ) = O(ε
− logNM

log1/γ)

70 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

yielding for ψ the value: ψunif = logNM

log1/γ . So, for large n the near-optimality εn =

Õ(n−
log1/γ
logNM). In fact, as can be easily checked by examining the proof of Theorem 4.2,

the logarithmic component disappears in this case and εn = O(n−
log1/γ
logNM) . �

One interpretation of ψ is that the argument of the logarithm at the numerator is

an equivalent branching factor of the tree that OPMDP must explore. A branching

factor of NM means that OPMDP will have to explore the whole planning tree in a

uniform fashion, expanding nodes in the order of their depth. So the uniform MDP

is an interesting worst case, where ψ is the largest possible. Notice also that in this

case the bounds do not have a logarithmic component, so O is used instead of Õ.

In fact, the near-optimality bound of OPMDP in uniform MDPs is the same as

that of a uniform planning algorithm, which always expands the nodes in the order

of their depth. However, the uniform algorithm can guarantee only this bound for

any problem, whereas in non-uniform problems, OPMDP adapts to the value of ψ to

obtain better guarantees.

This near-optimality is also the smallest achievable in a worst-case sense, which

means that for any planning algorithm and value of n, one can construct a problem

for which εn = Ω(n−
log1/γ
logNM). To see this, choose the largest D so that n ≥ (NM)D−1

NM−1 ,

assign uniform probabilities everywhere, rewards of 1 for some arbitrary policy h∗

but only starting from level D + 1 onward, and rewards of 0 everywhere else. Then,

both OPMDP and uniform planning have uniformly expanded all nodes up to D−1

but none at D + 1, so they have no information and must make an arbitrary action

choice, which may not be optimal, leading to a suboptimality of γD+1

1−γ = Ω(n−
log1/γ
logNM).

An algorithm that does not expand uniformly may miss the optimal policy for an

even larger number of expansions n, so their suboptimality is at least as large. This

fact also shows that OPMDP behaves correctly in the uniform case: as long as only

uniform rewards and probabilities are observed, the tree must be expanded uniformly,

and this behavior is reflected in the bound.

Finally, note that in the deterministic case, when N = 1, the bound of OPD for

the uniform-reward case is recovered: εn = O(n−
log1/γ
logM).

Structured rewards. In this case, probabilities are uniform but a single policy has

maximal rewards (equal to 1) for all transitions, and all other transitions have a reward

of 0, see Figure 4.4. So, there is a “maximal” amount of structure in the reward

function.

Proposition 4.7 In the case of structured rewards, if N > 1, ψrew = logN

log1/γ (1+ logM

logN/γ),

whereas if N = 1, ψrew = 0 and εn = O(exp(− n
a
)) for some constant a.

Proof: Since α(s) depends only on the probabilities, condition (i) leads to the

same D = logε(1−γ)
logγ as in the uniform case. However, now condition (ii) becomes

4.1. OP FOR MARKOV DECISION PROCESSES 71

.

Figure 4.4: Illustration of a planning tree for structured rewards, up to depth 2, for

N = M = 2. Thick lines: subtree of optimal policy, where each transition is associated

with a reward of 1. Thin lines: the rest of the tree, associated with 0 rewards.

important, so to obtain the size of Sε , we must only count near-optimal nodes up to

depth D.

Consider the set of nodes in T∞ which do not belong to the optimal policy, but lie

below nodes that are at depth d′ on this policy. An example is enclosed by a dashed

line in Figure 4.4, where d′ = 1. All these nodes are sub-optimal to the extent of the

loss incurred by not choosing the optimal action at their parent, namely: (γ
N
)d′ 1

1−γ .

Note these nodes do belong to a policy that is near-optimal to this extent, one which

makes the optimal choices everywhere except at their parent. Looking now from the

perspective of a given depth d, for any m ≤ d there are NdMm nodes at this depth

that are (γ
N
)d−m 1

1−γ -optimal. Condition (ii), written (γ
N
)d−m 1

1−γ ≤ N
γ

γd

1−γ , leads to

m≤ d
logN

logN/γ +1. Then:

|Sε | ≤
D

∑
d=0

NdM
d

logN

logN/γ +1 ≤M
D

∑
d=0

(
NM

logN

logN/γ
)d

If N > 1:

|Sε |= O
((

NM
logN

logN/γ)D
)

= O
(
(NM

logN

logN/γ)
logε(1−γ)

logγ
)

= O
(
ε
− logN

log1/γ (1+ logM

logN/γ))

yielding the desired value of ψrew = logN

log1/γ (1+ logM

logN/γ).

If N = 1 (deterministic case), ψrew = 0 and:

|Sε |=
D

∑
d=0

1 ·M = (D+1)M =

(
logε(1− γ)

logγ
+1

)
M

≤ a log1/ε

for small ε and some constant a, which is of the form (4.5) for b = 1. From Theo-

rem 4.2, the near-optimality is O(exp(− n
a
)). �

72 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

The values of ψrew are smaller than ψunif, so the guarantee takes advantage of the

additional structure introduced in the problem by the reward function.

In the deterministic case, ψrew = 0, the problem becomes easy and near-optimality

is exponential in n, having the form in the second branch of Theorem 4.2 for b = 1.

This is the same bound that OPD obtains when a single policy is optimal.

Examining the algorithm reveals that it will only explore the optimal policy’s

subtree, with branching factor N, so the analysis is conservative in this case and the

ideal value for ψ is logN

log1/γ .

Structured probabilities. Finally, we consider problems where the rewards for

all transitions are equal, but the transitions have significantly different probabilities.

Take for simplicity identical Bernoulli transitions: N = 2 and the two successors of

any state (and thus state node) have probabilities p and 1− p, so that p is close to 1.

Proposition 4.8 In the Bernoulli case, for p close to 1, ψprob = logMη ′

log1/(pγη ′) , where

η ′ =
(

e
η

)η
and η = log1/(pγ)

log1/(γ(1−p))

Proof: We will show that the quantities of nodes with sizable contributions on the

subtree of one policy, and respectively on the whole tree, satisfy:

n(θ) = |{s ∈T∞ |c(s)≥ θ }|= Õ(θ−ϕ)

nh(θ) = |{s ∈Th∞
|c(s)≥ θ }|= Õ(θ−ϕh)

for constants ϕh and ϕ; and we will find values for these constants. (Note nh(θ) is not

a function of h, since all policies have the same probability structure.) Then, since

condition (ii) always holds and nodes in Sε only have to satisfy condition (i):

|Sε |= |{s ∈T∞ |n(s)c(s)≥ ε }|
≤ |{s ∈T∞ |nh(c(s))c(s)≥ ε }|

≤
∣∣∣
{

s ∈T∞

∣∣a[log1/c(s)]bc(s)1−ϕh ≥ ε
}∣∣∣

= Õ(ε
− ϕ

1−ϕh)

where we used n(s)≤ nh(c(s)) and nh(c(s)) = Õ(c(s)−ϕh). Thus ψ = ϕ
1−ϕh

.

Consider now nh(θ). The nodes at each depth d correspond to a binomial distri-

bution with d trials, so there are Cm
d nodes with contribution c(s) = pd−m(1− p)m γd

1−γ ,

for m = 0,1, . . . ,d. Since these contributions decrease monotonically with d, as well

as with m at a certain depth, condition c(s) ≥ θ eliminates all nodes above a certain

maximum depth D, as well as at every depth d all nodes above a certain m(d), where:

(pγ)d

1− γ
≥ θ ⇒ d ≤ log1/(θ(1− γ))

log1/(pγ)
= D

m≤ log1/(θ(1− γ))

log p/(1− p)
−d

log1/(pγ)

log p/(1− p)
= m(d)

4.1. OP FOR MARKOV DECISION PROCESSES 73

Note in the condition for D we set m = 0 to obtain the largest probability. So, m(d)
decreases linearly with d, so that up to some depth m∗, m(d)≥ d and we count all the

nodes up to m = d; while above m∗, m(d) < d and we count fewer nodes. The depth

m∗ is obtained by solving m(d) = d, leading to m∗ = log1/(θ(1−γ))
log1/(γ(1−p)) = log1/(pγ)

log1/(γ(1−p))D =

ηD with the notation η = log1/(pγ)
log1/(γ(1−p)) . The structure of the subtree satisfying c(s)≥

θ is represented in Figure 4.5.

D

m*

m d()

depth d

Figure 4.5: Schematic representation of the subtree satisfying c(s) ≥ θ , shown in

gray. Nodes with larger probabilities are put to the left. The thick line represents the

fringe m(d) where nodes stop being counted.

Now:

nh(θ) =
D

∑
d=0

min{m(d),d}

∑
m=0

Cm
d ≤

D

∑
d=0

min{m(d),d}

∑
m=0

(
de

m

)m

≤
D

∑
d=0

m∗

∑
m=0

(
De

m∗

)m∗

= Dm∗
(

De

m∗

)m∗

= ηD2

(
e

η

)ηD

= Õ
((

e

η

)ηD)

where we used Cm
d ≤

(
de
m

)m
as well as

(
de
m

)m≤
(

De
m

)m≤
(

De
m∗

)m∗
. The latter inequality

can be shown by noticing that
(

De
m

)m
, as a function of m, increases up to m = D, and

m∗ ≤ D is on the increasing part. Denoting now η ′ =
(

e
η

)η
and continuing:

nh(θ) = Õ(η ′D) = Õ(η
′ log1/(θ(1−γ))

log1/(pγ)) = Õ(θ
− logη ′

log1/(pγ))

leading to the value for ϕh = logη ′

log1/(pγ) .1

1The definition of n(s) in fact only requires counting the leaves of the subtree corresponding to

nh(θ) (thick line in Figure 4.5), while we counted all the nodes (gray area). Exploiting this property is

unlikely to be helpful, however, since in the upper bound derived for nh(θ) the inner term in the sum

(corresponding to Cm
d , the number of nodes having a certain probability) is dominant. The fact that the

whole tree is taken into account only enters the logarithmic component of the bound.

74 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

Similarly, it is shown that n(θ) = Õ(θ
− logMη ′

log1/(pγ)) and thus ϕ = logMη ′

log1/(pγ) , where the

extra M comes from the fact we count the nodes corresponding to all Md policies

rather than just one.

The desired result is immediate: ψprob = ϕ
1−ϕh

= logMη ′

log1/(pγη ′) . Note throughout, we

silently used the fact that p is close to 1; indeed, this is required for some of the steps

to be meaningful, such as having log1/(pγη ′) > 0. �

In the deterministic case, when p→ 1, η → ∞ leading to η ′→ 1, and ψprob →
logM

log1/γ , recovering the uniform-reward bound for N = 1. Nearby, when p is large,

ψ ≈ logM

log1/γ , and OPMDP expands “almost” only a tree with branching factor M.

When the probabilities are uniform, η = 1 would lead to ψprob = logeM

log2/eγ , and ψunif,

which was developed specifically for that case, is better.

4.1.4 Experimental results

The behavior of OPMDP is studied in the relatively simple inverted pendulum prob-

lem, and then in the more challenging problem of HIV infection control.

Inverted pendulum swingup. Using the problem of swinging up an underactuated

inverted pendulum, the behavior of OPMDP is studied as a function of the computa-

tional budget n provided, and OPMDP is compared to uniform planning and OLOP

(Bubeck and Munos, 2010). The system is the same as in Section 3.1.3 and the

discount factor remains unchanged at γ = 0.95, but the reward function weights are

changed to Qrew = diag[5,0.1], Rrew = 1. The actions are discretized into the set

U = {−3,0,3}, so that M = 3. Recall that these action magnitudes are insufficient

to push up the pendulum in one go. In addition to the deterministic dynamics of the

original pendulum, an unreliable actuator is modeled that only applies the intended

action u with probability 0.6, and applies an action with smaller magnitude, 0.7u,

with probability 0.4 (when the intended action is 0 it remains 0 with probability 1).

This corresponds to an MDP from the class handled by OPMDP, with N = 2.

For OPMDP and uniform planning, the computational budget n varies in the set

{100,200, . . . ,1000}. OLOP has a different computational unit, consisting of simu-

lating a single random transition instead of NM such transitions, so for fairness it is

allowed NM = 6n transitions. Note that instead of the theoretical OLOP algorithm of

Bubeck and Munos (2010), we use a variant more amenable to practical implemen-

tation, which like OPMDP relies on developing planning trees.

To obtain a global performance measure, all algorithms are applied in an offline

fashion, to find actions u0 for the states on the grid:

X0 =
{
−π, −150π

180 , −120π
180 , . . . ,π

}
×{−15π,−14π, . . . ,15π}

The average over this grid of a quantity called simple regret is reported. The simple

regret V ∗(x0)−Q∗(x0,u0), i.e. loss resulting from applying the possibly suboptimal

4.1. OP FOR MARKOV DECISION PROCESSES 75

action u0 returned by OP and then acting optimally, with respect to acting optimally

from the first step and achieving V ∗(x0). This measure of performance isolates the

effects of the action returned, and as such is appropriate for an algorithm applied in

receding-horizon, as OP methods usually are. Since an exact optimal solution for

the inverted pendulum problem is not known, in order to approximate the regret, a

near-optimal solution is computed instead. To this end, the fuzzy Q-iteration algo-

rithm (Buşoniu et al., 2010b) is modified to work for the sparsely stochastic systems

considered in this section, and applied to the inverted pendulum using a very accurate

approximator over the state space.

Figure 4.6, top-left reports the (approximate) regret of the three algorithms, av-

eraged over the set X0. As expected, OPMDP is better than uniform planning, since

it expands the planning trees in a smart way. As Figure 4.6, top-right shows, this

results in much deeper trees than for uniform planning. Less expected is that, despite

its strong theoretical guarantees, OLOP works poorly, similarly to uniform planning.

This happens because the computational budgets considered do not allow OLOP

to sufficiently decrease the upper confidence bounds on the returns; any advantage

OLOP may have can only manifest for larger budgets. Because the algorithms sim-

ulate a similar number of transitions, their execution times are similar (Figure 4.6,

bottom). Note that with these execution times the algorithms would not yet be appli-

cable in real-time; a faster implementation than our proof-of-concept Matlab program

is needed for that.

200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

n

re
g

re
t

OPSS, regret

Uniform, regret

OLOP, mean regret

200 400 600 800 1000
4

6

8

10

12

14

16

n

tr
e

e
 d

e
p

th

OPSS, tree depth

Uniform, tree depth

OLOP, mean tree depth

200 400 600 800 1000
10

2

10
3

10
4

n

e
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Optimistic, execution time

Uniform, execution time

OLOP, mean execution time

Figure 4.6: Comparison between OPMDP and uniform planning: average regret over

X0 (top-left), average tree depth over X0 (top-right), execution time (bottom). As

the results of OLOP depend on particular realizations of stochastic trajectories, this

algorithm is run 10 times and mean results are reported (the 95% confidence regions

are too tight to be visible at this scale).

76 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

HIV infection control. We use the HIV infection problem of Section 3.2.4, where

the two treatment drugs have stochastic effectiveness. Unlike in Section 3.2.4 where

this uncertainty was handled conservatively using the minimax algorithm OMS, here

we take into account the probability distribution of (3.17) and apply OPMDP.

0 200 400 600 800 1000
10

4

10
5

10
6

t [days]

T
1
 [
c
e
lls

/m
l]

0 200 400 600 800 1000
10

−2

10
0

10
2

10
4

t [days]

T
2
 [
c
e
lls

/m
l]

0 200 400 600 800 1000
10

0

10
2

10
4

10
6

t [days]

T
1t
 [
c
e
lls

/m
l]

0 200 400 600 800 1000
10

−2

10
0

10
2

10
4

t [days]

T
2t
 [
c
e
lls

/m
l]

0 200 400 600 800 1000
10

0

10
5

10
10

t [days]

V
 [
c
o
p
ie

s
/m

l]

0 200 400 600 800 1000
10

0

10
2

10
4

10
6

t [days]

E
 [
c
e
lls

/m
l]

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

t [days]

u
1
 [
−

]

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

t [days]

u
2
 [
−

]

0 200 400 600 800 1000
10

−4

10
−3

10
−2

t [days]

r
[−

]

Figure 4.7: Trajectory of HIV system controlled online with OPMDP. The trajectories

of the six system states are shown on the top and middle rows, while the two applied

actions and the obtained rewards are shown on the bottom row.

Figure 4.7 shows the results when controlling the system online starting from xu,

with a computational budget of n = 3000 node expansions at each time step. Like

OMS, the algorithm eventually stops administering drugs (u1 = u2 = 0), and the state

slowly converges to the desired, healthy equilibrium xd. We also applied uniform

planning and OLOP to this problem, with poorer results than OPMDP; graphs are

not provided here. The CPU time required by OPMDP to plan an action for each

state was around 350 s in our Matlab implementation – significantly smaller than the

decision interval of 5 days, which means that the algorithm would easily satisfy the

real-time constraints in this problem.

4.2. OP WITH CONTINUOUS TRANSITION DISTRIBUTIONS 77

4.2 Optimistic planning with discretization of continuous

transition distributions

The OPMDP method discussed in the previous section is limited to transition dis-

tributions with finitely many possible next states. Our goal here is to overcome this

limitation and extend the method to a class of stochastic systems with continuous

transition distributions. This type of transitions is essential in practical applications

of control, arising e.g. due to continuous disturbances and noise. Some OP techniques

can be applied to continuous transition distributions (Bubeck and Munos, 2010; We-

instein and Littman, 2012, 2013) but they only search for open-loop action sequences.

Such solutions are suboptimal in the stochastic case, and closed-loop solutions are

needed to react to the transition realizations. By expoiting the principles of OPMDP,

we will be able here to search for such closed-loop solutions.

The proposed method tackles the continuous transition distributions by discretiz-

ing them into sigma points using the unscented transform (Julier and Uhlmann, 1997;

Ristic et al., 2004, Ch. 2). The method is therefore called sigma-OP. This simple idea

allows us to directly apply OPMDP to the discretized version of the model; the solu-

tion it returns is then applied to the original system. Building on existing OP guar-

antees, we show that this solution is near-optimal, where the bound includes a new,

constant term due to the error (assumed bounded) made by the unscented transform

in approximating the relevant expectations. The method is evaluated in simulations

on a linear system and a nonlinear one.

4.2.1 Problem statement and OP with sigma-point discretization

We are in the general case of Section 2.1, where a stochastic system is considered.

The probability density function of the next state x′ after taking action u in state

x is f (x,u,x′), and the reward function is ρ(x,u,x′). In addition to the standing As-

sumption 2.1 of reward boundedness, we require discrete actions per Assumption 2.4.

However, unlike in Section 4.1 above, we do not require discrete next states, since

our goal is to work with the continuous transition distributions.

It will be useful to consider the dynamic programming backup operator:

T (V ;x,u) := Ex′∼ f (x,u,·)
{

ρ(x,u,x′)+ γV (x′)
}

(4.9)

which is parameterized by the value function V and applied at a given state-action

pair (x,u). Note already the similarity with the L and B-value updates in OPMDP,

see (4.3), which in fact are dynamic programming backups along the tree (this will

be detailed later). The optimal value function V ∗(x) is the solution of the Bellman

equation:

V ∗(x) = max
u

T (V ∗;x,u)

78 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

Operator T involves expectations over continuous variables, which cannot be com-

puted in general, so it is not possible to directly use this operator to implement a

planning algorithm for the original continuous distribution.

Instead, our main idea is simple: exploit the unscented transform to approximate

the expectations, by discretizing the random variable x′ into a set of sigma points

(Ristic et al., 2004, Ch. 2). Denote by µ(x,u) and σ(x,u) the mean and covariance of

x′; note they can change with the origin (x,u) of the state transition. The means and

covariances must be known (true for many forms of f), or otherwise their estimation

must be computationally cheap. The sigma points are then:

Xi(x,u) = µ(x,u)+






0, i = 0

[
√

(m+K)σ(x,u)]i, i = 1, . . . ,m

−[
√

(m+K)σ(x,u)]i, i = m+1, . . . ,2m

and their weights:

p0(x,u) =
K

m+K
, pi(x,u) =

1

2(m+K)
, i = 1, . . . ,2m

where K is a tuning parameter and [·]i denotes the ith row of the argument matrix.

Then, the expected value in (4.9) is approximated by a weighted summation:

T (V ;x,u)≈
2m

∑
i=0

pi(x,u)[ρ(x,u,Xi(x,u))+ γV (Xi(x,u))]

=: T̂ (V ;x,u)

which is accurate up to the second order of the Taylor expansion of the function inside

the expectation (Ristic et al., 2004).

To be able to apply OPMDP, define a discretized, approximate version of the

original continuous-distribution problem, by taking f̂ (x,u,x′) = pi(x,u) when x′ =
Xi(x,u), and 0 otherwise. Importantly, the weights pi are interpreted as probabilities

(hence the notation), which is possible as long as K is chosen positive. The reward

function ρ is kept unchanged. Denote by V̂ a generic value function in the discretized

problem, and by V̂ ∗ the optimal value function.

OPMDP (Algorithm 4.2) is then simply applied to this discretized problem, to

find an approximately optimal action u0 which is applied to the real, original system.

We call the overall approach sigma-OP, short for “OP with sigma-point discretiza-

tion”.

To get better insight, we explain the algorithm in more detail. It expands a node

by only creating children for the sigma points, N = 2m + 1 children for each state-

action pair. To compute B and L-values on the tree, it applies (4.3). At leaves the

values are initialized as usual, and at inner node the updates look like, e.g. for the

4.2. OP WITH CONTINUOUS TRANSITION DISTRIBUTIONS 79

B-values:

B(s) = max
u

∑
s′∈C (s,u)

f̂ (x(s),u,x(s′))[ρ(x(s),u,x(s′))+ γB(s′)] (4.10)

By making the probabilities f̂ and state labels x(s′) explicit using the sigma-point

discretization, we get:

B(s) = max
u

2m

∑
i=0

pi(x(s),u)[ρ(x(s),u,Xi(x(s),u))+γV (Xi(x(s),u))] = max
u

T̂ (V ;x,u)

So, OPMDP in the discretized problem boils down to using the discretized operator

T̂ to backup the B and L values.

