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Abstract

Markov decision processes are a powerful framework for nonlinear, possibly stochastic
optimal control. We consider two existing optimistic planning algorithms to solve them,
which originate in artificial intelligence. These algorithms have provable near-optimal
performance when the actions and possible stochastic next-states are discrete, but they
wastefully discard the planning data after each step. We therefore introduce a method to
learn online, from this data, the upper bounds used to guide the planning process. Five
different approximators for the upper bounds are proposed, one of which is specifically
adapted to planning, and the other four coming from the standard toolbox of function
approximation. Our analysis characterizes the influence of the approximation error on
the performance, and reveals that for small errors, learning-based planning performs
better. In detailed experimental studies, learning leads to improved performance with
all five representations, and a local variant of support vector machines provides a good
compromise between performance and computation.

Keywords: optimal control, machine learning, Markov decision processes, optimistic
planning, near-optimality analysis.

1. Introduction

Markov decision processes (MDPs) are often used to model sequential decision-making
problems in artificial intelligence [1, 2], but also work for optimal control problems in
engineering, economics, operations research, medicine, etc. [3]. Online planning meth-
ods solve MDPs locally, by using a model to run an explorative search through the space
of solutions (e.g. action sequences) from the current state, after which a first action is
selected and applied. The system then reaches its new state and the process is repeated.
A computationally effective strategy is to search the solution space optimistically [4],
focusing on regions most likely to contain an optimal solution. The resulting optimistic

planning (OP) algorithms [4, 5] integrate insights from several fields of artificial intelli-
gence: reinforcement learning, bandit theory, and planning / graph search [3, 6], as well
as from optimization. A variety of OP methods are available, including Upper Confi-
dence Trees [7] which produced a competitive Go player [8], OP for Deterministic systems
(OPD) [9], OP for stochastic MDPs with discrete next-state distributions (OPMDP) [10]
or with general distributions [11], OP for continuous actions [12, 13], etc.

We focus here on OPD and OPMDP, which explore a tree representation of the
possible solutions from the current state. Every node on the planning tree is labeled by
Preprint submitted to Engineering Applications of Artificial Intelligence May 12, 2016



a state and an upper bound (called b-value) on that state’s optimal value. Exploiting
the b-values, at each iteration the algorithms refine further an optimistic partial solution,
with the largest upper bound on the value. OPD and OPMDP guarantee near-optimality
bounds as a function of the computation invested [9, 10]. We refer to both algorithms
collectively as ‘OP’.

An important drawback of OP methods in their original form is that they discard the
current tree right after applying the current action, and start over from scratch at the
next step. However, the trees at consecutive steps will cover similar states, so the data
can be reused to improve the quality of the search. Therefore, in this paper we propose
to reuse data by learning online a b-function from the state–b-value pairs on the trees
developed at previous steps. At the current step, the b-function learned in this way is
used to initialize newly created leaves with informed b-values, rather than the uninformed
values used in the original OP. The resulting approach is called OP with learning (L-OP).
We provide a general analysis of the planning performance with learned b-values, taking
into account the tradeoff between two novel effects that did not appear in standard OP:
the b-values are closer to the optimal values than in OP (improving performance) – but
due to approximation errors, they may no longer be true upper bounds and some nodes
may be expanded non-optimistically (decreasing performance).

We continue by describing several b-value approximators. The first is specific to OP,
and given a Lipschitz value function it guarantees that b-values always remain true upper
bounds. The other approximators are standard: neural networks, local linear regression,
and least-squares support vector machines; and for the latter, we also introduce a lo-
cal, less computationally intensive variant. All techniques except neural networks are
memory-based, so a procedure for memory management is additionally provided. We
explain how these techniques can be applied to online L-OP, discuss their computational
complexity, and evaluate them in practically relevant experiments on deterministic and
stochastic problems. These experiments show that learning can achieve better perfor-
mance with less computation, so it is useful for online control.