4.2.2 Analysis

Since the discretized problem is a valid MDP, the guarantees of OPMDP directly

hold for this discretized problem. Denote v̂∗ = V̂ ∗(x0), and by v̂(u0) the value of the

truncated policy consisting of the single action u0, see (4.2). The following near-

optimality bound for the discretized MDP is essential:

v̂∗− v̂(u0)≤ εn (4.11)

where εn is the near-optimality of OPMDP after n iterations, see Theorem 4.2, The

bound follows directly because u0 is a subpolicy of h∗, so v̂(u0)≥ l(u0)≥ l(h∗).
The goal is, however, to bound the suboptimality in the original problem. We

therefore analyze the corresponding quantity v∗−v(u0) under the original value func-

tion, i.e. with v∗ := V ∗(x0) and v(u0) := T (V ∗;x0,u0). Note that, similarly, v̂(u0) =
T̂ (V̂ ∗;x0;u0).

Define an approximate value iteration algorithm:

V̂t+1(x) = max
u

T̂ (V̂t ;x,u) (4.12)

with V̂0 arbitrarily initialized. These updates are closely related to sigma-OP: when

V̂0 = 1
1−γ (or 0) they correspond to B-value (or L-value) updates on the infinite tree

T∞.

Assumption 4.2 There exists an σ ≥ 0 and a bounded initial value function V̂0 so

that, for any V̂t and any x,u, sigma-point approximation makes an error of at most σ :∣∣∣T (V̂t ;x,u)− T̂ (V̂t ;x,u)
∣∣∣≤ σ , and the same for V ∗:

∣∣∣T (V ∗;x,u)− T̂ (V ∗;x,u)
∣∣∣≤ σ .

Since the unscented transform guarantees accuracy up to the second order, this as-

sumption essentially requires the terms under the expectations (rewards and value

functions) to be well-behaved. For example, if the rewards (and therefore the value

functions) are quadratic in x′, then σ = 0. Under Assumption 4.2, the following main

result holds.

80 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

Theorem 4.9 The action returned by sigma-OP is near-optimal: v∗− v(u0) ≤ εn +
2 σ

1−γ .

Proof: The assumption implies that for any t and x:

∣∣∣V̂t+1(x)−max
u

T (V̂t ;x,u)
∣∣∣≤ σ

where the second term is the update exact value iteration would apply to V̂t . In ad-

dition, since (4.12) is just value iteration on the discretized MDP, it converges to V̂ ∗.
Given these conditions and the boundedness of V ∗, standard results in approximate

dynamic programming (Bertsekas and Tsitsiklis, 1996, Sec. 6.5.3)2 guarantee that:

∣∣∣V ∗(x)−V̂ ∗(x)
∣∣∣≤ σ

1− γ
, ∀x (4.13)

Now:

v̂(u0) = T̂ (V̂ ∗;x0,u0)

= T̂ (V ∗;x0,u0)+ γ
2m

∑
i=0

pi[V̂
∗(Xi)−V ∗(Xi)]

= v(u0)+ T̂ (V ∗;x0,u0)−T (V ∗;x0,u0)+ γ
2m

∑
i=0

pi[V̂
∗(Xi)−V ∗(Xi)]

by the definition of v̂(u0) and v(u0), where for readability we skipped the argument

(x,u) of pi and Xi. The first difference in the last formula is bounded in magni-

tude by σ by Assumption 4.2, and the second by γ σ
1−γ due to (4.13). Therefore,

|v̂(u0)− v(u0)| ≤ σ + γ σ
1−γ = σ

1−γ .

Combining this with
∣∣∣V ∗(x0)−V̂ ∗(x0)

∣∣∣≤ σ
1−γ from (4.13), and with (4.11), v̂∗−

v̂(u0)≤ εn, the final result follows. �

The theorem says that sigma-OP will make, in addition to the error εn made by

OP in the discretized problem, (up to) a constant error 2σ
1−γ due to the sigma point ap-

proximation. Connecting this to the analysis of OPMDP, in the worst case where the

full tree must be expanded in the order of depth, we have εn = γd

1−γ where n = NMd−1
NM−1

expansions are required to reach depth d, so that v∗− v(u0) ≤ (γ
logn

logNM + 2σ) 1
1−γ . In

typical problems, only a smaller subtree must be expanded, so the εn part of the bound

decreases faster with n.

Note that the OPMDP analysis closely characterizes the size of this subtree and

the dependence of εn on n, but only asymptotically, for εn around 0 (n→ ∞). This is

2In fact, sigma-point discretization leads to a classical type of value function approximator called

an averager.

4.2. OP WITH CONTINUOUS TRANSITION DISTRIBUTIONS 81

not appropriate in sigma-OP, because the constant error 2 σ
1−γ dominates asymptoti-

cally; instead, in future work it may be useful to investigate the behavior of the tree

for εn on the order of nonzero constant σ
1−γ .

In any case, the analysis indicates that computation should not be invested to

shrink the diameter beyond a constant value, since as n grows the performance will

plateau around this constant anyway. This constant is on the order of the error made

by sigma-point approximation.

4.2.3 Experimental results

In our experiments we compare sigma-OP with three alternative planning algorithms.

The first is uniform planning in the discretized problem: it expands the same tree as

sigma-OP, but uniformly, in the order of depth. It is still a correct algorithm (it attains

a near-optimal solution given enough computation), but it shrinks diameters slower:

it always behaves as sigma-OP would in the worst case. Uniform planning is used as

a baseline to confirm that optimistic expansion makes sense despite approximation

errors.

The second alternative is OP for deterministic systems (OPD) from Section 2.3

(Hren and Munos, 2008b), which is applied to the nominal, deterministic model,

while the actions returned are heuristically executed in the true stochastic system.

OPD can be viewed as “certainty-equivalence” planning. The final algorithm is

HOLOP (Weinstein and Littman, 2012), which we also used in Section 3.1.3. HOLOP

has different characteristics than sigma-OP: it seeks solutions represented as action

sequences, which in contrast to closed-loop policies, cannot represent optimal con-

trols in the stochastic case. HOLOP works for continuous actions, while the other

three methods require discretized actions. So in effect HOLOP and sigma-OP are

solving different optimal control problems, but they can both be applied as approx-

imations to continuous-action continuous-distribution stochastic systems, as we will

do below.

DC motor stabilization. The first problem concerns the DC motor introduced in

Section 3.1.3, with linear dynamics but now affected by noise z:

xk+1 = Axk +Buk + zk

The other variables have the same meaning as before: shaft angle x1 ∈ [−π,π] rad,

angular velocity x2 ∈ [−16π,16π] rad/s, and voltage u ∈ [−10,10] V. The noise z

is zero-mean Gaussian distributed with covariance σ = 0.1 · diag(1,1), leading to a

stochastic component of considerable amplitude. The two states are kept within their

bounds by saturation, also when discretizing into sigma points, and the actions are

discretized in {−10,0,10}V, so M = 3. The (unnormalized) rewards are quadratic

with Qrew = diag(1,0), Rrew = 0.001, and the discount factor is γ = 0.95. The DC

82 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

motor is chosen because its nominal dynamics are simple, so we can focus on the

effects of noise.

The four planning algorithms were applied in receding horizon, from the initial

state [−π,0]T and for a duration of 1 s (100 steps, due to a sampling time of 0.01 s).

For each algorithm and parameter setting, 25 independent runs were performed. In

sigma-OP and uniform planning, the number of sigma points was N = 5 (m = 2), and

K was set to 0.001. The algorithms were tested for a range of computational budgets

expressed as numbers of transitions simulated during planning at each step: nt =
150,300,600,1200,2400,4800. Since for sigma-OP and uniform planning budgets n

are given in terms of node expansions, and each expansion takes NM = 15 transitions,

n is taken ⌈n′/15⌉ where ⌈·⌉ denotes ceiling. HOLOP is additionally parameterized

by the horizon K over which it searches for action sequences, and for each nt we

tried values 5,10,25,75,100 for K; the experiment with the best upper confidence

bound on the return is reported (in this problem, K = 5 was always the best). Since

the problem is linear and quadratic, by disregarding the state and action constraints a

continuous-action optimal solution is analytically computed as in (Bertsekas, 2012,

Sec. 4.2), and its optimal value is included on the graphs.

1000 2000 3000 4000
13

14

15

16

17

nt

re
tu

rn

sigma−OP, mean return

HOLOP, mean return

1000 2000 3000 4000

4

6

8

10

12

14

16

nt

re
tu

rn

OPD, mean return

uniform, mean return

Figure 4.8: Return for the DC motor. Mean performances are shown, with their

95% confidence intervals as a shaded region. The horizontal solid line shows the

analytically computed optimal value. For readability, results are shown in two graphs

with different vertical scale.

The results are shown in Figure 4.8, where performance is measured by the dis-

counted return obtained in the experiment. For larger budgets sigma-OP is better than

HOLOP. Certainty-equivalence OPD on the other hand performs as well as sigma-OP.

Note however that using it means the analytical guarantees of Theorem 4.9 are sacri-

ficed, since OPD is only a heuristic in the stochastic problem. Uniform planning has

unreliable performance, sometimes reaching good values but then becoming worse

again for larger budgets. This indicates a good algorithm must search optimistically.

Since it is a correct algorithm, uniform planning would eventually stabilize to a good

performance for very large budgets. Because actions are discretized, no algorithm

reaches the continuous-action optimal value.

4.2. OP WITH CONTINUOUS TRANSITION DISTRIBUTIONS 83

Inverted pendulum swing-up. For the second problem we consider the inverted

pendulum from Section 3.1.3, but now with additive zero-mean Gaussian noise, with

covariance σ = 0.015 · diag(1,1). The reward weights are Qrew = diag(1,0) and

Rrew = 0.3. The simulation time was chosen to be 5 s with a sampling time of 0.05 s

(100 steps), and the initial state was x0 = [−π,0]T (pointing down).

The same values as for the DC motor were set for the sigma points parame-

ters, while the budgets were nt = 500,1000,5000,10000,15000 (and n = ⌈n′/15⌉).
Figure 4.9, left reports the results of a batch of 35 experiments. For the K param-

eter in HOLOP, values 5,10,15,20,25,30,40,50,75,100 were attempted, and the

best results corresponding to the values of nt above are obtained for, respectively,

K = 10,5,10,15,10. Sigma-OP remains overall better than HOLOP, although for

nt = 500 and 15000 their performances are not statistically different. OPD this time

works better than all other algorithms, confirming that it may be a good choice in

practice despite the lack of guarantees. Uniform planning is still unreliable.

2000 4000 6000 8000 10000 12000 14000
7

8

9

10

11

12

13

14

nt

re
tu

rn

sigma−OP, mean return

HOLOP, mean return

OPD, mean return

uniform, mean return

0 1 2 3 4 5
−5

0

5

α
 [
ra

d
]

0 1 2 3 4 5
−50

0

50

α
’
[r

a
d
/s

]

0 1 2 3 4 5
−5

0

5

u
 [
V

]

0 1 2 3 4 5
0

0.5

1

r
[−

]

t [s]

Figure 4.9: Left: Return for the inverted pendulum. Right: A controlled trajectory.

Figure 4.9, right shows a controlled trajectory with sigma-OP, for n = 667. Chat-

tering is observed due to controlling to an unstable equilibrium using only discrete

actions, and also because sometimes the random transitions move the system away

from the equilibrium and it must be brought back. At certain points even a new swing

may be necessary.

Regarding computation, it is dominated by the number of simulations, which is

set the same for all algorithms. However, small differences arise due to their different

internal workings. In our Matlab implementation, HOLOP is more expensive, while

the other algorithms are cheaper and their relationships change with the problem.

84 CHAPTER 4. SOLVING STOCHASTIC PROBLEMS

4.3 Summary and conclusions

In the first part of this chapter, we have studied optimistic planning for stochastic

MDPs (OPMDP), an algorithm which explores the space of closed-loop planning

policies. The core feature of this method is that it adapts to the complexity of the

planning problem, encoded in the near-optimality exponent ψ . Specializing the ex-

ponent and performance bound for some interesting classes of MDPs illustrated that

the algorithm works better when there are fewer near-optimal policies and less uni-

form transition probabilities. Simulation results showed that OPMDP provides good

performance.

In the second part, OPMDP was extended to the case of continuous transition

distributions. The extension was performed by discretizing the continuous distribu-

tion using sigma points, and obtaining an algorithm we called optimistic planning

with sigma-point discretization. Assuming the error introduced by the sigma-point

discretization is bounded, we analyzed the solution returned, showing that it is near-

optimal. In experiments, sigma-OP successfully solved a linear problem and a nonlin-

ear one. A heuristic certainty-equivalence approach that plans using the deterministic

model also performed very well empirically.

Chapter 5

Planning: Related topics and

outlook

5.1 Related directions

Alongside the main fundamental research line described above, several other topics

have been investigated. They are outlined next.

A common feature of the algorithms analyzed in previous chapters is that in gen-

eral they have exponential complexity: the computational budget needed to achieve a

certain near-optimality is exponential in this near-optimality. For example, to achieve

ε-optimal solutions we need to invest n = O(ε−ψ) budget in OPMDP, or O(ε
− logϑ

log1/λ)
in OMS (the latter bound is obtained by inverting the relationship in Theorem 3.6).

This is an unavoidable consequence of the generality of these algorithms, since they

work for any nonlinear dynamics and reward functions. It can, however, be cum-

bersome in applications where computation time is limited. Therefore, one line of

research has focused on designing planning algorithms with sub-exponential com-

plexity. This can only be done by restricting the class of solutions explored – or,

equivalently, the class of problems where near-optimal solutions can be found. In

particular, we have focused on the specific subclass of control problems where con-

trol actions do not change often, such as bang-bang, time-optimal control.

In this context, we have explored two ideas. The first is to refine action sequences

similarly to OPD, but in addition to one-step actions, to also add repetitions of each

action up to K times. An algorithm called optimistic planning with K identical actions

(OKP) is obtained, published in (P7). It was analyzed showing that the a posteriori

performance guarantees are similar to those of OPD, improving with the length of

the explored sequences. When K is properly tuned, OKP overperforms OPD in some

time-optimal control experiments. However, from an analytical point of view the

depths of the OKP trees are in most cases smaller than those of the OPD trees, and

therefore OKP ensures a weaker regret bound than OPD, which is disappointing.

85

86 CHAPTER 5. PLANNING: RELATED TOPICS & OUTLOOK

Motivated by this, we have explored a second, alternative idea of enforcing a

limit on the total number of switches between different actions in the sequences ex-

plored. This algorithm is called optimistic switch-limited planning (OSP) and was

published in (P8). We developed analysis showing that the switch constraint leads to

polynomial complexity in the search horizon, in contrast to the exponential complex-

ity of state-of-the-art OP; and to a correspondingly faster convergence. The degree

of the polynomial varies with the problem and is a meaningful measure for the dif-

ficulty of solving it. We studied this degree in two representative, opposite cases.

In simulations we first applied OSP to a problem where limited-switch sequences

are near-optimal, and then in a networked control setting where the switch constraint

must be satisfied in closed loop.

A different research line considers the case where the dynamics of the system are

not known. In particular, we developed in (P9) the Bayesian OP (BOP) algorithm,

which extends OPMDP to the case where the transition probabilities of the MDP

are initially unknown and progressively learned through interactions within the envi-

ronment. The knowledge about the unknown MDP is represented with a probability

distribution over all possible transition models, using a Dirichlet parametrization, and

the BOP algorithm plans in the belief-augmented state space constructed by concate-

nating the original state vector with the current posterior distribution over transition

models. Using a straightforward extension of the OPMDP analysis, we showed that

BOP becomes Bayesian optimal when the budget parameter increases to infinity. Pre-

liminary empirical validations showed promising performance.

The following publications detail the directions discussed in this section:

(P7) K. Máthé, L. Buşoniu, L. Miclea, “Optimistic Planning with Long Sequences

of Identical Actions for Near-Optimal Nonlinear Control”. In Proceedings

2014 IEEE International Conference on Automation, Quality and Testing, Ro-

botics (AQTR-14), Cluj-Napoca, Romania, 22–24 May 2014.

(P8) K. Máthé, L. Buşoniu, R. Munos, B. De Schutter, “Optimistic Planning with

a Limited Number of Action Switches for Near-Optimal Nonlinear Control”,

Proceedings 2014 Conference on Decision and Control (CDC-14), Los Ange-

les, USA, 15–17 December 2014.

(P9) R. Fonteneau, L. Buşoniu, R. Munos, “Optimistic Planning for Belief-Aug-

mented Markov Decision Processes”, Proceedings 2013 Symposium on Adap-

tive Dynamic Programming and Reinforcement Learning (ADPRL-13), Singa-

pore, 15–19 April 2013.

5.2 Open issues and ongoing work

For SOOP, the main open issue is analyzing the performance as a function of the

budget n of model calls, and this is an important direction of current work. We have

5.2. OPEN ISSUES AND ONGOING WORK 87

begun with an analysis of a DOO-like continuous-action algorithm. This already

presents significant challenges in deriving an appropriate complexity measure, but

we have a significant intermediate result.

In OMS, by requiring the upper and lower bounds, we have implicitly assumed

knowledge about the smoothness of the value function. This can easily be obtained

e.g. for discounted returns, but in general it may be too strong. Thus, the next big

step is to check if it is possible to derive an algorithm that does not require knowing

these bounds, only that they exist and get closer together as depth increases. This is

again similar to the idea in SOO, so similar principles should apply.

The basic form of OPMDP studied above can benefit from many algorithmic

improvements, and analyzing their effect on the bounds would be very interesting.

For example, since OP is similar to AO*, improvements originally developed for

classical AO* can almost directly be applied, such as closing the tree into a graph

upon encountering duplicate states (Hansen and Zilberstein, 1999). OPMDP does not

assume any knowledge about the complexity of the problem, e.g. it does not require

to know β . Deriving algorithms that, when such prior knowledge is available, exploit

it to obtain better performance guarantees is another open issue.

The unscented transform used by sigma-OP is just one way to discretize the tran-

sition distribution, and other methods could be applied. E.g. one limitation of sigma

points is that most of them have equal probabilities, which can lead to a large branch-

ing factor in the OP tree, so following the analysis of OMDP we may expect poor

performance. An alternative is to use a particle-filter-like discretization, for which

the probabilities are less symmetrical, similarly to Silver and Veness (2010). The

branching factor may then be too large due to the number of particles, and different

tree expansion strategies may be necessary.

Orthogonal to these algorithm-specific developments, another essential idea for

online control is reusing information across interaction steps. We are actively pursu-

ing this for OPD and OPMDP, but the idea applies to all the algorithms. The basic

algorithms discard the planning data at the end of each planning step, and start from

scratch at the next step. To avoid this waste, we have developed a method to learn

online, from this data, the upper bounds used to guide the planning process. Several

approximators for the upper bounds are studied. Our analysis characterizes the influ-

ence of the approximation error on the performance, and reveals that for small errors,

learning-based planning performs better; while experimental studies are very promis-

ing. A journal submission has already been developed presenting our research in this

direction. In this context, near-optimality guarantees for approximate value iteration

(Szepesvári, 2001; Rust, 1996) could be useful to analyze the actual convergence of

the learned b-values across the steps; and then this analysis can be combined with the

existing near-optimality guarantees to achieve a complete picture.

88 BIBLIOGRAPHY

Bibliography

Adams, B., Banks, H., Kwon, H.-D., and Tran, H. (2004). Dynamic multidrug thera-

pies for HIV: Optimal and STI control approaches. Mathematical Biosciences and

Engineering, 1(2):223–241.

Berliner, H. (1979). The B* search algorithm: A best first proof procedure. Artificial

Intelligence, 12.

Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control, volume 2.

Athena Scientific, 4th edition.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena

Scientific.

Billinton, R. and Allan, R. N. (1996). Reliability Evaluation of Power Systems.

Springer.

Bubeck, S. and Munos, R. (2010). Open loop optimistic planning. In Proceedings

23rd Annual Conference on Learning Theory (COLT-10), pages 477–489, Haifa,

Israel.

Bubeck, S., Munos, R., Stoltz, G., and Szepesvári, C. (2009). Online optimization

in X-armed bandits. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L.,

editors, Advances in Neural Information Processing Systems 21, pages 201–208.

MIT Press.

Buşoniu, L., Babuška, R., De Schutter, B., and Ernst, D. (2010a). Reinforcement

Learning and Dynamic Programming Using Function Approximators. Automation

and Control Engineering. Taylor & Francis CRC Press.

Buşoniu, L., Ernst, D., De Schutter, B., and Babuška, R. (2010b). Approximate

dynamic programming with a fuzzy parameterization. Automatica, 46(5):804–814.

Cassandras, C. G. and Lafortune, S. (1999). Introduction to Discrete-Event Systems.

Kluwer.

Coquelin, P.-A. and Munos, R. (2007). Bandit algorithms for tree search. In Pro-

ceedings 23rd Conference on Uncertainty in Artificial Intelligence (UAI-07), pages

67–74, Vancouver, Canada.

Costa, O., Fragoso, M., and Marques, R. (2005). Discrete-Time Markov Jump Linear

Systems. Springer.

Hansen, E. A. and Zilberstein, S. (1999). A heuristic search algorithm for Markov

decision problems. In Proceedings Bar-Ilan Symposium on the Foundation of Ar-

tificial Intelligence, Ramat Gan, Israel.

BIBLIOGRAPHY 89

Hren, J.-F. (2012). Planification Optimiste pour Systèmes Déterministes. PhD thesis,

Lille 1 University - Science and Technology.

Hren, J.-F. and Munos, R. (2008a). Optimistic planning of deterministic systems.

In Proceedings 8th European Workshop on Reinforcement Learning (EWRL-08),

pages 151–164, Villeneuve d’Ascq, France.

Hren, J.-F. and Munos, R. (2008b). Optimistic planning of deterministic systems.

In Girgin, S., Loth, M., Munos, R., Preux, P., and Ryabko, D., editors, Recent

Advances in Reinforcement Learning, volume 5323 of Lecture Notes in Computer

Science, pages 151–164. Springer.

Julier, S. and Uhlmann, J. (1997). A new extension of the kalman filter to nonlin-

ear systems. In Proceedings 11th International Symposium on Aerospace/Defense

Sensing, Simulations and Controls (AeroSense-97).

Kearns, M. J., Mansour, Y., and Ng, A. Y. (2002). A sparse sampling algorithm

for near-optimal planning in large Markov decision processes. Machine Learning,

49(2-3):193–208.

Kleinberg, R., Slivkins, A., and Upfal, E. (2008). Multi-armed bandits in metric

spaces. In Proceedings 40th Annual ACM Symposium on Theory of Computing

(STOC-08), pages 681–690, Victoria, Canada.

Knuth, D. E. and Moore, R. W. (1975). An analysis of alpha-beta pruning. Artificial

Intelligence, 6(4):293–326.

Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In

Proceedings 17th European Conference on Machine Learning (ECML-06), pages

282–293, Berlin, Germany.

Korf, R. E. (1998). Artificial intelligence search algorithms. In Atallah, M., editor,

Algorithms and Theory of Computation Handbook, pages 1–20. CRC Press.

Korf, R. E. and Chickering, D. M. (1996). Best-first minimax search. Artificial

Intelligence, 84(1–2):299–337.

La Valle, S. M. (2006). Planning Algorithms. Cambridge University Press.

Maciejowski, J. M. (2002). Predictive Control with Constraints. Prentice Hall.

Mahmoud, M., Jiang, J., and Zhang, Y. (2001). Stochastic stability analysis of fault-

tolerant control systems in the presence of noise. IEEE Transaction on Automatic

Control, 46(11):1810–1815.

90 BIBLIOGRAPHY

Mansley, C., Weinstein, A., and Littman, M. L. (2011). Sample-based planning for

continuous action Markov decision processes. In Proceedings 21st International

Conference on Automated Planning and Scheduling, pages 335–338, Freiburg,

Germany.

Meyer, P.-J., Girard, A., and Witrant, E. (2013). Controllability and invariance of

monotone systems for robust ventilation automation in buildings. In Proceedings

52nd IEEE Conference on Decision and Control (CDC-13), pages 1289–1294,

Firenze, Italy.

Munos, R. (2011). Optimistic optimization of a deterministic function without the

knowledge of its smoothness. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L.,

Pereira, F. C. N., and Weinberger, K. Q., editors, Advances in Neural Information

Processing Systems 24, pages 783–791.

Munos, R. (2014). The optimistic principle applied to games, optimization and plan-

ning: Towards foundations of Monte-Carlo tree search. Foundations and Trends in

Machine Learning, 7(1):1–130.

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Tioga Publishing.

Palay, A. J. (1982). The B* tree search algorithm – new results. Artificial Intelligence,

19:145–163.

Pearl, J. (1982). The solution for the branching factor of the alpha-beta pruning

algorithm and its optimality. Communications of the ACM, 25(8):559–564.

Péret, L. and Garcia, F. (2004). On-line search for solving Markov decision processes

via heuristic sampling. In Proceedings 16th European Conference on Artificial

Intelligence, ECAI’2004, pages 530–534, Valencia, Spain.

Plaat, A., Schaeffer, J., Pijls, W., and de Bruin, A. (1996). Best-first fixed-depth

minimax algorithms. Artificial Intelligence, 87(1–2):255–293.

Puterman, M. L. (1994). Markov Decision Processes—Discrete Stochastic Dynamic

Programming. Wiley.

Ratschan, S. (2002). Search heuristics for box decomposition methods. Journal of

Global Optimization, 24:35–49.

Ristic, B., Arulampalam, S., and Gordon, N. (2004). Beyond the Kalman Filter:

Particle Filters for Tracking Applications. Artech House.

Rust, J. (1996). Numerical dynamic programming in economics. In Amman, H. M.,

Kendrick, D. A., and Rust, J., editors, Handbook of Computational Economics,

volume 1, chapter 14, pages 619–729. Elsevier.

BIBLIOGRAPHY 91

Silver, D. and Veness, J. (2010). Monte-Carlo planning in large POMDPs. In Lafferty,

J. D., Williams, C. K. I., Shawe-Taylor, J., Zemel, R. S., and Culotta, A., editors,

Advances in Neural Information Processing Systems 23, pages 2164–2172. MIT

Press.

Szepesvári, Cs. (2001). Efficient approximate planning in continuous space Marko-

vian decision problems. AI Communications, 13(3):163–176.

Walsh, T. J., Goschin, S., and Littman, M. L. (2010). Integrating sample-based plan-

ning and model-based reinforcement learning. In Proceedings 24th AAAI Confer-

ence on Artificial Intelligence (AAAI-10), Atlanta, US.

Wang, Y., Audibert, J.-Y., and Munos, R. (2008). Algorithms for infinitely many-

armed bandits. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors,

Advances in Neural Information Processing Systems 21, pages 1729–1736. MIT

Press.

Wang, Y. and Gelly, S. (2007). Modifications of UCT and sequence-like simulations

for Monte-Carlo Go. In Proceedings 2007 IEEE Symposium on Computational

Intelligence and Games (CIG-07) USA, 1-5 April, 2007, pages 175–182, Honolulu,

Hawaii.

Weinstein, A. and Littman, M. L. (2012). Bandit-based planning and learning

in continuous-action Markov decision processes. In Proceedings 22nd Interna-

tional Conference on Automated Planning and Scheduling (ICAPS-12), São Paulo,

Brazil.

Weinstein, A. and Littman, M. L. (2013). Open-loop planning in large-scale stochas-

tic domains. In Proceedings 27th AAAI Conference on Artificial Intelligence

(AAAI-13), pages 1436–1442, Bellevue, Washington, US.

92 BIBLIOGRAPHY

Part III

Applications to nonlinear

networked systems

93

Introduction and outline

Beyond their fundamental interest in optimal control, optimistic planning methods

are also useful to address other challenges in nonlinear control. This is because plan-

ning methods can address very general classes of nonlinear systems, whereas more

standard techniques are often geared towards some specific classes.

We focus on challenges related to networked systems, motivated by the fact that

society increasingly evolves towards a networked world. Communication networks,

power and transport grids, decentralized computing networks, and social networks

are just some examples illustrating this evolution. The effective, optimal operation of

these networks is very important, and the best way to achieve it is active control of the

systems connected into the network. We therefore investigate in Part III of this the-

sis applications of optimistic planning to the control of networked systems, treating

these systems from two complementary perspectives. The first perspective tackles

the coordinated behavior of multiple, interconnected systems called agents, under

the constraints imposed by the interconnection topology (Chapter 6). In this context,

we propose first an algorithm based on optimistic optimization of fixed-length action

sequences in order to achieve consensus over the agents’ state variables, under a fixed

communication topology (Section 6.1). Then, in Section 6.2, we exploit optimistic

planning over variable-length action sequences for flocking, where the topology is

dictated by a proximity relationship between the agents; here our main analytical aim

is to preserve the interconnection topology under this constraint.

The second perspective deals with communication constraints induced by a net-

work interposed between a single system and its controller. In Chapter 7, we exploit

optimistic planning for deterministic systems, and specifically the fact that it returns

long and near-optimal action sequences. We propose two optimal, networked control

strategies using planning that reduce the number of transmissions over the network.

In the first strategy, action sequences are transmitted to the plant at a fixed period. In

the second strategy, the algorithm decides the next transmission instant according to

the last state measurement (leading to a self-triggered policy), working with a fixed

computation budget.

All these algorithms are thoroughly analyzed, showing that they effectively solve

the problems they target. We also evaluate them numerically in example problems. In

Chapter 8, closing this part, we discuss open issues and ongoing work into the control

95

96

of networked systems, as well as other research directions connected to control.

The material in this part is based on the following publications:

(P10) L. Buşoniu, C. Morarescu, “Consensus for black-box nonlinear agents using

optimistic optimization.”, Automatica, vol. 50, no. 4, pages 1201–1208, 2014

(Section 6.1).

(P11) L. Buşoniu, C. Morarescu, “Consensus for Agents with General Dynamics

Using Optimistic Optimization”. Proceedings 2013 IEEE Conference on De-

cision and Control (CDC-13), Florence, Italy, 10-13 December 2013 (Sec-

tion 6.1).

(P12) L. Buşoniu, C. Morarescu, “Topology-preserving flocking of nonlinear agents

using optimistic planning”, Control Theory and Technology, vol. 13, no. 1,

pages 70–81, 2015 (Section 6.2).

(P13) L. Buşoniu, C. Morarescu, “Optimistic planning for consensus”, Proceedings

2013 American Control Conference (ACC-13), Washington, US, 18–19 June

2013 (Chapter 6).

(P14) L. Buşoniu, R. Postoyan, J. Daafouz, “Near-optimal strategies for nonlinear

networked control systems using optimistic planning”, Proceedings 2013

American Control Conference (ACC-13), Washington, US, 18–19 June 2013

(Chapter 7).

Chapter 6

Optimistic optimization and

planning for multiagent consensus

Multi-agent systems are a type of interconnected systems with applications in a wide

variety of domains, such as robotic teams, energy and telecommunication networks,

collaborative decision support systems, data mining, etc. Each agent typically has

only a local, limited view of the overall system, which means decentralized control

approaches are necessary. Requirements on the coherent behavior of the agents are

often expressed in terms of consensus, in which the agents must reach agreement on

controlled variables of interest (Olfati-Saber et al., 2007; Ren and Beard, 2008). In-

spired by the behavior of flocks of birds, researchers also studied the flocking variant

of consensus, which only requires consensus on velocities while also using position

measurements (Olfati-Saber, 2006; Tanner et al., 2007). Flocking is highly relevant

in e.g. mobile robot teams (Dong, 2011). Often, the flocking agents must ensure that

the network remains connected despite a limited inter-agent communication range.

Classical consensus and flocking algorithms are designed for agents with linear

dynamics, for which the behavior is well understood. In this setting, the literature

considers fixed and time-varying communication topologies (Ren and Beard, 2005;

Moreau, 2005), directed or undirected graphs (Olfati-Saber et al., 2007; Ren and

Beard, 2008), synchronous or asynchronous information exchange (Tsitsiklis et al.,

1986; Fang et al., 2005), delayed or immediate transmissions (Olfati-Saber and Mur-

ray, 2004; Michiels et al., 2009), etc. Approaches also exist for nonlinear agent

dynamics, such as second-order systems with nonlinear acceleration dynamics (Su

et al., 2011; Zhou et al., 2012), nonholonomic robots (Tanner et al., 2005), and Euler-

Lagrange dynamics (Mei et al., 2011). These works usually require an explicit math-

ematical model of the agents, the form of which is exploited to derive tailored control

laws, often via Lyapunov synthesis.

Our goal here is different: generic consensus and flocking methods, applicable

without changes to a wide class of nonlinear agents. To achieve this, we propose

97

98 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

approaches that only requires black-box models (Sjöberg et al., 1995; Suykens and

Vandewalle, 1998) of the agents, thereby eliminating the dependence on the particular

mathematical form of their dynamics. Neural networks are a typical category of

black-box models, e.g. (Hunt et al., 1992; Lewis and Liu, 2012), but nonstandard

models like computer programs are also allowed; such models are common e.g. in

planning (Edelkamp and Schrödl, 2012).

Our two approaches focus, respectively, on consensus via optimistic optimization

of fixed-length action sequences (Section 6.1), and on flocking using optimistic plan-

ning to find variable-length sequences (Section 6.2). Next, one section is dedicated

to each of these two methods.

6.1 Optimistic optimization for consensus

The first method aims to achieve consensus for general nonlinear dynamics, and, for

simplicity, on the entire vector of agent states. A first ingredient of the approach is a

classical consensus algorithm, used to design reference next states for the agents. The

main novelty is the use of optimistic optimization (OO) from Section 2.2 and (Munos,

2011) to solve the control problem of reaching close to these states, formulated as op-

timal predictive control. OO allows our approach to deal with highly general, black-

box dynamics, since it performs global nonconvex optimization by only simulating

the dynamics for some inputs. Furthermore, the near-optimality guarantees of OO

allow a tight characterization of the relation between closeness to the reference states

and computation invested, and in particular guarantee arbitrarily small errors as com-

putation increases. Exploiting this, our main results prove practical consensus, i.e.

that the agents converge close to each other, as detailed next.

The main technical requirement is that each agent is controllable in a small num-

ber K of steps. The communication graph is connected, possibly directed, and to

keep the focus on the challenge of general nonlinear agents, we do not consider in

this section time-varying graphs, noise, or network effects such as delays or packet

dropouts. Then, under some additional technical assumptions related to optimization,

our analysis ensures that the agents converge to a small region and then return to this

region once every K steps. Under stronger regularity conditions including invertibil-

ity, we further guarantee the agents remain close to each other at every step. The

near-optimality dimension β from Section 2.2 modulates the relationship between

computation and approximation error. We analyze this dimension and build insight

into the meaning of the assumptions for the entire class of linear systems, as well as

for a nonlinear example; and provide simulation results for both cases.

Note that our approach is related to model-predictive control, which was applied

to the consensus of linear agents by Keviczky and Johansson (2008) and Ferrari-

Trecate et al. (2009). Like Qu et al. (2008), we obtain an approximately linear overall

behavior of the agents, but while they use explicitly the model to perform feedback

6.1. OO FOR CONSENSUS 99

linearization, we work with black-box models by exploiting the generality of OO.

6.1.1 Consensus problem statement

We consider a set of m agents with decoupled discrete-time nonlinear dynamics

xi,k+1 = fi(xi,k,ui,k), i = 1, . . . ,m. The dimensionality of x (the order of the dynamical

system f), denoted nx, is the same for every agent, and we have xi ∈ R
nx . Simi-

larly, for every agent ui belongs to a compact set U . Define also the collective state

xxx = [x⊤1 , · · · ,x⊤m]
⊤ ∈ R

mnx , containing the states of all the agents. The ideal goal is to

achieve full-state consensus:

lim
k→∞

∥∥xi,k− x j,k

∥∥ = 0 ∀i, j = 1, . . . ,m

where ‖·‖ is the Euclidean 2-norm, here as well as in the sequel. We employ the more

pragmatic requirement of practical consensus, defined as the existence, for any given

disagreement ∆ > 0, of a finite step k0 so that for all k ≥ k0,
∥∥xi,k− x j,k

∥∥ ≤ ∆ for all

i, j.

An agent can receive information only from its neighbors on an interconnection

graph G = (V ,E). The set of nodes V = {1, . . . ,m} represents the agents, and the

edges E ⊆ V ×V are the communication links. Denote by Ni = { j |(i, j) ∈ E } the

set of neighbors of node i. The graph may be directed (for some edges (i, j) ∈ E ,

(j, i) /∈ E), but we require that it is time-invariant and strongly connected. The latter

property means a path exists between any pair of nodes i, j: a sequence of nodes

i = i1, . . . , iT = j so that (it , it+1) ∈ E ,1≤ t < T .

Let X0 ⊂ R
nx be a user-defined, bounded set of interesting initial agent states,

from which consensus might be required. Let B(xc,R) be the smallest Euclidean

ball containing X0, which has center xc and radius R. Then, define an enlarged set

X = B(xc,3R + ∆+), where ∆+ > 0 is an arbitrarily small constant. Finally, denote

by ũi,k = [u⊤i,k, . . . ,u
⊤
i,k+K−1]

⊤
a sequence of K actions for agent i starting at step k,

and by f̃i(xi,k, ũi,k) the resulting state of the agent after applying ũi,k (K steps later).

We impose a controllability assumption on fi in the set X .

Assumption 6.1 (Controllability) There exists a finite K such that, for any x,x∗ ∈
X and any agent i, there exists a sequence ũi ∈UK so that:

f̃i(x, ũi) = x∗

This type of controllability property is studied by e.g. (Jakubczyk and Sontag, 1990),

where Lie-algebraic conditions are provided for nonlinear systems, including a char-

acterization of the size of reachable sets. The controllable set is enlarged to X to

deal with the errors made by the algorithm in some special, unfavorable initial condi-

tions, such as when most agents are close together at one edge of X0 and one agent is

100 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

diametrally opposite. In fact, for most initial conditions, we expect the agents to stay

close to the convex hull of X0.

Under this assumption and some other requirements related to the optimization

algorithm, stated below, our results guarantee practical consensus at steps that are

multiples of K. To guarantee the stronger result of practical consensus at every step,

an additional assumption is imposed. Define an invertibility property of dynamics f̃i,

which requires that for every pair (x,x∗)∈X 2 the sequence ũi achieving f̃i(x, ũi)= x∗

is unique. The inverse f̃−1
i : X 2→UK is defined as the mapping between state pairs

and their corresponding action sequences.

Assumption 6.2 (Homogeneity and invertibility) The multiagent system is homo-

geneous: fi = f j =: f , ∀i, j with common dynamics f that are Lipschitz-continuous

in X ×U. Furthermore, the K-step dynamics f̃ has a unique inverse f̃−1, which is

also Lipschitz continuous in its domain X 2.

Invertibility conditions are an important topic in nonlinear system theory, and

several types of conditions for discrete-time systems are provided e.g. by Grizzle

(1993); Zheng and Evans (2002); Fliess (1992). Since the set of states X and the

action space U were already taken compact, the Lipschitz conditions are not signifi-

cantly more restrictive. Homogeneity (together with invertibility) is needed to guar-

antee the agents behave similarly for similar desired transitions, see Section 6.1.3 for

a simulation illustrating this.

It is essential to note that the dynamics fi are only available to the agents as black-

box, simulation models, the inverse dynamics f̃−1 (if they exist) are not available at

all, and the sequences ũi of Assumption 6.1 are unknown; indeed, the main task of

the algorithm will be to approximate them.

6.1.2 Consensus approach and analysis

Our approach to the consensus problem in Section 6.1.1 works as follows. Once every

K steps, each agent i computes a reference (desired) next state, which is a weighted

average of the current states of its neighbors Ni. Then, a sequence of actions is

optimized with OO so that after K steps, the reference state is approached as closely

as possible. All agents apply their sequences and the whole process is repeated. The

main idea is therefore intuitive: by emulating a classical consensus algorithm (Olfati-

Saber et al., 2007), an approximately linear overall agent behavior is obtained. The

main novelty is using OO to find the controls, which only requires sampling a black-

box model, without knowledge about its internal structure. The properties of OO

tightly connect computation invested with approximation error. In our analysis, we

focus on these computational aspects and on the impact of the error on the consensus

guarantees.

6.1. OO FOR CONSENSUS 101

Formally, at step k – a multiple of K – each agent i computes a reference state

with:

x∗i,k+K =
m

∑
j=1

αi, jx j,k (6.1)

where αi, j ∈ [0,1] ∀i, j, ∑
m

j=1
αi, j = 1 ∀i,

αi, j 6= 0 iff i = j or (i, j) ∈ E

Since each agent only uses information about its neighbors, these reference states

can be computed in a decentralized way. Matrix ααα = [αi, j] should be freely chosen

to impose a desired consensus behavior. Several decentralized strategies to select it

are given in (Olfati-Saber and Murray, 2004; Xiao and Boyd, 2004; Olshevsky and

Tsitsiklis, 2009).

Then, each agent solves with DOO or SOO the optimal control problem:

ũ∗i,k = argmax
ũi,k

gi,k(ũi,k)

where gi,k(ũi,k) :=−
∥∥ f̃i(xi,k, ũi,k)− x∗i,k+K

∥∥
(6.2)

(recall the definitions of K-step actions and dynamics). This is a type of dynamic

inversion control, see e.g. (Hunt and Meyer, 1997), and similar ideas are used among

others in adaptive inverse control (Widrow and Walach, 2008). A near-optimal ex-

tended action ̂̃ui,k is found, which will reach close to the reference state. The objective

function gi,k(ũi,k), together with the partitioning rule for the space UK =: Ũ , must sat-

isfy the optimization Assumptions 2.2 and 2.3. For easy reference, we restate these

assumptions in the context of consensus, dropping the subscript i,k for readability.

Assumption 6.3 For all i and k, the objective function and the partitioning method

of OO satisfy the following conditions:

6.3.i There exists an optimum ũ∗ and a semimetric ℓ so that:

g(ũ∗)−g(ũ)≤ ℓ(ũ, ũ∗) ∀ũ ∈ Ũ (6.3)

6.3.ii There exist c > 0 and λ ∈ (0,1) such that for any d, δd, j ≤ cλ d for all nodes j

at depth d, where δd, j := supũ∈Ũd, j
ℓ(ũd, j, ũ).

6.3.iii There exists a constant µ such that any subset Ũd, j contains a ball with center

ũd, j and radius µcλ d in the semimetric ℓ.

6.3.iv A finite β exists.