The idea of combining learning with model-based algorithms is well-known, see e.g.
Dyna [14]. A variety of related work can be identified in classical planning by noticing
that OPD and OPMDP extend the A* [15] and AO* [16] algorithms to infinite-horizon
control. The b-value in OP plays a similar role to the heuristic in A* and AO*, and
deriving good heuristics is recognized as essential for performance. Heuristics are often
found offline, before planning starts, based e.g. on relaxed versions of the problem [17, 18].
Other methods learn heuristics incrementally from consecutive planning tasks [19, 20, 21],
and these have some common elements with our work, such as generalizing function
approximation [22, 19]. Nevertheless, most of these methods compute complete, optimal
plans offline, whereas our focus is near-optimally solving infinite-horizon problems online.
Closer to our online setting are the classical algorithms ‘learning real-time A*’ [23] and
‘real-time dynamic programming’ [24], which learn heuristics while planning online. In
[25], an approximator is combined with RTDP – but this technique works for goal-based
MDPs with logical states, and is not applicable in our general-MDP setting. Compared
to [23, 24, 25], we introduce function approximation to deal with large, continuous state
spaces (as suggested for RTDP in [24]), provide a near-optimality analysis in the context
of OP, and a thorough empirical study with several types of approximators.

Our technique is to our knowledge the first to learn b-values online in optimistic
planning. A value function computed offline was used to improve the performance of
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the Upper Confidence Trees algorithm in [26]. Our previous work on OP, such as [10,
13, 27], never uses learning – with a single exception: [28], where the model (transition
probabilities) is learned rather than the b-values.

Next, Section 2 introduces the optimal control problem and the two OP methods.
Section 3 describes learning for OP, including the methods for the deterministic and
stochastic cases, their analysis, the five function approximators, and memory manage-
ment. Section 4 gives the experimental results, and Section 5 concludes the paper.

2. Background

2.1. Problem Setting

We consider discrete-time optimal control problems with states x ∈ X and actions u ∈
U . When applying uk, the state changes from xk to xk+1 with probability f(xk, uk, xk+1),
where f : X × U × X → [0, 1] is the state transition function. A reward function
ρ : X × U × X → R measures the quality of transitions, rk+1 = ρ(xk, uk, xk+1). We
assume the following: (i) the state space X is compact and included in R

p; (ii) the
action space U consists of a finite number K of actions; (iii) rewards are bounded, and
without loss of generality they are in [0, 1]; finally, (iv) applying any action in any state
can only lead to a finite number M of possible next states. These assumptions are
typical in artificial intelligence, where X,U, f and ρ are said to form a Markov decision
process (MDP). In control engineering, (i) is not restrictive in practice, while action
discretization (ii) and reward saturation (iii) reduce performance, but the loss is often
manageable. Deterministic transitions are common, in which case (iv) holds implicitly;
otherwise, it restricts the random disturbance to discrete phenomena such as switches.

A policy π : X → U describes the control behavior: which action u = π(x) to apply
in each state x. The policy’s value V π : X → R is defined for each state x as the expected
return obtained by following the policy from x:

V π(x) = E
{

∞
∑

k=0

γkrk+1

}

= E
{

∞
∑

k=0

γkρ(xk, π(xk), xk+1)
}

(1)

where x0 = x, xk+1 ∼ f(xk, π(xk), ·), the expectation is taken over trajectories, and
γ ∈ (0, 1) is the discount factor. Since rewards are at most 1, an upper bound on any
state value under any policy is Vmax =

∑∞
k=0 γk = 1

1−γ . Next to the state value function
V , the state-action value function Q is defined as:

Qπ(x, u) = Ex′∼f(x,u,·){ρ(x, u, x′) + γV π(x′)} (2)

The objective is to optimally control the system, so that the value function is maxi-
mized for all x ∈ X. This maximal, optimal value function is denoted V ∗(x), an optimal
policy that achieves these values is denoted π∗(x), and the corresponding optimal state-
action value function is Q∗(x, u). The relationship V ∗(x) = max

u
Q∗(x, u) holds.

2.2. Optimistic Planning for Deterministic Systems

We focus first on the deterministic case where the transition function reduces to
xk+1 = f(xk, uk), since a single state xk+1 is reached with probability 1; and the reward
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function to rk+1 = ρ(xk, uk), since the next state xk+1 – and hence the reward – are fully
determined by xk and uk.1

We consider an online model-based planning algorithm called Optimistic Planning
for Deterministic systems (OPD) [9], which at each step k explores the set of possible
action sequences from the current state xk. Such sequences are able to represent an
optimal solution local to xk. They are more general than the state-feedback policies π(x),
which can also represent optimal solutions, but sequences are convenient in planning so
we will use them. At a high level, OPD iteratively refines promising action sequences
until a computational budget n, related to the number of evaluations of the model f , is
exhausted. Based on the return information accumulated about these sequences, OPD
then chooses an action uk that is as good as possible. This action is applied to the system
and the procedure is repeated from the new state.