102 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

Algorithm 6.1 Optimistic-optimization consensus at agent i

Input: row ααα i of ααα , budget n, OO algorithm to use, if DOO: ℓ, if SOO: dmax(t)
1: k← 0

2: loop

3: measure xi,k and send it to j ∈Ni

4: receive x j,k from j ∈Ni

5: compute reference state x∗i,k+K using ααα i

6: gi,k(ũi,k) :=−
∥∥∥ f̃i(xi,k, ũi,k)− x∗i,k+K

∥∥∥
7: if using DOO then

8: ̂̃ui,k← DOO(gi,k, ℓ,n,partitioning of U)
9: else if using SOO then

10: ̂̃ui,k← SOO(gi,k,dmax,n,partitioning of U)
11: end if

12: apply ̂̃ui,k in open loop

13: k← k +K

14: end loop

Algorithm 6.1 summarizes the overall procedure.

Most of the parameters of OO can usually be chosen in a standard way. The par-

titioning of U is typically defined as a collection of hyperboxes in a Knu-dimensional

space, where nu denotes the number of action variables. A large hyperbox contains

the whole action space, and each node expansion corresponds to splitting the parent

hyperbox into 2Knu subboxes, in half along all dimensions. Another alternative is to

split one dimension at a given depth, looping through the dimensions sequentially. In

either case, the complexity of splitting is large (exponential in K when all dimensions

are split), so a practical requirement of our method is that K must be small; the limit

depends on the agent’s computational power, but to give an idea, say that the product

Knu should be less than 10.

For DOO, the semimetric ℓ is a less obvious choice. For some problems, its form

may be available from prior knowledge. In general, defining ℓ can be difficult, in

which case SOO should be used. In SOO, a default choice of dmax(t) is
√

t, ex-

pecting that a semimetric that yields a near-optimality dimension of 0 exists; if the

optimization is expected to be difficult, a better schedule is ta with small a, to increase

the asymptotic convergence rate, see Proposition 2.1. We provide more insight about

the semimetric and near-optimality dimension in the examples.

The main parameter is however the budget n. In particular, since simulating the

nonlinear dynamics will usually dominate computation, the time complexity at each

agent roughly linear in n.

Therefore, we start our analysis by investigating what is the required value for

the budget n to achieve a uniformly small approximation error ε∗. By essentially

6.1. OO FOR CONSENSUS 103

inverting the relationships in Proposition 2.1, we find the following budgets at agent i

in collective state xxx, where the optimization complexity is characterized by β (i,xxx). In

DOO, n = O(ε∗−β (i,xxx)), a power of 1/ε∗, when β (i,xxx) is positive. When β (i,xxx) = 0,

n = O(log(1/ε∗)), logarithmic (much lower). In SOO, taking for simplicity dmax(t) =√
t, n = O(ε∗−2β (i,xxx)) when β (i,xxx) > 0 and n = O(log2(1/ε∗)) when β (i,xxx) = 0. So

the complexity behaves similarly but is larger – the power of 1/ε∗ is double (which

can be improved by better choosing dmax), while the logarithm is squared.

In practice, the agents will use the same n everywhere. In that case, any desired

ε∗ can be achieved by taking a sufficiently large n, which is related to the largest β (of

course, this large n is conservative where β is smaller, leading to errors smaller than

ε∗ in those situations). This uniform error property is essential to our main results,

given next.

Theorem 6.1 (Consensus every K steps) Under Assumptions 6.1 and 6.3, for large

enough n, Algorithm 6.1 achieves practical consensus at steps multiple of K.

Proof: Denote by Λ the left eigenvector of ααα associated with the eigenvalue

1 (which will always exist due to the structure of ααα), x̄ = Λ⊤xxx0 ∈ R
n
x , and x̄xx =

[x̄, . . . , x̄]⊤. We will first show (i) that ∃t0,∆ so that for all t ≥ t0, ‖xi,tK− x̄‖ ≤ ∆

for all i, while assuming that the agents remain controllable. Then, it is proven that

(ii) they actually do remain controllable.

(i) ααα is a row stochastic matrix associated to a strongly connected graph. By

iterating the ideal protocol x∗i,k+K = ∑m
j=1 αi, jx

∗
j,k starting from xxx0, all agents would

converge exponentially to x̄. Next, the effect of the deviation of the real states from

this ideal trajectory is analyzed. Let e be the largest eigenvalue of ααα that is different

from 1. Then, 0 < |e|< 1 and:
∥∥∥xxx∗(t+1)K− x̄xx

∥∥∥ = |e| · ‖xxxtK− x̄xx‖ (6.4)

Since each agent reaches its reference state with at most ε∗ error:

‖xxxtK− xxx∗tK‖ ≤
√

mε∗,∀t (6.5)

Combining (6.5) and (6.4), for arbitrary ∆ > 0 and ē ∈ (|e| ,1), ∆-practical consensus

with a convergence rate ē will be ensured. To this end, choose a large enough budget

n to guarantee ε∗ ≤ (ē−|e|)∆/
√

m.

Assume first that the initial disagreement is larger than ∆. Then, for all xxxtK such

that ‖xxxtK− x̄xx‖> ∆ one has:

∥∥xxx(t+1)K− x̄xx
∥∥≤

∥∥∥xxx(t+1)K− xxx∗(t+1)K

∥∥∥+
∥∥∥xxx∗(t+1)K− x̄xx

∥∥∥

≤
√

mε∗+ |e| · ‖xxxtK− x̄xx‖
≤ (ē−|e|)∆+ |e| · ‖xxxtK− x̄xx‖
< ē‖xxxtK− x̄xx‖

104 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

This exponential decay ensures that after a finite t0 = ⌈logē ∆/‖xxx0− x̄xx‖⌉, the distance

to x̄ will drop below ∆. Once this is true, i.e., if ‖xxxtK− x̄xx‖< ∆, then:

∥∥xxx(t+1)K− x̄xx
∥∥≤

∥∥∥xxx(t+1)K− xxx∗(t+1)K

∥∥∥+
∥∥∥xxx∗(t+1)K− x̄xx

∥∥∥

≤
√

mε∗+ |e| · ‖xxxtK− x̄xx‖
≤ (ē−|e|)∆+ |e|∆ = ē∆ < ∆

so the state will remain at distance ∆ from x̄. If the initial disagreement is already

below ∆, then t0 = 0 and the derivation of the exponential decay is no longer needed.

(ii) To ensure controllability, the states of all the agents must remain inside set

X at each step tK (recall that X0 ⊆ B(xc,R) and X = B(xc,3R + ∆+)). Define

∆0 = ‖xxx− x̄xx‖, the collective initial disagreement, and ∆a
0 = maxi ‖xi,0− x̄‖, the per-

agent initial disagreement. Take a desired collective disagreement of ∆≤ 2R; part (i)

allows imposing any ∆ > 0, and since 2R upper-bounds the diameter of X0, a larger

value makes little sense.

If ∆ ≥ ∆0, then already, for any t ≥ 0, ‖xi,tK− x̄‖ ≤ ‖xxxtK− x̄xx‖ ≤ ∆. Thus the

agents remain in B(x̄,∆) and since x̄ ∈ B(xc,R), they remain in B(xc,3R)⊂X . Now

if ∆ < ∆0, then for any t and i we have:

∥∥xi,(t+1)K− x̄
∥∥≤

∥∥∥xi,(t+1)K− x∗i,(t+1)K

∥∥∥+
∥∥∥x∗i,(t+1)K− x̄

∥∥∥

≤ ε∗+max
j

∥∥x j,tK− x̄
∥∥

≤ (t +1)ε∗+∆a
0 (6.6)

where the second inequality implies the third by induction. Furthermore, by part (i),

as long as the collective disagreement is larger than ∆ it decreases exponentially:

‖xi,tK− x̄‖ ≤ ‖xxxtK− x̄xx‖ ≤ ēt∆0

This allows taking a finite t1 so that ēt1∆0 ≤ max{∆,∆a
0}, from which ‖xi,tK− x̄‖ ≤

max{∆,∆a
0} ∀i, t≥ t1. Combining this with (6.6), we have ‖xi,tK− x̄‖≤max{∆, t1ε∗+

∆a
0},∀i, t ≥ 0. Therefore, finally imposing ε∗ ≤ ∆+/t1 and noticing that ∆a

0 ≤ 2R, the

states are guaranteed to remain in X . �

Theorem 6.2 (Consensus) Under Assumptions 6.1–6.3, for sufficiently large n Al-

gorithm 6.1 achieves practical consensus at every step.

Proof: In Theorem 6.1, take t ≥ t0. Then ∀i, j,
∥∥xi,tK− x j,tK

∥∥ ≤ 2∆, due to the fact

that ‖xxxtK− x̄xx‖ ≤ ∆ and the triangle inequality. Due to Assumption 6.2, we have

ũi,tK = f̃−1(xi,tK ,xi,(t+1)K), ũ j,tK = f̃−1(x j,tK ,x j,(t+1)K) and denoting the Lipschitz

constant of f̃−1 by L−1:

∥∥ũi,tK− ũ j,tK

∥∥≤ L−1(
∥∥xi,tK− x j,tK

∥∥+
∥∥xi,(t+1)K− x j,(t+1)K

∥∥)≤ 4L−1∆

6.1. OO FOR CONSENSUS 105

Then, at steps tK + k with k = 1, . . . ,K−1, we have:
∥∥ui,tK+k−u j,tK+k

∥∥≤
√

nu

∥∥ũi,tK− ũ j,tK

∥∥
∞
≤ 4
√

nuL−1∆

Denote L′ = 4
√

nuL−1, and L the Lipschitz constant of f . Finally, by a straightfor-

ward derivation we get:

∥∥xi,tK+k− x j,tK+k

∥∥≤ (Lk +L′∑
k

k′=1
Lk′)∆

which is the desired result. �

From the proof of Theorem 6.1, a rather strong type of practical consensus is

ensured, where agents exponentially approach and then remain inside a region of

size ∆ around x̄ – but only at steps multiple of K. The size ∆ can be controlled by ε∗,
and so indirectly by the budget n, as seen in the discussion about the budget above.

In-between these steps and above t0K, Theorem 6.2 ensures, under the additional

Assumption 6.2, a weaker practical consensus where agents are only close to each

other and not necessarily to x̄. Indeed, the region containing the states can travel in

the state space, with the constraint that it must always return around x̄ at each multiple

of K. Note that the region may grow somewhat in-between the multiples of K, but its

size remains proportional to ∆. Figure 6.1 illustrates these guarantees.

D

tK t K0 (+1)t K0

ct.D

x

t K+k0

D

Figure 6.1: Symbolic illustration of consensus guarantees. The agent states will

stay within the shaded area. Dotted contour: analysis does not constrain the states;

solid black contour: guarantees of Theorem 6.1; thick gray contour: guarantees of

Theorem 6.2.

6.1.3 Analysis and simulations in representative cases

We next exemplify linear agents as a special case of our framework, together with

a type of nonlinear agents. Although the method targets nonlinear agents, under-

standing how it works in the familiar, linear case builds useful insight. For each

type of agents, we analyze the assumptions and present simulation results. It must

be emphasized that these examples are analyzed here in detail for illustrative pur-

poses, using ‘white-box’, full mathematical models of the agent dynamics. Indeed,

106 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

the whole point of our algorithm is to avoid the need to use such models; instead,

they are a black box supplied to the algorithm, and it is precisely this which lends

the approach its generality. In practice, the user simply chooses a sufficiently large

Ũ and—provided of course the assumptions hold—does not need to worry about the

other details.

Linear agents. Consider an agent with linear controllable dynamics:

xk+1 = Axk +Buk

Different agents may have different dynamics if we are only interested in consensus

every K steps; otherwise, agents must be homogeneous due to Assumption 6.2. In

both cases, we drop the agent index since the development is generally valid for any

linear dynamics.

The set of interesting initial states considered is X0 = B(0,R). It follows that

X = B(0,3R+∆+) for an arbitrary ∆+ > 0. Denote RX = 3R+∆+. For now, K is

taken equal to the order n of the dynamics, and the K-step dynamics are:

xk+K = Ãxk + B̃ũk = AK +[AK−1B,AK−2B, . . . ,B]ũk

Since the system is controllable B̃ is full row rank, and for any xk at least one ũ∗k exists

that reaches an arbitrary x∗k+K (there may be more):

ũ∗k = B̃‡(x∗k+K− Ãxk) (6.7)

where ‡ denotes left pseudoinverse. Then
∥∥ũ∗k

∥∥≤
∥∥B̃‡

∥∥(1+
∥∥Ã

∥∥)‖xk‖, and an action

space Ũ including a ball of radius RU =
∥∥B̃‡

∥∥(1+
∥∥Ã

∥∥)RX ensures Assumption 6.1

(‖·‖ denotes the induced norm for matrices).

The optimal control at step k must maximize:

g(ũk) =−
∥∥xk+K− x∗k+K

∥∥ =−
∥∥B̃ũk− B̃ũ∗k

∥∥

where ũ∗k is the (unknown) action that exactly reaches x∗k+K . We have:

g(ũ∗k)−g(ũk) = 0+
∥∥B̃ũk− B̃ũ∗k

∥∥≤
∥∥B̃

∥∥‖ũk− ũ∗k‖

So, a semimetric ℓ(ũ, ũ′) = γ ‖ũ− ũ′‖ with γ ≥
∥∥B̃

∥∥ (in fact a metric) ensures the

weak-Lipschitz property Assumption 6.3.i. Note that g(ũ∗k) = 0, and also that
∥∥B̃

∥∥
plays the role of Lipschitz constant for g. If the prior knowledge that ℓ is a good met-

ric in the linear problem is available, then DOO should be applied with this metric.

Otherwise, SOO should be used. Further, it is clear that if we take a hyperbox UK

and create a natural, exponential partitioning by recursively splitting it into smaller

hyperboxes along each dimension (2Knu new hyperboxes at each step), Assumptions

6.3.ii and 6.3.iii hold.

6.1. OO FOR CONSENSUS 107

Next, the near-optimality dimension β is investigated (omitting the proof). If

nuK > nx, there are multiple optimal solutions and β is upper-bounded by ϕ = nuK−
nx, the number of extra degrees of freedom in the solution (6.7). This can intuitively

be understood as OO having to uniformly explore the ϕ-dimensional subspace of

equally good near-optimal solutions, and provides yet another incentive for having K

as small as possible. Since β is bounded, Assumption 6.3.iv holds.

So far, we only imposed Assumption 6.1. Further requiring Assumption 6.2, in-

vertibility in K steps, boils down to rank(B̃) = nuK (Sain and Massey, 1969) (note

that the direct and inverse dynamics are Lipschitz). Since due to controllability

rank(B̃) = nx, we must have K = nx/nu, and controllability must hold in K < nx

steps. In effect, all this leads to a square, invertible B̃. So, the condition is signifi-

cantly more restrictive than Assumption 6.1. The benefit is that due to invertibility, β

is now 0, and the optimization problem is easy to solve.

Moving on to our simulation results, consider the classical example of double-

integrator agents (Olfati-Saber, 2006):

x
p
i,k+1 = x

p
i,k +Tsx

p
i,k, xv

i,k+1 = xv
i,k +Tsuik

where xp is the position, xv the velocity, the input is uik, and Euler discretization is

used with sampling time Ts = 0.5 s. The system is controllable in K = 2 steps (note

that n = Km, leading to β = 0).

Five agents are considered, having the (undirected) connection graph from Fig-

ure 6.2 (top), initial positions 0,1,2,3,4, and initial velocities −3,−1,0,1,3. In all

our experiments, the neighbor weights are set with the method of Olfati-Saber and

Murray (2004): the agents first agree on a value α ′ ∈ (0, 1
maxi|Ni|), and then agent i

sets αi,i = 1−α ′ |Ni| and αi, j = α ′, ∀ j ∈Ni. We set α ′ = 0.2. The action space is

taken large enough to ensure controllability (specifically, Ũ = [−200,200]2). To char-

acterize performance in each experiment, an inter-agent disagreement is computed at

every step: ∆k = ∑i< j

∥∥xi,k− x j,k

∥∥, and the average of ∆k over the entire trajectory is

reported.

We will study the performance for varying budget n = 15,25,50,75,100,200, . . . ,
700, in three cases. First, DOO is applied, using the ‘ideal’ metric with constant

γ =
∥∥B̃

∥∥. In the second, more realistic case, γ is overestimated as 4
∥∥B̃

∥∥. Third,

the metric is no longer assumed known and SOO is applied. As seen in Figure 6.2

(bottom left), performance largely increases with n for all optimization methods, al-

though monotonicity is not guaranteed. Moreover, as expected, DOO with the ideal

metric performs best, obtaining near-optimal performance for small budgets. Since it

does not use the metric, SOO lags slightly behind, but quickly reaches near-optimal

performance as well. DOO with the overestimated metric performs poorly, falling

behind SOO. Figure 6.2 (bottom right) shows a trajectory for SOO and n = 200.

Practical consensus is obtained in under 20 s. Since the desired agent state x∗i,k+2 is

108 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

designed without knowing the structure of the dynamics, the resulting trajectory is

not smooth.

21 3 4 5

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

budget

d
is

a
g

re
e

m
e

n
t

DOO, disagreement

SOO, disagreement

DOO large metric, disagreement

0 20 40
−2

0

2

4

6

k*T
s
 [s]

p
1

0 20 40
−5

0

5

k*T
s
 [s]

v
1

Figure 6.2: Top: Connection graph for double integrators, with initial velocities sym-

bolized by arrows. Bottom left: Results for varying N. Bottom right: A representative

trajectory.

Hammerstein nonlinear agents. To illustrate the framework in the nonlinear case,

we consider an example where linear dynamics are affected by an algebraic input

nonlinearity – a Hammerstein system, taken from the literature (Ding and Chen,

2005). The example is adapted to our framework by transforming it into state-space

form and eliminating the noise, leading to:

xk+1 = Axk +Bzk =

[
1.6 −0.8
1 0

]
xk +

[
1

0

]
zk

zk = g(uk) = uk +0.5u2
k +0.25u3

k

(6.8)

where again we do not include the agent index.

Like before, X0 = B(0,R), leading to X = B(0,RX) with RX = 3R+∆+. Note

that the input nonlinearity g is strictly increasing and bijective. From the 2-step dy-

namics:

xk+2 = A2xk + B̃z̃k = A2xk +[AB,B][zk,zk+1]
⊤

with a full-rank B̃, the linear system is controllable in K = 2 steps, and due to the

bijective nonlinearity the same remains true of the nonlinear system. Furthermore,

the inverse dynamics are:

ũk = [g−1(zk),g
−1(zk+1)]

⊤
, z̃k = B̃−1(x∗k+2−A2xk)

From the fact that 0.5 |u| ≤ |g(u)|, we have |u| ≤ 2‖z̃k‖ ≤ 2
∥∥B̃−1

∥∥(1 +
∥∥A2

∥∥)RX ,

where the second part is taken from the linear case above. So, a compact input box

6.1. OO FOR CONSENSUS 109

of this size is sufficient to make the system controllable in X . Since the direct and

inverse dynamics are also Lipschitz, Assumptions 6.1 and 6.2 have been verified.

The objective function of the optimal control problem is g(ũk)=−
∥∥xk+2− x∗k+2

∥∥.

To find a semimetric ℓ satisfying Assumption 6.3.i, note that:

g(ũ∗k)−g(ũk) =
∥∥xk+2− x∗k+2

∥∥≤
∥∥B̃(z̃k− z̃∗k)

∥∥

≤
∥∥B̃

∥∥
∥∥∥[g(uk)−g(u∗k),g(uk+1)−g(u∗k+1)]

⊤
∥∥∥

1

≤ (1+RX +0.75R2
X)

∥∥B̃
∥∥‖ũk− ũ∗k‖1

(6.9)

where the last step is due to:

|g(u)−g(u∗)|= |u−u∗+0.5(u2−u∗2)+0.25(u3−u∗3)|
≤ |u−u∗| · |1+0.5(u+u∗)+0.25(u2 +u∗2 +uu∗)|
≤ (1+RX +0.75R2

X) |u−u∗|

Therefore, an appropriate metric is ℓ(ũk, ũ
∗
k) = γ

∥∥ũk− ũ∗k
∥∥

1
with a ‘Lipschitz con-

stant’ γ greater than the multiplying factor above. Noticing that under this metric the

natural partitioning into squares satisfies the remaining conditions 6.3.ii and 6.3.iii,

Assumption 6.3 is validated.

Finally, to find the near-optimality dimension β , we study the sets:

Ũε = {ũ |g(ũ∗)−g(ũ)≤ ε } ⊆
{

ũ

∣∣∣γ ‖ũk− ũ∗k‖1 ≤ ε
}

The inclusion holds due to g(ũ∗)−g(ũ) =
∥∥B̃(z̃k− z̃∗k)

∥∥≥
√

emin(B̃⊤B̃)/2
∥∥z̃k− z̃∗k

∥∥
1

with emin denoting the smallest eigenvalue. Further, by the monotonicity of g, around

any u∗ we have |z− z∗|= |g(u)−g(u∗)| ≥ α |u−u∗| with some positive α . Thus, Ũε

is included in a ℓ-ball of radius proportional to ε , and therefore the packing number is

constant, leading to a near-optimality dimension of 0: Assumption 6.3.iv is satisfied

and the optimization problem is easy to solve.

To illustrate Hammerstein systems in simulation, consider five agents with dy-

namics (6.8) that are connected with the directed graph shown at the top-left of Fig-

ure 6.3. We apply SOO consensus with n = 200 and neighbor weight α = 0.2, from

uniformly random initial states xi,0 ∈ [−5,5]2 (the action space is then taken suffi-

ciently large, Ũ = [−300,300]2). Figure 6.3 (bottom) shows the resulting trajectories

of the agents. The algorithm easily deals with these nonlinear dynamics. Note that,

unlike for the double integrator, here the consensus state is not an equilibrium, so the

states no longer reach a constant ball around it; instead, they synchronously travel

in the state space as predicted by the analysis, see Figure 6.3 (top-right) and again

Figure 6.1.

110 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

2

1

3 4

5

0 2 4
−6

−4

−2

0

2

4

k*T
s
 [s]

x
1

0 2 4
−5

0

5

k*T
s
 [s]

x
2

Figure 6.3: Consensus of Hammerstein systems. Top-left: Communication graph.

Bottom: State trajectories (the sampling time is taken 0.1 s). Top-right: zoom-in on

the last portion of the x2 trajectory; note the agents are synchronized.

6.2. OP FOR FLOCKING 111

6.2 Optimistic planning for flocking

An important limitation of the OO consensus method above is that it works in incre-

ments of a small number K of steps. A natural extension to large, possibly unknown

K is to apply long-horizon optimistic planning.

We introduce such a method in this section, focusing on a generalized version of

the flocking problem, in which agreement is sought for a subset of agent variables

while other variables define the interconnection topology between the agents. These

two subsets may represent e.g. velocities and positions. The communication connec-

tions between agents are based on a proximity relationship, in which a connection

is active when the agents are closer than some threshold in terms of the connectivity

variables. A controllability property is imposed that, for any connected state, roughly

requires the existence of an input sequence which preserves connectivity. We define

agent reward functions with separate agreement and connectivity components, and

use OP for deterministic systems (OPD, see Section 2.3) at the agents to find control

actions. Our main analytical result shows that if the connectivity rewards are suffi-

ciently large, the algorithm will preserve the interconnection topology. In interesting

cases, the computational complexity of the flocking problem is not larger than if the

agent would solve the agreement-only problem.

The theoretical algorithm is restrictive in still requiring to know, like OO consen-

sus, the length of action sequences satisfying the controllability property. We there-

fore also provide a practical algorithm variant which does not use this knowledge, and

validate it in simulation to nonholonomic agents and robot arms (Mei et al., 2011). In

the second problem we illustrate that despite our focus on flocking, the method also

works in the full-state consensus case.

The main advantage of the OP approach compared to classical methods is that,

like the OO-based method, it is agnostic to the specific agent dynamics, and so it

works uniformly for general nonlinear agents. In particular, our analysis shows that

when a solution that preserves the topology exists (in a sense that will be formal-

ized later), then irrespective of the details of the dynamics the algorithm will indeed

maintain the topology. Existing topology preservation results are focused on specific

types of agents, mainly linear (Zavlanos and Pappas, 2008; Fiacchini and Morarescu,

2014; Bullo et al., 2009, Ch. 4), or sometimes nonlinear as in e.g. (Zhu et al., 2013)

where the weaker requirement of connectivity is considered. Our practical flocking

algorithm exhibits the same generality, whereas existing methods exploit the struc-

ture of the specific dynamics targeted to derive predefined control laws, e.g. for linear

double integrators (Olfati-Saber, 2006), agents with nonlinear acceleration dynamics

(Su et al., 2011; Zhou et al., 2012), or nonholonomic robots (Tanner et al., 2005; Zhu

et al., 2013).

112 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

6.2.1 Flocking problem statement

The problem we consider is closely related to that in Section 6.1.1, but it is more gen-

eral in several respects. First, since we deal with flocking, agreement may only be

sought on some of the variables, whereas in Section 6.1.1 the entire state vector was

always considered. Other variables define the interconnection structure, so that the

communication graph is now time-varying, whereas before it was fixed. However,

communication links are symmetric so the graph is undirected. Further, our algorith-

mic tools and analytical goals are different, so we make different assumptions. For

completeness, we fully formalize these problem characteristics below.

The m agents have decoupled nonlinear dynamics xi,k+1 = fi(xi,k,ui,k), for i =
1, . . . ,m. The agents can be heterogeneous: they can have different dynamics and

state or input dimensionality. An agent only receives information from its neighbors

on a possibly time-varying interconnection graph Gk = (V ,Ek), with agents in the

vertices V = {1, . . . ,m} and communication links (edges) Ek ⊆ V ×V . The time-

varying set of neighbors of node i at step k is Ni,k = { j |(i, j) ∈ Ek }.
The ideal objective is to achieve:

lim
k→∞

∥∥xa
i,k− xa

j,k

∥∥ = 0 ∀i, j = 1, . . . ,m

where xa selects only those state variables for which agreement is desired, and ‖·‖
denotes an arbitrary norm. We require of course that the selection produces a vector

with the same dimensionality for all agents. Usually, xa and xc do not overlap, being

e.g., the agent’s velocity and position (Olfati-Saber, 2006), so that velocities must be

synchronized under communication constraints dependent on the position. Specifi-

cally, we consider the case where a link is active when the connectivity states of two

agents are close:

Ek =
{
(i, j)

∣∣ i 6= j,
∥∥xc

i,k− xc
j,k

∥∥≤ R
}

(6.10)

For example when xc is a position this corresponds to the agents being physically

closer than some transmission range R. The full-state consensus problem of Sec-

tion 6.1 is obtained as a special case of the generalized flocking setting, when all

agents have the same state dimension, xa = x, xc is empty, and Ek = E (a fixed com-

munication graph). While the OP technique can be applied to this case, as will be

illustrated in the experiments, in the analytical development we will focus on the

flocking problem, where the communication network varies.

Since the agents will use OPD, which works for discrete actions, we impose a

discrete-action requirement for all agents.

Assumption 6.4 Agent actions are discretized: ui ∈ {Ui} with |Ui|= Mi.

Other authors showed interest in multiagent coordination with discretized actions,

e.g. (De Persis and Frasca, 2013).

6.2. OP FOR FLOCKING 113

Denote uuui,K = (ui,0,ui,1, . . . ,ui,K−1) ∈UK
i a sequence of K actions of agent i, and

f̃i(xi,uuui,K) the result of applying this sequence: the agent’s state after K steps, with f̃i

the extended dynamics. Note we use the sequence notation uuu from OPD, rather than

ũ from OO consensus, since we will later use OPD to find the sequences.

Assumption 6.5 There exists K so that for any agent i, and any states xi, x j, ∀ j∈Ni,k

so that

∥∥∥xc
i − xc

j

∥∥∥≤ R, there exists some sequence uuui,K so that

∥∥∥ f̃ c
i (xi,uuui,K)− xc

j

∥∥∥≤ R,

∀ j ∈Ni,k.

This is a feasibility assumption: it is difficult to preserve the topology without re-

quiring such a condition. The condition simply means that for any joint state of the

system in which an agent is connected to some neighbors, this agent has an action

sequence by which it is again connected after K steps, if its neighbors do not move.

So if the assumption does not hold and the problem is such that the neighbors do stay

still, the agent will indeed lose some connections and topology cannot be preserved.

Of course, in general the neighbors will move, but as we will show Assumption 6.5

is nevertheless sufficient to ensure connectivity.

In Section 6.1 our analytical goal was to prove consensus, whereas here we are

interested in connectivity. So our requirements were stronger there, requiring that

the control is able to move the agent between any two arbitrary states in a bounded

region, see Assumption 6.1. With a sufficiently fine action discretization, such an

assumption would locally imply Assumption 6.5.

When making the assumption, we could also use the following definition for the

links:

Ek = {(i, j)|i 6= j,
∥∥xc

i,k− xc
j,k

∥∥≤ R, and if k > 0,(i, j) ∈ Ek−1} (6.11)

so that the agents never gain new neighbors, and only need to stay connected to their

initial neighbors. The analysis will also hold in this case, which is important because

with (6.10), as k grows many or all the agents may become interconnected. For

simplicity we use (6.10) in the sequel.

6.2.2 Flocking approach and analysis

The OP-based approach to the flocking problem in Section 6.2.1 works as follows.

Similarly to OO consensus, at every time step k, a local optimal control problem is

defined for each agent i, using information locally available to it. The goal in this

problem is to align the agreement states xa with those of the neighbors Ni,k, while

maintaining the connection topology by staying close to them in terms of xc. OPD

is used to near-optimally solve this control problem, and an initial subsequence of

the sequence returned is applied by the agent. Then the system evolves, and the

procedure is applied again, for the new states and possibly changed graph.

114 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

To construct its optimal control problem, each agent needs the predicted behavior

of its neighbors. Here, agents will exchange the predicted state sequences resulting

from the near-optimal action sequences returned by OPD. Because the agents must

act at the same time, how they exchange predictions is nontrivial. If predictions do

not match, a coordination problem may arise where mismatching actions are applied.

Coordination is a difficult challenge in multi-agent systems and is typically solved

in model-predictive control by explicit, iterative negotiation over successive local

solutions, e.g. (Negenborn et al., 2008). However, it is unlikely that the agents can

computationally afford to repeatedly communicate and reoptimize their solutions at

every step. Thus we adopt a sequential communication procedure in which agents

optimize once per step, similar to the procedure for distributed MPC in (Liu et al.,

2010). We show below that connectivity can be guaranteed despite this one-shot

solution.

To implement the sequential procedure, each agent needs to know its index i as

well as the indices of its neighbors. One way to ensure this is an initial, centralized

assignment of indices to the agents. Agent i waits until the neighbors j with j < i have

solved their local optimal control problems and found their predicted state sequences.

These agents communicate their predictions to i. For j > i, agent i constructs other

predictions as described later. Agent i optimizes its own behavior while coordinating

with the predictions. It then sends its own, newly computed prediction to neighbors

j > i.

Next, we formalize the approach. Denote quantities that depend on the time

step by superscript k. Then, the planner of some agent i returns at step k an action

sequence denoted uuuk
i = (uk

i,0,u
k
i,1, ...,u

k
i,d−1), which leads to predicted state sequence

xxxk
i = (xk

i,0,x
k
i,1, . . . ,x

k
i,d). Here xk

i,0 = xi,k is the state measurement, and the other states

are predictions. Sequences found at different time steps may have different actions

at corresponding positions (e.g., uk
i,1 may be different from uk+1

i,0 even though they

correspond to the same time index, k +1 = (k +1)+0).

Consider now a specific agent i. At every step k, it receives the states x j,k of its

neighbors j ∈Ni,k. For neighbors j ∈Ni,k, j < i, it directly receives their prediction

at k and uses this as an estimation of their future behavior: x̂xx
i,k
j = (x̂i,k

j,0, x̂
i,k
j,1, . . .) =

xxxk
j. For j ∈ Ni,k, j > i, updated predictions are not available, instead a different

prediction x̂xx
i,k
j is formed in a way that we specify later. We add i to the superscript to

highlight that the predictions are from the point of view of agent i.

When OPD (Algorithm 2.3) is called, we internally relabel time k to 0, so that

indices/depths d in Section 2.3 are relative to k. The local optimal control problem

of agent i is defined using the reward function:

ρk
i,d(uuui,d) = (1−Λ)∆k

i,d(uuui,d)+ΛΓk
i,d(uuui,d) (6.12)

where ρk
i,d : Ud → [0,1] gives the reward after d steps, ∆k

i,d : Ud
i → [0,1] rewards the

alignment between agreement states, and Γk
i,d : Ud

i → [0,1] rewards the preservation

6.2. OP FOR FLOCKING 115

of neighbor connections, with Λ ∈ (0,1) weighing the relative importance of these

terms. The following value function that must be maximized is therefore:

vk
i (uuui,∞) =

∞

∑
d=0

γdρk
i,d+1(uuud+1) (6.13)

and we denote by v∗ki the maximal value. So the rewards are time-varying, whereas

OPD and its analysis were originally developed for time-invariant reward functions

(Hren and Munos, 2008; Munos, 2014), see (2.4). However, this fact is not used in

the development and analysis of OPD, which therefore entirely carries over to the

time-varying case explained here.

Typically, Λ≥ 1−Λ so that connectivity is given priority. Both ∆ and Γ may use

the predictions x̂xx
i,k
j . Note that d may exceed the length of the available predictions;

when that happens the predictions are heuristically kept constant at the last value

available.

In the implementation, if the agents have their neighbors’ models, they could also

exchange predicted action sequences instead of states. Since actions are discrete and

states usually continuous, this saves some bandwidth at the cost of extra computation

to resimulate the neighbor’s transitions up to the prediction length. In any case, it

should be noted that agents do not optimize over the actions of their neighbors, so

complexity does not directly scale with the number of neighbors.

So far, we have deliberately left open the specific form of the rewards and pre-

dictions for neighbors j > i. Next, we instantiate them in a theoretical algorithm

for which we guarantee the preservation of the interconnection topology and certain

computational properties. However, this theoretical variant has shortcomings, so we

will additionally present a different instantiation which is more suitable in practice

and which we later show works well in experiments.

A theoretical algorithm with guaranteed topology preservation. Our aim at this

point is to exploit Assumption 6.5 to derive an algorithm that preserves the commu-

nication connections. We first develop the flocking protocol for each agent, shown

as Algorithm 6.2. Our analysis proceeds by showing that, if sequences preserving

the connections exist at a given step, the rewards can be designed to ensure that the

algorithm will indeed find one such sequence (Lemma 6.3). This property is then

used to prove topology preservation in closed loop, in Theorem 6.4. Finally, Theo-

rem 6.5 shows an interesting computational property of the algorithm: under certain

conditions the extra connectivity reward does not increase the complexity from the

case where only agreement would be required.

Define a prediction for agents j > i held constant to the latest exchanged state,

x̂xx
i,k
j = (x j,k,x j,k, . . .). Then, the connectivity reward for agent i is an indicator function

that becomes 0 only if agent i breaks connectivity with some neighbor(s) after K

116 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

steps:

Γk
i,d(uuui,d) =






0 if d = K and

∃ j ∈Ni,k,
∥∥∥x̂

i,k,c
j,d − x

k,c
i,d

∥∥∥ > R

1 otherwise

(6.14)

The agreement reward is left general, but to fix ideas, it could be for instance:

∆k
i,d(uuui,d) = 1− 1

|Ni,k| ∑
j∈Ni,k

min{
∥∥∥x̂

i,k,a
j,d − x

k,a
i,d

∥∥∥ ,1} (6.15)

where the distance measure ‖·‖ (which may be a norm or more general) is properly

weighted to be sensitive to the relevant regions of xa. Then, the agents always apply

in open loop the first K actions from their computed sequences, after which they close

the loop, measure the state, and repeat the procedure, see Algorithm 6.2.

Algorithm 6.2 Optimistic-planning flocking at agent i – theoretical variant.

1: set initial prediction xxx−1
i to an empty sequence

2: for t = 0,1,2, . . . do

3: current step is k← tK

4: exchange state at k with all neighbors j ∈Ni,k

5: send xxxk−1
i to j < i

6: wait to receive new predictions x̂xx
i,k
j from all j < i

7: form predictions x̂xx
i,k
j for j > i

8: run OPD with (6.12) and (6.14), obtaining uuuk
i and xxxk

i

9: send xxxk
i to j > i

10: execute K actions uk
i,0, . . . ,u

k
i,K−1 in open loop

11: end for

The reader may wonder why we do not simply redefine the optimal control prob-

lem in terms of the multistep dynamics f̃i. The answer is that this would introduce

exponential complexity in K: instead of Mi actions, we would have MK
i , and this

would also be the number of children created with each node expansion in OPD.

In contrast, applying OPD directly to the 1-step problem leads to significantly de-

creased computation – in some cases no more than solving a 1-step problem without

connectivity constraints, as shown in Theorem 6.5 below.

Moving on to the analysis now, we first show that when it is possible, each agent

preserves connectivity with respect to the predicted states of its neighbors.

Lemma 6.3 Let Assumption 6.4 hold. Take Λ≥ 1/(1−γ)+ε
1/(1−γ)+γK−1 for some ε ∈ (0,γK−1).

Assume that for any agent i, there exists a sequence uuui,K that preserves connectivity

with the neighbors at step K, i.e. Γk
i,K(uuui,K) = 1. Then, given a sufficiently large

budget n, the solution returned by OPD contains at least K actions and does indeed

preserve connectivity.

6.2. OP FOR FLOCKING 117

Proof: The value of a solution that preserves connectivity at step K is at least v1 =
Λ

1−γ , while for a solution that does not it is at most v2 = 1
1−γ −ΛγK−1, since the Λ

reward is not received at step K. We have:

v1− v2 ≥
Λ

1− γ
− 1

1− γ
+ΛγK−1 ≥ ε

obtained by replacing the value of Λ. Therefore, the optimal value satisfies v∗ ≥ v1,

and as soon as the OPD reaches depth d +1 for which γd

1−γ < ε , due to Theorem 2.2(i)

it will return a solution that is closer than ε to v∗ and which therefore preserves con-

nectivity. For sufficiently large n, depth max{d,K}+ 1 is reached which guarantees

both that the precision is ensured and that the length of the solution at least K. The

proof is complete. �

Putting the local guarantees together, we have topology preservation for the entire

system, as follows.

Theorem 6.4 Take Λ and n as in Lemma 6.3, then under Assumptions 6.4–6.5 and if

the graph is initially connected, Algorithm 6.2 preserves the connections at any step

k = tK.

Proof: The intuition is very simple: each agent i will move so as to preserve con-

nectivity with the previous state of any neighbor j > i, and then in turn j will move

while staying connected with the updated state of i, which is what is required. How-

ever, since Assumption 6.5 requires connectivity to hold globally for all neighbors,

the formal proof is somewhat technical.

To make it easier to understand, define relation R(i, j1, . . . , jNi
), where indices jl

are all the neighbors Ni,k at k sorted in ascending order, and Ni = |Ni,k|. This relation

means that i is connected with all jl , i.e.
∥∥∥xc

i,k− xc
jl ,k

∥∥∥ ≤ R, for l = 1, . . . ,Ni. When

some agents have superscript ‘+’ in the relation, this means that the relation holds

with their updated states after K steps.

Assume the agents are connected via edges Ek at step k, a multiple of K. We will

show by induction that R(i+, j+1 , . . . , j+
l(i), jl(i)+1, jNi

) where l(i) is the last neigh-

bor smaller than i. For the base case i = 1, we have R(1, j1, . . . , jN1
) by the fact

that (1, jl) ∈ Ek. Hence the conditions of Assumption 6.5 are satisfied and there

exists some uuu1,K that preserves connectivity with the previous states of all neigh-

bors. By Lemma 6.3 the algorithm finds and applies such a sequence, which implies

R(1+, j1, . . . , jN1
). For the general case, we have that R(i, j+1 , . . . , j+

l(i), jl(i)+1, . . . , jNi
)

by simply looking at earlier cases stated where the first argument of relation R is

m = j1, . . . , jl(i) (they are earlier cases since jl(i) < i). As above, this means the condi-

tions of Assumption 6.5 and therefore Lemma 6.3 are satisfied for the updated states

of j+1 , . . . , j+
l(i), and therefore that R(i+, j+1 , . . . , j+

l(i), jl(i)+1, . . . , jNi
) which completes

the induction.

118 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

Take any (i, j) ∈ Ek for which i > j, which is sufficient since the graph is undi-

rected. Then, j ≤ jl(i) and the relation R(i+, j+1 , . . . , j+
l(i), jl(i)+1, . . . , jNi

) (already

shown) implies (i, j) ∈ Ek+K . So all the links are preserved, and since the derivation

holds for arbitrary k, they are preserved in closed loop. �

Theorem 6.4 guarantees that the topology is preserved when the initial agent

states correspond to a connected network. However, this result does not concern

the stability of the agreement. In practice, we solve the agreement problem by choos-

ing appropriately the rewards ∆, such as in (6.15), so that by maximizing the dis-

counted returns the agents achieve agreement. In Section 6.2.3, we illustrate that this

approach performs well in experiments. Note that Theorem 6.4 holds whether the

graph is defined with (6.10) or (6.11).

It is also interesting to study the following result about the performance of OPD.

Consider some agent i at step k. Since we need to look into the details of OPD

for a single agent i at fixed step k, for readability we suppress these indices in the

sequel, so that e.g. we write ρd(uuud) = (1−Λ)∆d(uuud)+ΛΓd(uuud) for reward function

(6.12). We define two optimal control problems derived from this reward function.

The first removes the connectivity constraint, so that ρd,u(uuud) = (1−Λ)∆d(uuud)+Λ.

The second is the agreement (only) problem with ρd,a(uuud) = ∆d(uuud), i.e. for Λ = 0.

Denote v∗u = supuuu∞
vu(uuu∞) and v∗a = supuuu∞

va(uuu∞) where vu and va are the discounted

returns under the new reward functions.

We will compare performance in the original problem with that in the agreement

problem.

Theorem 6.5 Assume v∗ = v∗u. For OPD applied to the original problem, the near-

optimality bounds of Theorem 2.2(ii) hold with the branching factor κa of the agree-

ment problem.

Proof: We start with a slight modification to the analysis of OPD. For any problem,

define the set:

T̄ = {uuud |d ≥ 0,v∗ ≤ b(uuud)}

Note that T̄ ⊆T ∗ of (2.5), since:

v(uuud)+
γd

1− γ
≥ l(uuud)+

γd

1− γ
= b(uuud)

and so the condition in T̄ implies the one in (2.5). Further, OPD only expands

nodes in T̄ , since in any tree considered, there always exists some sequence uuu with

b(uuu) ≥ v∗ (e.g., the initial subsequence of an optimal sequence), and OPD always

expands a sequence that maximizes b.