x1

◄

x1

►

L
T

d = 1

d = 2

d = 3

x0d 0=

u r=◄, =0 u r=►, =0

◄, 0 ►, 0.1 ◄, 0.1 ►, 0

►, 0◄, 0.8

[0.5, 1]

[0.8, 1.8]

[0, 2]

[0, 2]

[0, 2]

[0, 2]
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Figure 1: An OPD tree for K = 2 actions, symbolically denoted ◭ and ◮. Nodes are labeled by states,
with the depth as a subscript and the last action leading to the state as a superscript. Arcs are labeled
by actions and rewards, shown in blue. Near the nodes, l and b-values are shown in red boldface. The
leaves LT are enclosed by a dotted line. The tree is shown after 4 expansions, and γ = 0.5. (Figure best
viewed in color.)

To formalize the algorithm, we relabel by convention the current time k to 0, so that
xk becomes x0. Of course, the procedure works at any time step. The planning process
can be visualized using a tree structure T , exemplified in Figure 1 where a (partial)
planning tree for a problem with two control actions (K = 2) is shown. Tree nodes are
denoted z and are labeled by states x. We use x(z) to denote the state label of node
z. Planning begins with a single, root node labeled by x0, and proceeds by iteratively
expanding nodes. The expansion of a node z consists of simulating all K actions from
the associated state x(z), and adding for each resulting successor state x′ a new node z′

as a child of z. The children of z are denoted C(z). An arc between a parent z and a child
z′ corresponds to a transition between states x and x′, and is itself labeled by the action
that caused the transition and by the resulting reward. E.g. in Figure 1, the leftmost
node at d = 1 is labeled by x◭

1 = f(x0,◭) and the arc leading to it by action u =◭ and

1Here as well as in the sequel (e.g. for the b-values), we slightly abuse the notation by using the same
symbols to denote analogous but mathematically different objects in the stochastic and deterministic
case. For example, the deterministic ρ(xk, uk) is obtained by plugging xk+1 in the stochastic reward
function, ρ(xk, uk, xk+1). It will usually be clear from the context to which variant the text refers; when
it is not, we make it explicit.

4



reward r = ρ(x0,◭), the latter being 0. The nodes in T are split in two categories: inner
nodes, and leaf (unexpanded) nodes. The set of leaves is denoted LT .

Each node z at some depth d(z) in the tree is reached via a unique path through
the tree, associated to an action sequence u(z) = [u0, u1, . . . , ud(z)−1], and the obtained
rewards along that path are denoted r1, r2, . . . , rd(z). E.g. the gray node in Figure 1
– denote it by y – has sequence u(y) = [◭,◮,◭] and the rewards along its path are
0, 0.1, 0.8. Note that the depth d also has a meaning of time step. While action sequences
are unique, state labels may be duplicated; the algorithm keeps all such duplicates on
the tree.

OPD relies on so-called b-values, defined for the current tree as follows:

b(z) =











1

1− γ
= Vmax if z is a leaf,

max
z′∈C(z)

[r(z′) + γb(z′)] if z is an inner node
(3)

where r(z′) is the reward obtained for the transition to node z′ (from z). The for-
mula for inner nodes is a dynamic programming update, and we show by induction
that b(z) is an upper bound on V ∗(x(z)). The property holds at the leaves due to
Vmax. Consider an inner node, and assume b(z′) ≥ V ∗(x(z′)) for its children z′. Then,
maxz′ [r(z′) + γb(z′)] ≥ maxz′ [r(z′) + γV ∗(z′)] = V ∗(z), where the final equality is the
Bellman equation. The induction is complete.

At each iteration of OPD, an optimistic leaf is found by starting at the root and
navigating the tree downwards, always towards a child that achieved the maximum in
the second branch of (3), until a leaf is reached. OPD then expands this optimistic leaf,
growing the tree, and the whole procedure is repeated until the algorithm has exhausted
its computational budget of n node expansions. Then, on the last tree obtained, l-values
are computed like the b-values but starting from zero at the leaves:

l(z) =







0 if z is a leaf,

max
z′∈C(z)

[r(z′) + γl(z′)] if z is an inner node (4)

Because rewards are positive, l(z) is a lower bound on V ∗(x(z)), by an induction similar
to that for the b-values. OPD returns a root action that achieves the maximum in (4).
Thus, the b-values optimistically guide the sequence refinement along upper bounds,
while the final action selection is performed safely, based on pessimistic lower bounds.