Denote now T̄u and T̄a the corresponding sets for the unconstrained and agree-

ment cases. Take a sequence uuud ∈ T̄ , the set in the original problem. By assumption

v∗ = v∗u, and by construction b(uuud)≤ bu(uuud), so v∗ ≤ b(uuud) implies v∗u ≤ bu(uuud), and

6.2. OP FOR FLOCKING 119

T̄ ⊆ T̄u. Next, v∗u = (1−Λ)v∗a + Λ
1−γ and bu(uuud) = lu(uuud)+ γd

1−γ = (1−Λ)la(uuud)+
γd

1−γ = (1−Λ)ba(uuud)+ Λγd

1−γ . Replacing these in condition v∗u ≤ bu(uuud), we obtain:

(1−Λ)v∗a +Λ
1− γd

1− γ
≤ (1−Λ)ba(uuud)

which implies v∗a ≤ ba(uuud), and so T̄u ⊆ T̄a.

Therefore, finally:

T̄ ⊆ T̄u ⊆ T̄a ⊆T
∗

a

Given budget n, the smallest possible depth reached by OPD in the original problem

is that obtained by exploring the set T̄ uniformly, in the order of depth. Due to the

inclusion chain above, this depth is at least as large as that obtained by exploring T ∗
a

uniformly. The latter depth is Ω(logn/ logκa) if κa > 1, or else Ω(n). The bounds

follow as in the proof of Theorem 2.2.

�

Theorem 6.5 can be interpreted as follows. If the unconstrained optimal solution

would have naturally satisfied connectivity (which is not unreasonable), adding the

constraint does not harm the performance of the algorithm, so that flocking is as easy

as solving only the agreement problem. This is a nice property to have.

A practical algorithm. Algorithm 6.2 has an important shortcoming in practice: it

requires knowing a value of K for which Assumption 6.5 is satisfied. Further, keep-

ing predictions constant for j > i is safe, but conservative, since better predictions

are usually available: those made by the neighbors at previous steps, which may be

expected to remain valid, e.g. when a steady state is being approached.

Next, we present a more practical variant that does not have these issues. It

works in increments of 1 step (rather than K), and at step k, it forms the predictions

for neighbors j > i as follows: x̂xx
i,k
j = (x j,k,x

k−1
j,2 , ...,xk−1

j,d); Thus for the present step

x j,k is used since it was already measured and exchanged, while for future steps the

previously communicated trajectories are used.

Since K is unknown, the agent will try preserving connectivity at every step, with

as many neighbors as possible:

Γk
i,d(uuui,d) =

1

|Ni,k| ∑
j∈Ni,k

{
1 if

∥∥∥x
k,c
i,d − x̂

i,c
j,d

∥∥∥≤ R

0 otherwise
(6.16)

For the links, definition (6.10) is used, since old neighbors may be lost but the graph

may still remain connected due to new neighbors. So the aim here is only connec-

tivity, weaker than topology preservation. For the agreement component, (6.15) is

employed. Algorithm 6.3 summarizes the resulting protocol for generic agent i.

120 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

Algorithm 6.3 Optimistic-planning flocking at agent i – practical variant.

1: set initial prediction xxx−1
i to an empty sequence

2: for step k = 0,1,2, . . . do

3: exchange state at k with all neighbors j ∈Ni,k

4: send xxxk−1
i to j < i, receive xxxk−1

j from j > i

5: wait to receive new predictions x̂xx
i,k
j from all j < i

6: form predictions x̂xx
i,k
j for j > i

7: run OPD with (6.12) and (6.16), obtaining uuuk
i and xxxk

i

8: send xxxk
i to j > i

9: execute action uk
i,0

10: end for

The main advantage of our approach, for both Algorithm 6.2 and Algorithm 6.3,

is the generality of the agent dynamics it can address. This generality comes at the

cost of communicating sequences of states and of a relatively computationally in-

volved algorithm. Recall that the time complexity of each individual OPD applica-

tion is between O(n logn) and O(n2) depending on κ . The overall complexity for

all agents, if they run OPD in parallel as soon as the necessary neighbor predictions

become available, is larger by a factor equal to the length of the longest path from

any i to any j > i. Depending on the current graph this length may be significantly

smaller than the number of agents m.

6.2.3 Experimental results

OP flocking is evaluated in two problems with nonlinear agent dynamics. The first

problem concerns flocking for a simple type of nonholonomic agents, where we also

study the influence of the tuning parameters of the method. In the second experiment,

full-state consensus for two-link robot arms is sought. This experiment illustrates that

the algorithm can on the one hand handle rather complicated agent dynamics, and on

the other hand that it also works for standard consensus on a fixed graph, even though

our analytical focus was placed on the flocking problem.

While both types of agents have continuous-time underlying dynamics, they are

controlled in discrete time, as is commonly done in practical computer-controlled

systems. The discrete-time dynamics are then the result of integrating the continuous-

time dynamics with zero-order-hold inputs. Then, in order for the analysis to hold

for Algorithm 6.2, Assumption 6.5 must be satisfied by these discretized dynamics.

Note that in practice we apply Algorithm 6.3, and the numerical integration technique

introduces model errors that our analysis does not handle.

6.2. OP FOR FLOCKING 121

Flocking of nonholonomic agents. Consider homogeneous agents that evolve on

a plane and have the state vector x = [X ,Y,v,θ] with X ,Y the position on the plane

[m], v the linear velocity [m/s], and θ the orientation [rad]. The control inputs are the

rate of change a of the velocity and ω of the orientation. The discrete-time dynamics

are:
Xk+1 = Xk +Tsvk cosθk, Yk+1 = Yk +Tsvk sinθk

vk+1 = vk +Tsak, θk+1 = θk +Tsωk

where Euler discretization with sampling time Ts was employed. The aim is to agree

on xa = [v,θ]⊤, which represent the velocity vector of the agent, while maintaining

connectivity on the plane by keeping the distances between the connectivity states

xc = [X ,Y]⊤ below the communication range R.

The specific multiagent system we experiment with consists of 9 agents initially

arranged on a grid with diverging initial velocities, see Figure 6.4, top. Their initial

communication graph has some redundant links. In the reward function, Λ = 0.5 so

that agreement and connectivity rewards have the same weight, and the agreement re-

ward is (6.15) with the distance measure being a 2-norm weighted so that it saturates

to 1 at a distance 5 between the agreement states. The range is R = 5. The sampling

time is Ts = 0.25s.

Figure 6.4 shows that the OP method preserves connectivity while achieving

flocking, up to errors due mainly to the discretized actions. The discretized action

set was {−0.5,0,0.5}m/s2×{−π/3,0,π/3} rad/s, and the planning budget of each

agent is n = 300 node expansions. For all the experiments, the discount factor γ is

set to 0.95, so that long-term rewards are considered with significant weight.

Next, we study the influence of the budget n and a cutoff length D for the com-

municated state predictions, a crucial parameter for the communication requirements

of the algorithm. With a finite D, even if OPD provides a longer sequences of pre-

dicted states, only the first D values are communicated to the neighbors, and they set

subsequent state predictions constant at the last known values. To characterize per-

formance in each experiment with a single number, a mean inter-agent disagreement

is computed at every step: δk = 2
m(m−1) ∑i< j

∥∥∥xa
i,k− xa

j,k

∥∥∥, and the average of δk across

all steps in the trajectory is reported.

The following budgets are used: n = 25,50,75,100,200, . . . ,600, and the length

of the predictions is not limited. As shown in Figure 6.5, left and as expected from the

theoretical guarantees of OPD, disagreement largely decreases with n although the

decrease is not monotonic. The influence of the prediction length is studied for fixed

n = 300, by taking D = 0,1,3,4 and then allowing full predictions.1 Figure 6.5, right

indicates that performance is not monotonic in D, and medium-length predictions

are better in this experiment. While it is expected that too long predictions will not

increase performance since they will rarely be actually be followed, the good results

1In effect, predictions with this budget do not exceed length 4 so the last two results will be identical.

122 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

−10 0 10 20

−4

−2

0

2

4

6

8

p
1

p
2

0 5 10 15
0

0.5

1

1.5

k*T
s
 [s]

v

0 5 10 15
−4

−2

0

2

4

k*T
s
 [s]

θ

Figure 6.4: Results for nonholonomic agents. Top: initial configuration, with the

agents shown as colored dots, their initial velocities and orientations symbolized by

the thick lines, and their initial graph with thin gray lines. Middle: trajectories on

the plane, also showing the final configuration of the agents. Bottom: evolution of

agreement variables.

0 100 200 300 400 500 600
0.22

0.24

0.26

0.28

0.3

budget

d
is

a
g
re

e
m

e
n
t

0 1 2 3 4 Inf
0.2

0.3

0.4

0.5

0.6

0.7

length of communicated predictions

d
is

a
g

re
e

m
e

n
t

Figure 6.5: Left: Influence of the expansion budget. Right: Influence of the maximal

prediction length (“Inf” means it is not limited).

6.2. OP FOR FLOCKING 123

for communicating just the current state without any prediction are more surprising,

and need to be studied further.

Consensus of robotic arms. Consider next the full-state consensus of two-link

robotic arms operating in a horizontal plane. Each individual arm is the same as

in Section 3.1.3. Recall that the state variables for each arm agent are the angles

and angular velocities of the two links, xi = [θi,1, θ̇i,1,θi,2, θ̇i,2], and the actions are

the torques of the motors actuating the two links ui = [τi,1,τi,2]. To attain full-state

consensus, the agreement variables comprise the entire state, xa
i = xi, without a con-

nectivity state or reward component. Applications of this type of consensus problem

include decentralized manipulation and teleoperation.

Three robots are connected on a fixed undirected communication graph in which

robot 1 communicates with both 2 and 3, but 2 and 3 are not connected. The ini-

tial angular positions are taken random with zero initial velocities, see Figure 6.6.

The distance measure is the squared Euclidean distance, weighted so that the an-

gular positions are given priority. The discretized actions are {−1.5,0,1.5}Nm×
{−1,0,1} Nm, and the budget of each agent is n = 400. Consensus is achieved with-

out problems.

124 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

0 2 4 6 8 10
−1

0

1

2

3

t [s]

θ
1

robot 1

robot 2

robot 3

0 2 4 6 8 10
−4

−2

0

2

t [s]

θ
’ 1

0 2 4 6 8 10
−4

−2

0

2

4

t [s]

θ
2

0 2 4 6 8 10
−4

−2

0

2

4

t [s]

θ
’ 2

Figure 6.6: Full-state OP consensus of multiple robotic arms: angles and angular

velocities for the two links, overimposed for all the robots. Angles wrap around in

the interval [−π,π).

6.3. SUMMARY AND CONCLUSIONS 125

6.3 Summary and conclusions

In this chapter we considered consensus problems in cooperative multiagent systems,

and we focused on the challenge of dealing in a generic way with nonlinear agent dy-

namics, represented as a black box with unknown mathematical form. We devised

two approaches. The first designs a reference behavior with a classical consensus

method, and uses OO to find controls that closely follow the reference behavior. The

first advantage of OO is that it only needs to sample the black-box model of the

agent, and so achieves our goal of handling unknown nonlinearities. Secondly, a

tight relationship is guaranteed between computation invested and closeness to the

reference behavior. Our main results exploited these properties to prove practical

consensus. An analysis of representative examples clarified the meaning of the as-

sumptions, showed that in certain problems the optimization is easy to solve, and was

complemented by simulations.

For the approach, we considered the generalized flocking variant of consensus,

where the agents must drive a subset of their state variables to common values, while

communication is constrained by a proximity relationship in terms of another subset

of variables. Each agent uses OPD to find an action sequence at each step. By

defining the rewards to be optimized in a well-chosen way, the preservation of the

interconnection topology was guaranteed, under a controllability assumption. We

also gave a practical variant of the algorithm that does not require to know the details

of this assumption, and showed that it works well in experiments on nonlinear agents.

126 CHAPTER 6. OO AND OP FOR MULTIAGENT CONSENSUS

Chapter 7

Optimistic planning for networked

control systems

So far, in Chapter 6, we have addressed interconnected multiagent systems. In what

follows, we consider another type of networked structure, where there is a single

system but the controller is implemented over a network in order to reduce installation

costs and to facilitate maintenance. This leads to a networked control system (NCS).

The control law therefore has to share the communication bandwidth with other tasks.

This constraint cannot be ignored in general as it may have a serious impact on the

system performance. Two main NCS approaches are distinguished based on whether

the transmissions are defined by a clock, see e.g. (Branicky et al., 2002; Hespanha

et al., 2007), or are triggered depending on the state of the plant, in which case we talk

of event- or self-triggered control, see e.g. (Tabuada, 2007; Heemels et al., 2009; Anta

and Tabuada, 2010; Wang and Lemmon, 2009; Henningsson et al., 2008). However,

most of these works focus on stabilization or estimation problems, while few address

optimal control, and then mostly for linear systems, e.g. (Molin and Hirche, 2009;

Blind and Allgöwer, 2011; Rabi et al., 2008; Antunes et al., 2012; Berglind et al.,

2012; Henriksson et al., 2012). One interesting exception is (Eqtami et al., 2011),

where model-predictive control is used to address nonlinear systems with quadratic

costs, focusing on stability. Thus the general problem of optimal control in nonlinear

NCS remains largely open.

In this chapter, we propose to use OPD for the near-optimal control of nonlinear

NCS with general costs. We focus on the challenge of reducing the number of trans-

missions over the network, without considering other effects such as delays, packet

drop-outs, etc. Crucially, from the analysis of OPD in Section 2.3, (Hren and Munos,

2008) it turns out that it returns a long sequence of actions that has near-optimal per-

formance. Thus, rather than sending only the first action in the sequence and then

rerunning the algorithm, as usually done, we choose to send a longer subsequence.

This simple idea allows us to reduce the need for communication (and also computa-

127

128 CHAPTER 7. OP FOR NETWORKED CONTROL SYSTEMS

tion) while guaranteeing near-optimality.

We propose two strategies. In the first, communication between the plant and the

controller is set to occur at a fixed period which is freely selected. We then investigate

the resulting near-optimality and the induced computational complexity. The second

strategy enforces a fixed computation budget at every OPD execution, and within this

budget generates a sequence of actions from the last measured plant state. As a re-

sult, the communication interval adapts to the state, leading to a self-triggered policy,

e.g. (Velasco et al., 2003; Anta and Tabuada, 2010; Wang and Lemmon, 2009). We

then investigate how sequence length and near-optimality vary with the computation

budget. Both strategies allow sending only an initial part of the sequences found,

spanning a spectrum from the original method which only applies the first action, to

applying the complete sequences. Interestingly, shorter subsequences may do better

in some problems, but worse in others, and we provide results and insight about this

phenomenon.

7.1 Problem statement

We consider the deterministic optimal control problem of Section 2.3, with system

dynamics xk+1 = f (xk,uk), rewards rk+1 = ρ(xk,uk), and the objective of minimizing

the discounted return V uuu∞(x) = ∑∞
k=0 γkrk+1, see (2.4).

We require the standing Assumption 2.1 of reward boundedness, and in addition,

to apply OPD, discrete or discretized actions per Assumption 2.4. It is important to

note that discretized actions may actually be preferable due to their benefits in NCS:

the size of communication packets can be reduced by encoding the discrete actions

by their index.

We focus on a networked-control setting, in which actuation and state signals are

exchanged over a network that must be efficiently utilized. To this end, the controller

should only communicate with the plant when needed. OPD is well equipped to han-

dle this case, since it guarantees that it will return long and near-optimal sequences

of actions.

We envision the following setup, see Figure 7.1. The sequence of transmission

instants is denoted by ki, i ∈ {0,1,2, . . .}, and it will either be fixed by the user or

defined by the controller itself. At each ki, the controller receives the state’s measure-

ment and generates a sequence of control actions which is sent as a single packet to

the actuators’ buffer, like in (Bemporad, 1998; Chaillet and Bicchi, 2008; Quevedo

et al., 2011; Quevedo and Nesic, 2012; Henriksson et al., 2012). The actuators then

apply the k′-th component of the sequence to the plant at step ki + k′, until the full

sequence has been used. Afterwards, the new state’s measurement is sent to the con-

troller and the procedure is repeated. The number of transmissions is reduced, since

the channel is only used at intervals equal to the sequence lengths.

7.2. ALGORITHMS AND ANALYSIS 129

network

System

OP algorithm

Buffer

Figure 7.1: NCS architecture in the deterministic case.

7.2 Algorithms and analysis

Algorithm 2.3 and Theorem 2.2 suggest two ways in which OPD could be exploited

for NCS. The first possibility is to impose a desired sequence length (planning depth)

d at every controller execution step, and then send to the plant either the full sequence

or an initial subsequence thereof. Denoting the length of the sent subsequence by

d′ ≤ d, this means the communication between the controller and the plant is set to

occur with a period d′. Applying OPD in this way is novel. Since length d and the

controller execution interval d′ ≤ d are freely selected, this first strategy is called

Clock-triggered OP (COP); it is summarized in Algorithm 7.1.

Algorithm 7.1 Clock-triggered optimistic planning (COP)

Input: initial state x0, target depth d, subsequence length d′

1: k← 0

2: loop

3: measure current state xk

4: apply OPD(xk,d), obtaining a sequence uuud

5: send initial subsequence uuud′ to plant

6: k← k +d′, wait d′ steps

7: end loop

The second possibility is to impose the computation budget n, like in the classical

application of OPD, and let the algorithm find the longest sequence it can within this

budget. Then, different from classical OPD which sends just one action, we send

again either the whole sequence or a subsequence. The returned sequence length

depends in addition to n also on the current state, through the planning complexity

as expressed by branching factor κ(x). Therefore, the algorithm is self-triggered and

we call it Self-Triggered OP (STOP); it is summarized as Algorithm 7.2. To allow

sending subsequences, STOP is parameterized by the fraction α ∈ (0,1], so that if a

sequence of length d is returned by OPD, only the first ⌈αd⌉ actions are actually sent

and applied, where ⌈·⌉ denotes the ceiling operator.

We now proceed with the analysis of the two algorithms. An algorithm is called

ε-optimal if it applies in closed loop a sequence uuu∞ satisfying V ∗(x0)−V uuu∞(x0)≤ ε .

130 CHAPTER 7. OP FOR NETWORKED CONTROL SYSTEMS

Algorithm 7.2 Self-triggered optimistic planning (STOP)

Input: initial state x0, budget n, subsequence fraction α

1: k← 0

2: loop

3: measure current state xk

4: apply OPD(xk,n), obtaining a sequence uuud(x)

5: send initial subsequence uuu⌈αd(x)⌉ to plant

6: k← k + ⌈αd(x)⌉, wait ⌈αd(x)⌉ steps

7: end loop

This property extends the ε-optimality of a single, finite sequence uuud , which would

be V ∗(x0)− vx0
(uuud)≤ ε . Consider first COP.

Theorem 7.1 For any d and d′ ≤ d, the following hold. (a) COP is
γd

1−γ -optimal. (b)

For large d, at every state x where it is called, COP requires: • n(x) = O(κ(x)d) ex-

pansions if κ(x) > 1; • n(x) = O(d) expansions if κ(x) = 1, with κ(x) the branching

factor of Section 2.3.

Proof: The second part of the theorem is a consequence of Theorem 2.2(ii). To

prove part (a), denote by uuu0 the sequence returned by OPD when applied at x0, and

recall that ε(x0) = V ∗(x0)− lx0
(uuu0). If the full sequence is applied, then no matter

what actions are taken afterwards at least value lx0
(uuu0) is obtained, so COP is ε(x0)-

optimal.

Now, consider applying a subsequence uuu′0 strictly shorter than uuu0, and then reex-

ecuting OPD in the resulting state x1 to obtain uuu1, see Figure 7.2. Denote by uuu′′0 the

leftover subsequence from uuu0. For arbitrary sequences uuu and ũuu, let (uuu, ũuu) denote their

concatenation.

T0

T1

u
0
’ u

0 u
N

. . .x
1 x

2

x
N

u
1
’

u
1

u
N-1
’

u
N-1

Figure 7.2: Using OPD with subsequences. Different from Figure 2.3, the trees are

now oriented horizontally.

When applied from x1, OPD builds the tree T1 by expanding nodes in the exactly

the same order as it would have expanded, when applied from x0, nodes in the subtree

of T0 having x1 at root. That is, for any sequence ũuu1 in T1, the following b-value

relationship holds by definition: bx0
(uuu′0, ũuu1) = lx0

(uuu′0)+ γd1bx1(ũuu1), where d1 is the

7.2. ALGORITHMS AND ANALYSIS 131

depth of x1 in T0. So, maximizing bx1(ũuu1) is the same as maximizing bx0
(uuu′0, ũuu1)

with respect to ũuu1. Because OPD is applied with the same setting in x1 as in x0, it

will expand more nodes and so uuu′′0 is inside T1. Since uuu1 maximizes lx1 on T1, we

have lx1(uuu1)≥ lx1(uuu′′0), which means the composite sequence satisfies: lx0
(uuu′0,uuu1) =

lx0
(uuu′0)+ γd1 lx1(uuu1)≥ lx0

(uuu′0)+ γd1 lx1(uuu′′0) = lx0
(uuu0) where d1 is the depth of x1.

Continuing in a similar fashion, for any N, applying N − 1 shorter sequences

followed by the full Nth sequence achieves l(uuu′0,uuu′1, . . . ,uuu′N−1,uuuN) ≥ lx0
(uuu0), see

again Figure 7.2. Thus the same is true of the limit as N → ∞, and since this

limit is the value V uuu∞(x0) of the overall closed-loop sequence, we have obtained

V ∗(x0)−V uuu∞(x0) ≤ V ∗(x0)− lx0
(uuu0) ≤ ε(x0). To obtain the final result, notice that

by Theorem 2.2(i), ε(x0)≤ γd

1−γ . �

Thus, the quality of the solution grows with the imposed sequence length d, and

the computation requirements to reach this length are bounded and characterized us-

ing κ(x). Specifically, computation grows exponentially in d, with base κ(x) – unless

κ(x) = 1, in which case it grows linearly in d. Next, we move on to STOP.