Algorithm 1 summarizes OPD. Even though the algorithm explores finite-length se-
quences, it is near-optimal with respect to the infinite-horizon value V ∗, as the guarantees
in Section 3.2 will show (we postpone these guarantees until there to compare with our
new method).

To exemplify the algorithm, consider e.g. the node of x◮

1 in Figure 1. Its b-value is
max{0.1+γ ·2, 0+γ ·2} = 1.1 (recall that its children’s b-values are 1

1−γ = 2 since they are

leaves and γ = 0.5). Similarly, at the root, the b-value is max{0+γ ·1, 0+γ ·1.1} = 0.55.
Then, the maximum at the root is attained via the right child x◮

1 , and in turn the
maximizer child at this node is the left, dashed-outline child, which is therefore the
optimistic leaf and will be expanded next. Finding l-values works similarly, e.g. at the
root we have max{0 + γ · 0.5, 0 + γ · 0.1} = 0.25, and if OPD were to terminate with this
tree, ◭ would be returned since the maximum was achieved by this action.
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Algorithm 1 Optimistic planning for deterministic systems

Input: model f, ρ, discount factor γ, state x0, budget n
1: initialize tree T with root z0, labeled by x0

2: for i = 1, . . . , n do

3: z ← z0

4: while z /∈ LT do

5: z ← arg maxz′∈C(z)[r(z
′) + γb(z′)]

6: end while

7: optimistic leaf found: z† ← z
8: expand z†, adding all its children to T
9: update b and l-values on the tree, with (3) and (4)

10: end for

Output: u0, corresponding to maxz′∈C(z0)[r(z
′) + γl(z′)]

While the implementation works with l and b, more insight can be obtained by defin-
ing lower and upper bounds on the discounted returns of action sequences, which will

additionally be useful in the analysis. Define the partial return L(z) =
∑d(z)−1

j=0 γjrj+1,
which is a lower bound on the values of all infinitely-long sequences starting with u(z),

and B(z) = L(z) + γd(z)

1−γ = L(z) + γd(z)b(z), which is an upper bound on these values.

Selecting an optimistic leaf z† is equivalent to selecting a maximal B(z†) among the
leaves – so intuitively, we refine further a sequence that has the best chance of being part
of an optimal solution. At the end, the chosen action u0 is on a greedy leaf sequence
u(zg) with a maximal lower bound L(zg), so it is a safe choice. Note that the difference

between the upper and lower bounds, equal to γd(z)b(z) = γd(z)

1−γ , is an uncertainty on the

sequence values. E.g. for the dashed node y in Figure 1, B(y) = 0 + γ · 0.1 + γ2

1−γ = 0.55,
which is maximal among all leaves, so y is the optimistic node. Denote the gray node by
w, then L(w) = 0 + γ · 0.1 + γ2 · 0.8 = 0.3, again maximal, and w is the greedy node.

2.3. Optimistic Planning for Stochastic MDPs

In the stochastic case, applying an action may lead to different states with certain
probabilities. We assume that the number of nonzero-probability next states is at most
M for any transition, so continuous distributions are not allowed. Each node z in the
planning tree now has up to KM children. Specifically, a node z labeled by state x is
expanded by adding, for each action u, and for any state x′ for which f(x, u, x′) > 0,
a new child node z′ labeled by x′. Figure 2 shows such a tree, explicitly including also
action nodes in circles. The children of x along action u are denoted C(z, u). Like in
the OPD tree, state labels may be duplicated. Such a tree represents many possible
stochastic evolutions of the system, e.g. for the sequence [◭,◮] there are four possible
state trajectories in the tree of Figure 2: those ending in the 3rd, 4th, 7th, and 8th leaves
at depth 2.

As before, b-values are associated to the nodes, but now they are computed with the
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Figure 2: Example of OPMDP tree for M = K = 2. The squares are state nodes labeled by states,
where superscripts index the possible actions and state outcomes, while subscripts are depths, which
increase only with the state node levels. The actions u ∈ {◭, ◮} are included as circle nodes. Transition
arcs are labeled by probabilities and rewards in blue, and l and b-values are shown near the nodes in
red. The thick subtree shows a tree policy. γ is again 0.5. (Figure best viewed in color.)

stochastic dynamic programming update:

b(z) =















1

1− γ
= Vmax if z is a leaf,

max
u

∑

z′∈C(z,u)

p(z′) [r(z′) + γb(z′)] otherwise
(5)

where p(z′) = f(x(z), u, x(z′)) and r(z′) = ρ(x(z), u, x(z′)). E.g. in Figure 2, the b-value
of the node of x◭,2

1 is max{0.75(0 + γ · 2) + 0.25(0.8 + γ · 2), 0.75(0.8 + γ · 2) + 0.25(0 +
γ · 2)} = max{1.2, 1.6} = 1.6. The l-values are computed similarly but starting from 0
at the leaves. Quantities b(z) and l(z) keep their meaning of upper and lower bounds on
V ∗(x(z)).

To expand a node, an optimistic tree policy h† is constructed, by starting from the
root z0 and recursively adding at each node z the M children along one action, the one
achieving the maximal expected b-value: arg maxu

∑

z′∈C(z,u) p(z′) [r(z′) + γb(z′)]. In
contrast to an action sequence, a tree policy specifies an action choice for each inner
state node reached under the previous choices, and so it defines a closed-loop control
under the trajectory realizations up to the (varying) horizon of the tree. In Figure 2,
the optimistic policy is shown by thick lines, e.g. the optimistic action branch at x◭,2

1 is
◮ because, as seen in the calculations above, this action achieved the maximum in the
b-value update. Then, a node among the leaves of this policy is selected by maximizing
the contribution:

c(z) = P (z)
γd(z)

1− γ
(6)

where P (z) is the probability of reaching z, the product of the individual transition
probabilities along the path. E.g. in Figure 2, the gray node – call it y – has a probability

P (y) = 0.75 · 0.5 = 0.375, and contribution c(y) = P (y) γ2

1−γ = 0.1875. The reader can

verify this contribution is maximal on the optimistic policy h†, and equal to that of y’s
immediate sibling, so one of these two nodes is expanded next. Finally, after n nodes
have been expanded, an action that maximizes the expected l-value from the root is
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returned. The resulting method is called OP for stochastic MDPs (OPMDP) [10], and
shown in Algorithm 2.

Algorithm 2 OP for stochastic MDPs

Input: state x0, model f, ρ, budget n
1: initialize tree T with root z0, labeled by x0

2: for i = 1, . . . , n do

3: build optimistic policy subtree, starting from h† ← z0

4: while L(h†) 6⊆ L(T ) do

5: retrieve a node z ∈ L(h†) \ L(T )
6: u† = arg maxu

∑

z′∈C(z,u) p(z′) [r(z′) + γb(z′)]

7: add children C(z, u†) to h†

8: end while

9: select leaf to expand: z† ← arg maxz∈L(h†) c(z)

10: expand z†, adding all its children to T
11: update b and l-values on the tree
12: end for

Output: u0 = arg maxu

∑

z′∈C(z0,u) p(z′) [r(z′) + γl(z′)]

To get more insight into these choices, consider any tree policy h (not necessarily the
optimistic one) on the current tree. Define:

B(h) =
∑

z∈L(h)

P (z)[L(z) + γd(z)b(z)] =
∑

z∈L(h)

P (z)[L(z) +
γd(z)

1− γ
]

where the meaning of L(z) is unchanged from the deterministic case: the partial return
up to z. B(h) is an upper bound on the expected value of any infinite-horizon policy h∞

starting with h. The optimistic policy h† constructed as above maximizes B among all
tree policies on the tree – so, like in OPD, the most promising partial solution is refined
further. Also, note that:

L(h) =
∑

z∈L(h)

P (z)L(z)

is a lower bound on the values of policies starting with h, and that B(h) = L(h) +
∑

z∈L(h) c(z) =: L(h) + δ(h). So the meaning of c(z) (6) becomes clear: it is the contri-

bution of leaf z to the uncertainty δ(h) on the value of tree policy h, and the algorithm
expands the leaf that contributes the most to the uncertainty of the most promising
solution. Finally, the action choice at the root is interpreted as choosing a policy h that
maximizes L(h) – a safe choice – and then applying the first action of h. So the main line
of the algorithm is the same as in the deterministic case: it always refines an optimistic
solution, and at the end chooses a safe one.