Theorem 7.2 Take any large budget n and any α ∈ (0,1]. (a) The near-optimality

of STOP is: • O(n
− log1/γ

logκ(x0)) if κ(x0) > 1, and • O(γcn) if κ(x0) = 1. (b) At every

state x where it is called, STOP produces a sequence of length: • d(x) = Ω(logn

logκ(x))

if κ(x) > 1, and • d(x) = Ω(n) if κ(x) = 1. �

Proof: It directly follows by reapplying the proof of Theorem 7.1(b) that STOP is

ε(x0)-optimal, and using the expressions of ε(x0) from Theorem 2.2(iii) completes

the first part. The second part follows directly from Theorem 2.2(iii). �

The performance guarantee of STOP depends only on the planning difficulty at

the initial state x0: it is a negative power of n when κ(x0) > 1, and exponential

(better) in n when it is κ(x0) = 1. The sequence length grows fast, in a way that

is characterized using κ(x), and which basically ‘inverts’ the relationship between

computation and length in COP.

It must be emphasized that the analysis is performed under the assumption that

the model is correct. This is the main reason for which the subsequence length (rep-

resented by d′ in COP and α in STOP) does not affect the near-optimality guarantee:

there is no loss, whether the loop is closed sooner or later. Also, the full initial se-

quence could be applied and followed by arbitrary actions, while still guaranteeing
γd

1−γ -optimality. No predictive algorithm can do better in general without increasing

the horizon, because the rewards are not assumed to be smooth so they may change

unfavorably beyond the horizon explored at the first step. Of course, in practice

uncertainty is always present, as model errors or disturbances, which means the se-

quences cannot be too long and the loop must be closed fairly often.

Even when the model is correct, some nontrivial relations arise between shorter

and longer sequences: applying shorter sequences – closing the loop more often –

132 CHAPTER 7. OP FOR NETWORKED CONTROL SYSTEMS

may achieve better or worse performance, depending on the problem. The following

result characterizes this behavior, in a general way that applies to both COP and

STOP.

Theorem 7.3 Let x ∈ X and denote by uuud the sequence returned by OPD at x. Let

uuud′ be an initial subsequence of uuud and uuud1
be obtained by replanning after uuu′d (see

Figure 7.3). Define similarly uuud′′ and uuud2
with d′′ > d′. Then:

vx(uuud′ ,uuud1
)≥ vx(uuud′′ ,uuud2

)− γd′+d1

1− γ

Furthermore, if the budget or target depth of OPD are held constant, then the bound

is tight in a worst-case sense. �

ud”

ud1

ud’

ud2

x
1

x’

x

Figure 7.3: Shorter versus longer subsequences.

Proof: Denote by x′ and x′′ the states reached by uuu′d and uuu′′d , respectively. The in-

equality is shown as follows:

vx(uuud′ ,uuud1
) = lx(uuud′)+ γd′vx′(uuud1

) = lx(uuud′)+ γd′V ∗(x′)− γd′ [V ∗(x′)− vx′(uuud1
)]

≥ vx(uuud′)−
γd′+d1

1− γ
≥ vx(uuud′′ ,uuud2

)− γd′+d1

1− γ

where the first step follows from the definition of the v-value, the second just adds

and subtracts an extra term, the third follows from Theorem 2.2(i) when applied at x′,
and finally the last step is true because v cannot increase if more actions are added to

the sequence.

To show tightness, a worst-case example is provided where the bound holds with

equality. Construct a problem, in the form of a tree, where all rewards are 0 except for

one subtree placed below x′′ at depth d′+d1, in which they are all 1, see Figure 7.4.

Note that due to the zero rewards until d′+ d1, up until this depth all trees will be

expanded uniformly.When OPD is applied to find ud and ud1
, it cannot discriminate

between sequences since they all have a lower bound l equal to 0, so OPD must

choose one arbitrarily. We take the arbitrary sequence ud1
so that it does not contain

x′′, leading to a value vx(uuud′ ,uuud1
) = 0.

7.2. ALGORITHMS AND ANALYSIS 133

u
d”

u
d1

u
d’

u
d2

rewards=1

rewards=0

x”

x
1

x’x

Figure 7.4: Constructing an example where the bound is tight.

When OPD is called at x′′, it starts expanding nodes uniformly, and since this

state is at depth d′′ > d′ and OPD has the same budget or target depth as at x′, it will

expand at least a node at depth d′+ d1. We simply place the subtree with rewards

of 1 under this node, thereby ensuring that the algorithm discovers it and that the

sequence (uuud′′ ,uuud2
) has the optimal value γd′+d1

1−γ . So the bound is tight. �

The theorem says that applying a shorter sequence and then replanning may lose

some performance, but not too much: the maximum loss is given by the accuracy

of the entire composite sequence (uuud′ ,uuud1
), i.e., γd′+d1

1−γ . Further, from the worst-case

example it is clear that the same loss can be incurred even if the loop is closed again

sooner than d1 or d2. The following examples provide more insight into this issue,

using COP as it allows to directly control the (sub)sequence length.

Example 7.1 Shorter sequences can perform better. Consider an MDP with state

space {1,2, . . . ,5}, two actions −1,1 (“left” and “right”), and additive dynamics

xk+1 = max(1,min(5,xk + uk)). The rewards obtained upon reaching each of the

five states are, respectively, 0.8,0.7,0.5,0.8,0, and the discount factor is 0.8, see

Figure 7.5.

1 3
0.8 0.7

4
0.5

2 5
0.8 0

Figure 7.5: A five-state MDP and two COP solutions. States are shown in circles,

and rewards in italics above them. The solution from x0 = 4 with d′ = d = 2 is shown

in gray on top of the figure, while the one for d′ = 1, d = 2 is shown in black on

the bottom. Solutions are shown as sequences of actions, where the bullets mark the

states in which planning is run, and unapplied sequence tails are shown in dashed

lines.

When applied from x0 = 4 with d = 2 and d′ = 1, COP replans in x1 = 3, which

134 CHAPTER 7. OP FOR NETWORKED CONTROL SYSTEMS

allows it to detect the larger rewards to the left. It eventually reaches state 1 and

remains there, achieving the optimal return of 3.62. However, when d′ is increased to

2, COP exploits the rewards of states 4 and 5 and cycles between these states forever,

obtaining a suboptimal return of 3.17. �

Example 7.2 Longer sequences can perform better. A similar MDP is taken but

now with state space {1,2, . . . ,7} and the rewards shown in Figure 7.6. The discount

factor is the same.

1 3
0.5 0

4
0.7

2 5
0 0.2

6 7
1 0

Figure 7.6: A seven-state MDP and two COP solutions, for d′ = d = 3 (top, gray)

and d′ = 1, d = 3 (bottom, black).

Now, when applied from x0 = 3 with d′ = d = 3, COP discovers the large reward

in state 6 and controls towards this state, cycling afterwards between 5 and 6 for a

return of 2.22. When d′ = 1 however, replanning from state 4 misleads the algo-

rithm into a shorter-horizon cycle that focuses on the reward 0.7, achieving only a

suboptimal return of 1.56. �

7.3 Experimental results

We study the behavior of COP and STOP in simulations with the linear DC motor

and the nonlinear robotic arm.

DC motor. We use the DC motor system from Section 3.1.3, with states x1 = α

the shaft angle, x2 = α̇ the angular velocity, and input (action) u the voltage. The

voltage range is increased here to [30,30] V, and the actions are discretized into the set

U = {−10,−3,0,3,10}.. The goal is to stabilize the system and the reward function

is quadratic with Qrew = diag(5,0.001), Rrew = 0.01, and the discount factor is taken

γ = 0.9. State and action saturation ensure bounded rewards, and these rewards are

then rescaled into [0,1].

We apply the two algorithms from x0 = [2π/3,π]⊤, setting d = 10 for COP and

n = 300 for STOP. Figure 7.7 shows the solutions obtained when the complete re-

turned sequences are applied, that is, when d′ = 10 and respectively α = 1. It is

interesting to see the evolution of the planning complexity along the trajectory. This

7.3. EXPERIMENTAL RESULTS 135

is shown in COP by the changing computation number n of expansions required to

reach the desired sequence lengths, where the practical effects of Theorem 7.1(b) are

seen; and in STOP by the lengths produced, illustrating Theorem 7.2(b). Complex-

ity is generally smaller in states closer to the equilibrium (fewer expansions/longer

sequences), although the evolution is not always monotonic. STOP especially re-

quires only three controller executions and transmissions, thanks to a very long last

sequence.

0 0.2 0.4 0.6 0.8 1

0

1

2

α
 [
ra

d
]

0 0.2 0.4 0.6 0.8 1
−30

−20

−10

0

α
’
[r

a
d
/s

]

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

u
 [
V

]

0 0.2 0.4 0.6 0.8 1

0.6

0.8

1

r
[−

]

t [s]

0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

n

t [s]

0 0.2 0.4 0.6 0.8 1
0

100

200

d

t [s]

Figure 7.7: Comparison between COP and STOP when applying complete se-

quences. The left graphs show the controlled trajectories, with COP in gray and

STOP in black. The right graphs show, at every controller execution instant: for

COP, the computation n spent; and for STOP: the length d of the sequences found.

The horizontal coordinates of the points in these graphs are also the transmission

times.

To investigate the effect of applying shorter sequences, we vary for COP d′ =
1,2, . . . ,10 and for STOP α = 0.1,0.2, . . . ,1; the returns obtained are shown in Fig-

ure 7.8. The suboptimality of each return obeys the upper bounds of Theorem 7.1(a)

for COP and Theorem 7.2(a) for STOP; e.g., the COP bound is 0.910/(1− 0.9) ≈
3.49. Although the loss from Theorem 7.3 is unavoidable in general, in this problem

shorter sequences are indeed better, e.g. STOP gains significantly more return when

α is below 0.5.

Robot arm. To exemplify our approach in a nonlinear problem, we apply STOP to

stabilize the two-link robot arm of Section 3.1.3. Recall that the state variables are

the angles θ and angular velocities of the two links, and the actions are the torques

of the motors actuating the links. The sampling time is Ts = 0.05. The goal of

136 CHAPTER 7. OP FOR NETWORKED CONTROL SYSTEMS

0 2 4 6 8 10
9.0665

9.067

9.0675

d’

re
tu

rn

0 0.2 0.4 0.6 0.8 1

9

9.02

9.04

9.06

α

re
tu

rn

Figure 7.8: Returns obtained by COP (left) and STOP (right) as the length of the

applied subsequence varies.

stabilizing in the zero state is modeled by a quadratic reward with weights Qrew =
diag[1,0.05,1,0.05] and Rrew = diag[0.01,0.01]. The discount factor is γ = 0.95, and

the discretized action set is {−1.5,0,1.5}×{−1,0,1}.
STOP is applied with n = 1000 and α = 0.4 from the initial state x0 = [π,0,π,0]⊤,

and the results are shown in Figure 7.9. A good performance is achieved – subject to

the limitations of the action discretization, due to which adjustments have to be made

close to the equilibrium state. Note the variation of the sequence lengths with the

complexity of the planning problem at different states: in particular, at states further

away from the equilibrium sequences are shorter due to higher complexity, whereas

at states closer to the equilibrium the complexity decreases and the sequences are

longer.

0 1 2 3 4 5

−2

0

2

θ
1
,

θ
2
 [

ra
d

]

0 1 2 3 4 5

−2

0

2

4

θ
’ 1

,
θ
’ 2

 [
ra

d
/s

]

0 1 2 3 4 5
−2

0

2

τ 1
,

τ 2
 [

N
m

]

0 1 2 3 4 5

0.2
0.4
0.6
0.8

1

r
[−

]

t [s]
0 1 2 3 4 5

0

10

20

30

t [s]

d

 Planning depth

Length of applied subsequences

Figure 7.9: Results of STOP for robot arm stabilization: trajectory (top), planning

depths and lengths of the applied subsequences (bottom).

7.4. SUMMARY AND CONCLUSIONS 137

7.4 Summary and conclusions

Two novel methods were introduced for the optimal networked control of nonlinear

deterministic systems. They both rely on properties of optimistic planning (OP) and

guarantee near-optimal performance. Clock-triggered OP repeatedly sends action

sequences of a fixed length, and bounds the computation required to find them. Self-

triggered OP works with fixed computation, and adapts the sequence length – and

thus the communication interval – to the current state, guaranteeing long sequences.

Interestingly, applying shorter subsequences instead of the full sequences may work

better or worse, depending on the problem. Examples and simulation experiments

illustrated and validated the technique.

138 CHAPTER 7. OP FOR NETWORKED CONTROL SYSTEMS

Chapter 8

Networked systems: Related

topics and outlook

8.1 Related directions

Since optimistic algorithms originate in the planning and machine learning communi-

ties, their analysis is geared towards characterizing near-optimality and computation.

However, an important concern in the control of physical systems is stability – en-

suring that the trajectories of the system state are well-behaved, e.g., that they do no

diverge. Some particular properties related to stability were addressed in the mul-

tiagent control methods of Chapter 6, by explicitly defining the reward functions so

that near-optimal trajectories exhibited these desired properties: convergence towards

consensus or the preservation of communication links. However, the general prob-

lem of stability under the near-optimal control produced by OP was not addressed.

A prerequisite step is studying the stability of the fully optimal control law under the

discounted criterion (2.1). We have undertaken this step in (P15), starting from some

global asymptotic stability properties of the solution under undiscounted returns, with

γ = 1. We then showed that this property is semiglobally and practically preserved

in the discounted case, where the adjustable parameter is the discount factor. We

then adapted these guarantees to the case of bounded rewards, which is important for

practical algorithms such as OP. Finally, we provided sufficient conditions, including

boundedness of the stage cost, under which the value function, which serves as a

Lyapunov function for the analysis, is continuous.

Another issue in applying OP to control physical systems is obeying real-time

constraints. This is challenging for OP algorithms, because their generality comes

at the cost of large computational requirements – often growing exponentially with

decreasing near-optimality. Therefore, in (P16) we introduced an extension of OP to

real-time control, which similarly to OP for networked control systems in Chapter 7

applies open-loop sequences of actions to the system. There is one important differ-

139

140 CHAPTER 8. NETWORKED SYSTEMS: RELATED TOPICS & OUTLOOK

ence: while the current sequence is applied, the next sequence is being sought from

the predicted state at the end of this current sequence. Thus this next sequence will

be ready when that state is (approximately) reached, and the overall method can work

in real-time. We provided conditions under which the algorithm is provably feasible

in real-time, and we analyzed its performance. The algorithm was successful in real

and simulated experiments, where the impact of model errors was also studied.

The following publications were discussed in this section:

(P15) R. Postoyan, L. Buşoniu, D. Nešić, J. Daafouz, “Stability of infinite-horizon

optimal control with discounted cost”, Proceedings 2014 Conference on Deci-

sion and Control (CDC-14), Los Angeles, USA, 15–17 December 2014.

(P16) T. Wensveen, L. Buşoniu, R. Babuška, “Real-time Optimistic Planning with

Action Sequences”, Proceedings 2015 Conference on Control Systems and

Computer Science (CSCS-15), Bucharest, Romania, 27–29 May 2015.

8.2 Open issues and ongoing work

An interesting direction for future work into the optimistic multiagent control meth-

ods of Chapter 6 is to extend them to other open problems in nonlinear consensus,

such as gossiping, where only one communication link can be active at a given time,

decentralized formation control of mobile robots, etc. For the specific OP flocking

method of Section 6.2, a more immediate step is to develop guarantees also on the

agreement component of the state variable, using a line of analysis similar to that of

OP consensus.

For the NCS methods of Chapter 7, the most important topic for future work is

reducing the dependence on a fully known, deterministic model. This can be done

by exploiting stochastic variants of OP in order to handle certain classes of random

disturbances. This is a direction of sustained ongoing work, and in particular we have

applied OPMDP to handle discrete random disturbances, using them e.g. to model

delays in the transmission channel that are multiples of the discrete-time sampling

period. Appropriate extensions of the near-optimality and long-sequence guarantees

of COP and STOP have been derived, and an article presenting the deterministic case

of Chapter 7 together with these new stochastic-case developments is in an advanced

stage with a top control journal.

Separately from the approaches presented here, we are investigating the applica-

tion of OP to another open problem in nonlinear control: the optimal control of the

switches in so-called switched systems, which combine continuous dynamics called

modes with discontinuous transitions among these modes. We extended the analysis

of OP to provide sequences of switches with certification (upper and lower) bounds

on the optimal and worst-case costs, and characterized the convergence rate of the gap

8.2. OPEN ISSUES AND ONGOING WORK 141

between the bounds with increasing computation. Since the controller must often en-

sure a minimum dwell time (number of steps during which the mode must be kept

constant in-between switches), we introduced a new optimistic planning variant that

can handle this case, and analyzed its convergence rate. A meaningful related prob-

lem arises when the switches are an uncontrolled disturbance, and we are looking for

the worst-case cost under any sequence of switches. All the methods and guarantees

can be easily applied to this case by essentially negating the reward function. A con-

ference version of this work has been accepted to the flagship 2015 IEEE Conference

on Decision and Control, and an extended journal article is under preparation.

Other optimistic planning variants can surely provide advantages in nonlinear

control problems, and many interesting directions can be identified in this way. For

example, continuous-action planning can be applied to networked control systems,

the limited-switch variant of OP may be used to provide guarantees on a notion of

average dwell time in switched systems, and so on.

142 BIBLIOGRAPHY

Bibliography

Anta, A. and Tabuada, P. (2010). To sample or not to sample: self-triggered con-

trol for nonlinear systems. IEEE Transactions on Automatic Control, 55(9):2030–

2042.

Antunes, D., Heemels, W., and Tabuada, P. (2012). Dynamic programming formu-

lation of periodic event-triggered control: Performance guarantees and co-design.

In IEEE Conference on Decision and Control, Hawai: U.S.A., pages 7212–7217.

Bemporad, A. (1998). Predictive control of teleoperated constrained systems with

unbounded communication delays. In Proceedings 37th Conference on Decision

and Control, pages 2133–2138, Tampa, Florida, USA.

Berglind, J. B., Gommans, T., and Heemels, W. (2012). Self-triggered MPC for con-

strained linear systems and quadratic costs. In IFAC Nonlinear Model Predictive

Control Conference, Noordwijkerhout: The Netherlands, pages 342–348.

Blind, R. and Allgöwer, F. (2011). On the optimal sending rate for networked control

systems with a shared communication medium. In CDC / ECC (IEEE Conference

on Decision and Control and European Control Conference) Orlando, U.S.A., Or-

lando: U.S.A.

Branicky, M., Phillips, S., and Zhang, W. (2002). Scheduling and feedback co-design

for networked control systems. In CDC (IEEE Conference on Decision and Con-

trol) Las Vegas, U.S.A., pages 1211–1217.

Bullo, F., Cortés, J., and Martinez, S. (2009). Distributed Control of Robotic Net-

works. A Mathematical Approach to Motion Coordination Algorithms. Princeton

University Press.

Chaillet, A. and Bicchi, A. (2008). Delay compensation in packet-switching net-

worked controlled systems. In CDC (IEEE Conference on Decision and Control),

Cancun, Mexico, pages 3620–3625.

De Persis, C. and Frasca, P. (2013). Robust self-triggered coordination with ternary

controllers. IEEE Transactions on Automatic Control, 58(12):3024–3038.

Ding, F. and Chen, T. (2005). Identification of hammerstein nonlinear armax systems.

Automatica, 41(9):1479–1489.

Dong, W. (2011). Flocking of multiple mobile robots based on backstepping. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 41(2):414–

424.

BIBLIOGRAPHY 143

Edelkamp, S. and Schrödl, S. (2012). Heuristic Search: Theory and Applications.

Morgan Kauffman.

Eqtami, A., Dimarogonas, D., and Kyriakopoulos, K. (2011). Novel event-triggered

strategies for model predictive controllers. In IEEE Conference on Decision and

Control and European Control Conference (CDC-ECC), Orlando: U.S.A., pages

3392–3397.

Fang, L., Antsaklis, P., and Tzimas, A. (2005). Asynchronous consensus protocols:

Preliminary results, simulations and open questions. In Proceedings of the Joint

44th IEEE Conference on Decision and Control, and the European Control Con-

ference, pages 2194–2199.

Ferrari-Trecate, G., Galbusera, L., Marciandi, M., and Scattolini, R. (2009). Model

predictive control schemes for consensus in multi-agent systems with single-

and double-integrator dynamics. IEEE Transactions on Automatic Control,

54(11):2560–2572.

Fiacchini, M. and Morarescu, I.-C. (2014). Convex conditions on decentralized con-

trol for graph topology preservation. IEEE Transactions on Automatic Control,

59(6):1640–1645.

Fliess, M. (1992). Reversible linear and nonlinear discrete-time dynamics. IEEE

Transactions on Automatic Control, 37(8):1144–1153.

Grizzle, J. (1993). A linear algebraic framework for the analysis of discrete-time

nonlinear systems. SIAM Journal of Control and Optimization, 31(4):1026–1044.

Heemels, W., Sandee, J., and van den Bosch, P. (2009). Analysis of event-driven

controllers for linear systems. International Journal of Control, 81(4):571–590.

Henningsson, T., Johannesson, E., and Cervin, A. (2008). Sporadic event-based con-

trol of first-order linear stochastic systems. Automatica, 44:2890–2895.

Henriksson, E., Quevedo, D., Sandberg, H., and Johansson, K. (2012). Self-triggered

model predictive control for network scheduling and control. In IFAC Symposium

on Advanced Control of Chemical Processes, Singapore, pages 432–438.