3. Online Learning for Optimistic Planning

To make the development easier to follow, we start by fully describing and analyzing
the algorithm in the simpler, deterministic case. Building on this, we then describe more
briefly the extension to the stochastic case.
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3.1. Algorithm for the Deterministic Case

In its basic variant presented above, OPD discards the planning data right after using
it to choose the current action, and then starts over from scratch at the next step. When
the algorithm is applied online, the next state will be close to the current one, so much of
the planning data remains relevant and discarding it is wasteful. Therefore, in this paper
we introduce an approach to reuse the data. In particular, we focus on reusing b-values
since they are crucial in guiding tree expansion. The l-values are only needed at the
end, and if the tree was well developed it already has deep branches along near-optimal
sequences, leading to good, near-optimal l-values.

Specifically, at the first step of online control, k = 0,2 no data was seen so the b-values
at the leaves are initialized using the uninformed upper bound Vmax, as in (3). So at
the first step, we just run regular OPD. Once it terminates, we collect the state–b-value
pairs (x(z), b(z)) of inner nodes on the tree that OPD developed. We use this set of
pairs to learn an approximate value function V̂ (x), V̂ : X → [0, Vmax], using any function
approximation technique. At the end of this section we will explain the connection to
value iteration, which will clarify that the function learned is in fact the value function,
justifying the notation.

At the next step, k = 1, when OPD develops the new tree the b-values at the leaves
are initialized with V̂ (x) rather than with the uninformed upper bound Vmax, thereby
computing at each inner iteration of OPD generalized b-values at all nodes:

b̂(z) =







V̂ (x(z)) if z is a leaf,

max
z′∈C(z)

[r(z′) + γb̂(z′)] otherwise (7)

Then, the state–b-value pairs on the new tree are collected, the approximator V̂ is up-
dated using these pairs, and so on at steps k = 2, 3, . . . . To make it easier to distinguish,
denote the algorithm that uses generalized b-values by OPD+. It is obtained from Algo-
rithm 1 by changing b-values to b̂, and the update equation from (3) to (7). Of course,
OPD is a special case of OPD+, for V̂ (·) = Vmax = 1

1−γ . Note that even though a value
function is learned online, the algorithm still uses the model to generate the tree.

To make the update of V̂ more precise, denote the set of state–b-value pairs at the end
of an application of OPD byMnew – a set of new training samples for the approximator:

Mnew = {(x(z), b̂(z)) | z ∈ T \ LT } (8)

Note that leaf b-values are not included in this set, because they were directly initialized
with the previous approximate values, see (7), so they add no new information. Then,
V̂ is updated with these new samples. Exactly how this update is implemented depends
on the particular approximator used, and we provide details in Section 3.4 for several
memory-based approximators and a parametric one.

Algorithm 3 summarizes OPD with learning, the result of applying OPD+ in the
control loop. For conciseness, notation V̂ is used from the first step, initialized to 1

1−γ .

2To describe the overall algorithm, we need to distinguish between time steps, so in Section 3.1 we
do not relabel each k to 0 anymore.
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Algorithm 3 OPD with Learning (L-OPD)

Input: model f, ρ, discount factor γ, budget n,
experiment length T

1: initialize V̂ (x) = 1
1−γ , ∀x

2: for k = 0, . . . , T − 1 do

3: measure state xk

4: at state xk, apply OPD+ with V̂ , returning uk

5: apply action uk

6: learn: create Mnew with (8) and use it to update V̂
7: end for

The b-value updates (3) or (7) implement a local, asynchronous form of value iteration
(VI) [3], where the updates are applied backwards in the tree towards the root. This VI
is local to the root state x0, because it only concerns states reachable from it – those
on the current tree. Moreover, these states are well-chosen by the optimistic criterion so
that they are likely to be along optimal trajectories. As the tree grows, the b-values near
the root converge to the optimal values V ∗ [24], with the b-values closer to V ∗ when leaf
(initial) values are more accurate. Unlike in standard VI where the initial values can be
arbitrary, in OPD, to ensure the nodes are expanded in a proper optimistic order, the
leaf b-values Vmax or V̂ should be upper bounds on the optimal value of the leaf state,
V ∗(x(z)), which by induction implies the same remains true at any node. By learning V̂
and reusing it in the next trees, we effectively connect the VI updates together, whereas
original OPD would run VI from scratch at each step. We therefore expect convergence
close to V ∗ along the online experiment.