Hespanha, J., Naghshtabrizi, P., and Xu, Y. (2007). A survey of recent results in net-

worked control systems. IEEE Special Issue on Technology of Networked Control

Systems, 95(1):138–162.

Hren, J.-F. and Munos, R. (2008). Optimistic planning of deterministic systems.

In Proceedings 8th European Workshop on Reinforcement Learning (EWRL-08),

pages 151–164, Villeneuve d’Ascq, France.

144 BIBLIOGRAPHY

Hunt, K., Sbarbaro, D., Zbikowski, R., and Gawthrop, P. (1992). Neural networks

for control systems – a survey. Automatica, 28(6):1083–1112.

Hunt, L. and Meyer, G. (1997). Stable inversion for nonlinear systems. Automatica,

33(8):1549–1554.

Jakubczyk, B. and Sontag, E. D. (1990). Controllability of nonlinear discrete-time

systems: A lie-algebraic approach. SIAM Journal of Control and Optimization,

28:1–33.

Keviczky, T. and Johansson, K. (2008). A study on distributed model predictive

consensus. In Proceedings 17th IFAC World Congress (IFAC-08), pages 1516–

1521, Seoul, Korea.

Lewis, F. and Liu, D., editors (2012). Reinforcement Learning and Adaptive Dynamic

Programming for Feedback Control. Wiley.

Liu, J., Chen, X., de la Peña, D. M., and Christofides, P. D. (2010). Sequential and

iterative architectures for distributed model predictive control of nonlinear process

systems. American Institute of Chemical Engineers (AIChE) Journal, 56(8):2137–

2149.

Mei, J., Ren, W., and Ma, G. (2011). Distributed coordinated tracking with a dy-

namic leader for multiple Euler-Lagrange systems. IEEE Transactions on Auto-

matic Control, 56(6):1415–1421.

Michiels, W., Morarescu, I.-C., and Niculescu, S.-I. (2009). Consensus problems

with distributed delays, with application to traffic flow models. SIAM Journal on

Control and Optimization, 48(1):77–101.

Molin, A. and Hirche, S. (2009). On LQG joint optimal scheduling and control under

communication constraints. In CDC (IEEE Conference on Decision and Control)

Shangai: China.

Moreau, L. (2005). Stability of multiagent systems with time-dependent communi-

cation links. IEEE Transactions on Automatic Control, 50:169–182.

Munos, R. (2011). Optimistic optimization of a deterministic function without the

knowledge of its smoothness. In Shawe-Taylor, J., Zemel, R. S., Bartlett, P. L.,

Pereira, F. C. N., and Weinberger, K. Q., editors, Advances in Neural Information

Processing Systems 24, pages 783–791.

Munos, R. (2014). The optimistic principle applied to games, optimization and plan-

ning: Towards foundations of Monte-Carlo tree search. Foundations and Trends in

Machine Learning, 7(1):1–130.

BIBLIOGRAPHY 145

Negenborn, R. R., De Schutter, B., and Hellendoorn, H. (2008). Multi-agent model

predictive control for transportation networks: Serial versus parallel schemes. En-

gineering Applications of Artificial Intelligence, 21(3):353–366.

Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and

theory. IEEE Transactions on Automatic Control, 51(3):401–420.

Olfati-Saber, R., Fax, J. A., and Murray, R. M. (2007). Consensus and cooperation

in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233.

Olfati-Saber, R. and Murray, R. M. (2004). Consensus problems in networks of

agents with switching topology and time-delays. IEEE Transaction on Automatic

Control, 49:1520–1533.

Olshevsky, A. and Tsitsiklis, J. (2009). Convergence speed in distributed consensus

and averaging. SIAM Journal of Control and Optimization, 48(1):33–55.

Qu, Z., Wang, J., and Hull, R. (2008). Cooperative control of dynamical systems

with application to autonomous vehicles. IEEE Transaction on Automatic Control,

53(4):894–911.

Quevedo, D. E. and Nesic, D. (2012). Robust stability of packetized predictive con-

trol of nonlinear systems with disturbances and markovian packet losses. Auto-

matica, 48(8):1803–1811.

Quevedo, D. E., Østergaard, J., and Nesic, D. (2011). Packetized predictive con-

trol of stochastic systems over bit-rate limited channels with packet loss. IEEE

Transactions on Automatic Control, 56(12):2854–2868.

Rabi, M., Johansson, K., and Johansson, M. (2008). Optimal stopping event-triggered

sensing and actuation. In CDC (IEEE Conference on Decision and Control) Can-

cun, Mexico, pages 3607–3612.

Ren, W. and Beard, R. (2005). Consensus seeking in multiagent systems under dy-

namically changing interaction topologies. IEEE Transactions on Automatic Con-

trol, pages 655–661.

Ren, W. and Beard, R. W. (2008). Distributed Consensus in Multi-Vehicle Coopera-

tive Control: Theory and Applications. Communications and Control Engineering.

Springer.

Sain, M. K. and Massey, J. L. (1969). Invertibility of linear time-invariant dynamical

systems. IEEE Transaction on Automatic Control, 14(2):141–149.

Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.-Y., Hjal-

marsson, H., and Juditsky, A. (1995). Nonlinear black-box modeling in system

identification: a unified overview. Automatica, 31(12):1691–1724.

146 BIBLIOGRAPHY

Su, H., Chen, G., Wang, X., and Lin, Z. (2011). Adaptive second-order consensus of

networked mobile agents with nonlinear dynamics. Automatica, 47(2):368–375.

Suykens, J. and Vandewalle, J., editors (1998). Nonlinear Modeling: Advanced

Black-Box Techniques. Springer.

Tabuada, P. (2007). Event-triggered real-time scheduling of stabilizing control tasks.

IEEE Transactions on Automatic Control, 52(9):1680–1685.

Tanner, H., Jadbabaie, A., and Pappas, G. (2005). Flocking in teams of nonholonomic

agents. In Kumar, V., Leonard, N., and Morse, A., editors, Cooperative Control,

volume 309 of Lecture Notes in Control and Information Sciences, pages 458–460.

Springer.

Tanner, H., Jadbabaie, A., and Pappas, G. (2007). Flocking in fixed and switching

networks. IEEE Transactions on Automatic Control, 52(5):863–868.

Tsitsiklis, J., Bertsekas, D., and Athans, M. (1986). Distributed asynchronous deter-

ministic and stochastic gradient optimization algorithms. IEEE Transactions on

Automatic Control, 31:803–812.

Velasco, M., Fuertes, J., and Marti, P. (2003). The self triggered task model for real-

time control systems. 24th IEEE Real-Time Systems Symposium, pages 67–70.

Wang, X. and Lemmon, M. (2009). Self-triggered feedback control systems with

finite-gain L2 stability. IEEE Transactions on Automatic Control, 45:452–467.

Widrow, B. and Walach, E. (2008). Adaptive Inverse Control: A Signal Processing

Approach, Reissue Edition. Wiley.

Xiao, L. and Boyd, S. (2004). Fast linear iterations for distributed averaging. System

and Control Letters, 53:65–78.

Zavlanos, M. and Pappas, G. (2008). Distributed connectivity control of mobile

networks. IEEE Transactions on Robotics, 24(6):1416–1428.

Zheng, Y. and Evans, R. J. (2002). Minimal order discrete-time nonlinear system in-

version. In Proceedings 15th IFAC World Congress, pages 1119–1125, Barcelona,

Spain.

Zhou, J., Wu, X., Yu, W., Small, M., and Lu, J. (2012). Flocking of multi-agent dy-

namical systems based on pseudo-leader mechanism. Systems & Control Letters,

61(1):195–202.

Zhu, J., Lu, J., and Yu, X. (2013). Flocking of multi-agent non-holonomic systems

with proximity graphs. IEEE Transactions on Circuits and Systems I: Regular

Papers, 60(1):199–210.

Part IV

Other topics and future plans

147

Chapter 9

Other directions

In addition to my main work thread on optimistic planning and its applications, I

have also worked together with students on reinforcement learning offshoot direc-

tions from my PhD research. Further, recently I have begun placing emphasis on

control applications in robotics: manipulation and unmanned aerial vehicles. These

two directions are briefly overviewed next, in Sections 9.1 and 9.2, respectively.

9.1 Reinforcement learning

Optimistic planning is largely a model-based paradigm: it requires a model of the

Markov decision process, in the form of the dynamics f and reward function ρ . The

field of reinforcement learning (RL) forgoes this requirement and asks the controller

to learn an optimal solution for an initially unknown system. This leads to a new set

of challenges in addition to near-optimality, crucial among which is the exploration-

exploitation dilemma, which asks whether current imperfect knowledge should be

acted upon (exploiting it), or novel, possibly better solutions should be attempted

(exploration).

A major direction of our research here has been the investigation with PhD stu-

dent Ivo Grondman of actor-critic RL algorithms, which separately represent and

learn on the one hand the value function (returns) Q(x,u) or V (x), and on the other

hand the control policy π . In particular, policy gradient based actor-critic algorithms

are very popular. Their advantage of being able to search for optimal policies us-

ing low-variance gradient estimates has made them useful in several real-life appli-

cations, such as robotics, power control and finance. We have therefore begun by

surveying the literature on this class of actor-critic algorithms (P17), with a focus on

methods that can work in an online setting and use function approximation in order

to deal with continuous state and action spaces, which are important in control. In

addition to the origins of actor-critic algorithms, we have described the workings of

the natural gradient, which has made its way into many actor-critic algorithms in the

149

150 CHAPTER 9. OTHER DIRECTIONS

past few years. A review of several standard and natural actor-critic algorithms was

provided, together with an overview of application areas and a discussion on open

issues.

Then, we have delved into the particular research topic of learning models of the

system in order to make the policy updates in the actor-critic method more effec-

tive and thereby increase learning speed. To this end, we have proposed in (P18),

(P19), (P20) two such model-learning methods, both using local linear regression to

construct approximations of the functions involved. The first algorithm uses a novel

model-based update rule for the actor parameters. The second algorithm does not use

an explicit actor but learns a reference model which represents a desired behavior,

from which desired control actions can be calculated using the inverse of the learned

process model. The two novel methods and a standard actorcritic algorithm were ap-

plied to the pendulum swing-up problem, in which the novel methods achieve faster

learning than the standard algorithm.

A more direct use of models is in imitation learning, which is related to RL but

attempts to directly replicate demonstrated behavior rather than learning new behav-

iors on its own. This is motivated by human learning, where a task is rarely learned

from scratch, instead starting from a demonstration by a skilled person. In (P21), we

used imitation to quickly generate a rough solution to a robotic task from demon-

strations, supplied as a collection of state-space trajectories. Appropriate control

actions needed to steer the system along the trajectories are automatically learned

in the form of a (nonlinear) state-feedback control law. The learning scheme has

two components: a dynamic reference model and an adaptive inverse process model,

both based on local linear regression. The reference model infers the desired behav-

ior from the demonstration trajectories, while the inverse process model provides the

control actions to achieve this behavior and is improved online using learning. Exper-

imental results with a pendulum swing-up problem and a robotic arm demonstrated

the practical usefulness of this approach.

Other contributions in this area include several overviews of approximate rein-

forcement learning (P22), (P23).

The following publications were discussed in this section:

(P17) I. Grondman, L. Buşoniu, G. Lopes, R. Babuška, “A Survey of Actor-Critic Re-

inforcement Learning: Standard and Natural Policy Gradients”, IEEE Trans-

actions on Systems, Man, and Cybernetics—Part C: Cybernetics, vol. 42, no.

6, pages 1291–1307, 2012.

(P18) I. Grondman, M. Vaandrager, L. Buşoniu, R. Babuška, E. Schuitema, “Effi-

cient Model Learning Methods for Actor-Critic Control”, IEEE Transactions

on Systems, Man, and Cybernetics—Part B: Cybernetics, vol. 42, no. 3, pages

591–602, 2012.

9.2. ROBOTICS APPLICATIONS 151

(P19) I. Grondman, M. Vaandrager, L. Buşoniu, R. Babuška, E. Schuitema, “Actor-

Critic Control with Reference Model Learning”. Proceedings 18th IFAC World

Congress (IFAC-11), Milano, Italy, 22 August–2 September 2011.

(P20) I. Grondman, L. Buşoniu, R. Babuška, “Model-Learning Actor-Critic Algo-

rithms: Performance Evaluation in a Motion Control Task”. Proceedings 51st

IEEE Conference on Decision and Control (CDC-12), Maui, Hawaii, 10–13

December 2012.

(P21) M. Vaandrager, R. Babuska, L. Busoniu, G. Lopes, “Imitation Learning with

Non-Parametric Regression”. Proceedings 2012 IEEE International Confer-

ence on Automation, Quality and Testing, Robotics (AQTR-12), Cluj-Napoca,

Romania, 24–27 May 2012.

(P22) L. Buşoniu, A. Lazaric, M. Ghavamzadeh, R. Munos, R. Babuska, B. De

Schutter, “Least-squares methods for policy iteration”. In Reinforcement

Learning: State of the Art, M. Wiering and M. van Otterlo, Editors, series

Adaptation, Learning, and Optimization, vol. 12, pages 75–109, Springer, 2012.

(P23) L. Buşoniu, B. De Schutter, and R. Babuška, “Approximate Dynamic Program-

ming and Reinforcement Learning”. In Interactive Collaborative Information

Systems, R. Babuška and F.C.A. Groen, Editors, series Studies in Computa-

tional Intelligence, vol. 281, pages 3–44. Springer, 2010.

9.2 Robotics applications

Bridging the gap between the RL techniques of the previous section and robotics

applications, we have attempted to address an important challenge in such applica-

tions: the limited availability of interaction data with the system, which is at least

as important in RL as limited computation time. A promising approach to achieve

this is experience replay (ER), which quickly learns from a limited amount of data

by repeatedly presenting these data to an underlying RL algorithm. Despite the fact

that the approach and its benefits are well-known in the literature, ER RL has been

studied only sporadically and its applications have largely been confined to simu-

lated systems. Therefore, in (P25) we have evaluated ER RL on real-time control

experiments involving a pendulum swing-up problem and the vision-based control of

a goalkeeper robot. These real-time experiments were complemented by simulation

studies and comparisons with traditional RL.

With students Koppány Máthé and Elöd Páll, I have more recently delved into a

different robotics application: lightweight, low-cost unmanned aerial vehicles (UAVs)

for civilian uses. To set the foundations for the research, we have overviewed in (P26)

the literature on vision and control methods that can be applied to low-cost UAVs.

We overviewed among others feature detection and tracking, optical flow and visual

152 CHAPTER 9. OTHER DIRECTIONS

servoing, low-level stabilization, and high-level planning methods. We then listed

popular low-cost UAVs, selecting mainly quadrotors. We investigated applications,

restricting our focus to the field of infrastructure inspection. Finally, as an exam-

ple, we formulated two use-cases for railway inspection, a less explored application

field, and illustrate usage of the vision and control techniques reviewed by selecting

appropriate ones to tackle these use-cases.

One of these use-cases is railway following, and in (P27) we have focused on

solving it. The method developed relies on vision-based detection and tracking of

the vanishing point of the railway tracks, overhead lines, and other related lines in

the image, coupled with a controller that adjusts the yaw so as to keep the vanishing

point in the center of the image. Simulation results illustrated the method is effective,

and were complemented by vanishing-point tracking results on real image.

This work was presented in the following publications:

(P25) S. Adam, L. Buşoniu, and R. Babuška, “Experience Replay for Real-Time

Reinforcement Learning Control”, IEEE Transactions on Systems, Man, and

Cybernetics—Part C: Applications and Reviews, vol. 42, no. 2, pages 201–

212, 2012.

(P26) K. Máthé, L. Buşoniu. “Vision and Control for UAVs: A Survey of General

Methods and of Inexpensive Platforms for Infrastructure Inspection”, Sensors

vol. 15 no. 7, pages 14887–14916, 2015.

(P27) E. Páll, K. Máthé, L. Tamás, L. Buşoniu, “Railway Track Following with the

AR.Drone Using Vanishing Point Detection”. In Proceedings 2014 IEEE Inter-

national Conference on Automation, Quality and Testing, Robotics (AQTR-14),

Cluj-Napoca, Romania, 22–24 May 2014.

An ongoing direction is the application of OPMDP in an assistive robotics sce-

nario, where a robotic arm on a mobile platform manipulates objects such as switches

in the environment of an elderly or disabled person. The scenario is modeled as

partially-observable Markov decision process, where not all the state variables are

directly measurable, and OPMDP is applied to derive an optimal control. In this

context, OPMDP is known as the AEMS2 algorithm, but a detailed analysis such as

the one in Section 4.1 is not available, and our second goal is to develop one. The

primary goal is to demonstrate that planning algorithms can solve a socially relevant,

state-of-the-art robotics problem.

Chapter 10

Overall plans for the future

10.1 Introduction and main objective

Automated systems are increasingly expected to perform well in complex, open, un-

structured and unpredictable environments, such as in the everyday surroundings of

human beings. Even in more traditional industrial or lab environments, many systems

cannot be accurately modeled, for instance because they are insufficiently under-

stood or the modeling process is too expensive. Learning to deal with the unknown,

combined system-environment dynamics is an important capability of their control

algorithms. Another essential component is generality, in order to handle complex

systems in a uniform way; planning methods can supply this generality. Therefore,

my main research objective is

To develop an algorithmic framework for the learning and plan-

ning control of complex systems

where a complex system is defined by its highly nonlinear, (partly) unknown, possi-

bly stochastic and high-dimensional behavior. To succeed, such a framework must

combine planning and learning with control techniques. Therefore, I will rely on

my extensive expertise in optimistic planning and reinforcement learning, and I will

cross-fertilize it with ideas and methods from advanced control, among which non-

linear, predictive, networked, and adaptive control.

The end result will be a comprehensive set of algorithmic tools for the learning

and planning control of a wide array of systems, accompanied by analytical perfor-

mance and safety guarantees, as well as by practical applications. I will focus on

applications in robotics, but I will also explore more general decision-making ap-

plications in areas such as logistics or medicine. These results will serve as a solid

platform from which to explore new directions in decision and control on the one

hand, and machine learning and artificial intelligence on the other.

153

154 CHAPTER 10. OVERALL PLANS FOR THE FUTURE

10.2 Research plan

As a general theme for the upcoming three to five years, I will start from the op-

timistic planning and control research presented in this thesis, and I will integrate

novel control insights, together with machine and reinforcement learning ideas, in

order to approach the overall objective stated above. The following major topics will

be addressed:

• Integration of planning and learning

Starting from the early ideas on learning the value function and unknown tran-

sition probabilities presented in Chapter 5, a set of integrated learning and

planning algorithms will be developed. This work will first consider simple,

deterministic problems, and then progress towards stochastic and partially-

observable versions. The algorithms will on the one hand plan ahead action

sequences at each step of interaction with the system, like optimistic plan-

ning methods but now using a learned, approximate model instead of the exact

one; and also learn the optimal solution and model of the system across the

interaction trajectories, like reinforcement learning. The strengths of the two

techniques will be combined, with guarantees on the rate of approach towards

the optimal solution at each step of planning, as well as across the entire ex-

periment.

• Stability guarantees

A crucial requirement before a control algorithm can be applied in the human

environment or the industry is guaranteeing safety: the controller must not

damage the system or endanger its users. Safety is a complementary property

to the performance guarantees that form the focus of this thesis, and is a chal-

lenging open problem in planning and reinforcement learning. To address this

problem, building on the initial stability result for optimal solutions outlined in

Chapter 8, we will develop guarantees for the near-optimal solutions produced

by planning. The interaction with reinforcement learning is additionally chal-

lenging, since the algorithm must discover good behavior by explore a range of

options that, when left unchecked, may turn out to be unsafe. Thus exploration

must be balanced with stability. Useful results can be identified in the areas

of predictive and adaptive nonlinear control, which often employ Lyapunov

stability analysis.

• Open problems in nonlinear control

Starting from the existing work in Part III, I will continue to deepen existing

work in networked systems with the aim of handling issues such as packet

losses, delays, bandwidth limits, etc. Beyond this, I will explore the relation-

ship of planning and learning with other, novel problems in nonlinear control,

difficult to tackle with classical methods, such as switched systems, extremum-

seeking control, economic model-predictive control, etc.

10.3. LONG-TERM RESEARCH GOALS 155

• Applications to real case studies

I will validate the fundamental and algorithmic contributions described above

in real-life case studies. Cooperation with industrial partners will be sought,

with the longer-term goal of commercial deployment.

I have already been involved in several lab robotics projects, and I strongly

believe that the quality of human life can be improved by using and interacting

with robots in everyday life. In particular, a subarea that can greatly benefit so-

ciety is assistive robotics, concerned with providing assistance to the disabled

and to the ever-increasing elderly population. Since the environment of as-

sistive robots is highly complex, unstructured, and unpredictable, these robots

require planning and learning control to be successful. The simple demonstra-

tion task of assistive object manipulation outlined in Section 9.2 will serve as

a first step.

10.3 Long-term research goals

Over the longer term, I will develop the research group I am currently leading and

strive to propel it to the forefront of international research. To this end, I will continue

attracting and recruiting top undergraduate students, and I will exploit public funding

opportunities at the national, European, and international levels, as well as industrial

funding with local and international companies. Our research will have developed a

unified algorithmic framework for the planning and learning control of a wide range

of complex systems, accompanied by theoretical guarantees and applications to do-

mains such as robotics, transportation, medical treatment, etc.

I strongly believe that a symbiosis between artificial intelligence and advanced

control theory is instrumental to achieving these goals. Beyond these fields, my re-

sults will serve as a strong platform upon which to explore novel directions in artifi-

cial intelligence and computer science on the one hand, and in control and decision

making on the other. I will also investigate inter-disciplinary connections with oper-

ations research and medicine.