If the approximator is chosen well, it will also provide generalization of the b-value
across states, as in standard approximate VI [29]. This is because V̂ is a function of the
underlying state x, not of the node z like the b-values. Therefore, due to generalization
the approximator will identify and collate information from nearby states. This is an
additional benefit over the original OPD, which did not generalize even if it encountered
the same state again in the tree.

Next, we analyze the algorithm in general, for any approximator.

3.2. Analysis in the Deterministic Case

In this section we characterize the performance of OPD+, with learned b-values,
comparing it with the original OPD. There are two novel elements in this analysis: on
the one hand, the b-values may be closer to the optimal values V ∗ than the uniformed
bounds in OPD, which improves performance; on the other hand, due to approximation
error b-values may no longer be admissible (true upper bounds), which means some
nonoptimistic nodes are expanded and performance decreases. As it will turn out, for
small enough approximation error it pays off to use the approximate b-values.

Since online planning algorithms choose actions locally, at each state they encounter
during their interaction with the system, a good way to measure their performance is
the simple regret, see e.g. [9]:

R(x0) = V ∗(x0)−Q∗(x0, u0) (9)
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where u0 is the action chosen by the algorithm at the root state x0. This measures
the loss incurred by taking action u0 and then acting optimally, with respect to acting
optimally from the first step, thereby isolating the quality of the action taken. Acting
optimally realizes a regret of 0.

To keep the analysis generic, we abstract away the details of the approximator and
define ε so that the approximation is uniformly accurate up to ε for any state appearing
on the tree, |V̂ (x)− V ∗(x)| ≤ ε (since the largest possible error is 1

1−γ , such an ε always

exists). The analysis provides confidence that when ε is small, OPD+ performs well, and
in particular that it outperforms the original OPD. Although the value of ε is unknown
to the algorithm, analyzing the case of small ε is (informally speaking) reasonable, since
as explained above L-OPD is a variant of approximate value iteration, which is known
to converge close to V ∗ [29]. An explicit analysis of ε is left for future work.

The performance of OPD+ is dictated by the depth of the explored tree, so, following
the line of analysis of OPD [9], we first characterize this tree. Define B̂(z) = L(z) +

γd(z)b̂(z), an approximate upper bound on values of sequences starting with u(z), and
also v(z) = L(z)+γd(z)V ∗(x(z)), the best infinite-horizon return among these sequences.

Lemma 1. OPD+ only expands nodes z for which v(z) ≥ V ∗(x0)− ε(1 + γd(z)).

Proof: At any iteration i, denote by z∗i the deepest node on the current tree that lies along

some optimal sequence (which achieves V ∗(x0)). Since the expanded node z†i has the

largest B-value, B̂(z†i ) ≥ B̂(z∗i ). Further, observe that for any leaf z, the B-value satisfies

|B̂(z)− v(z)| = γd(z)|b̂(z)− V ∗(x(z))| ≤ γd(z)ε by the uniform-error property. Applying

this inequality to z∗i and z†i , we obtain B̂(z∗i ) ≥ V ∗(x0) − γd(z∗
i
)ε and v(z†i ) + γd(z†

i
)ε ≥

B̂(z†i ). Combining these with B̂(z†i ) ≥ B̂(z∗i ) obtained above, we get v(z†i ) + γd(z†
i
)ε ≥

V ∗(x0)− γd(z∗
i
)ε, or equivalently:

v(z†i ) ≥ V ∗(x0)− ε(γd(z∗
i
) + γd(z†

i
)) ≥ V ∗(x0)− ε(1 + γd(z†

i
))

�

We can now give the main result for OPD+.

Theorem 1. The regret of OPD+ satisfies:

R(x0) ≤ ε + γd(z†)V̂ (x(z†)) ≤ ε +
γd+

max

1− γ

where z† is the node minimizing γd(z)V̂ (x(z)) among all expanded nodes, and d+
max is the

depth of the deepest expanded node.

Proof:Consider any iteration i, and denote by zg
i the greedy leaf, maximizing L(z) on

the current tree. Then:

L(z†i ) ≤ L(zg
i ) ≤ L(zg

n) ≤ Q∗(x0, u0) ≤ V ∗(x0) ≤ B(z†i ) + γd(z∗
i
)ε (10)

where z∗i keeps the same meaning as in the proof of Lemma 1. These inequalities hold,
in order, because: (i) zg

i maximizes L on the current tree; (ii) L(zg
i ) increases with i; (iii)
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the action sequence of zg
n starts with u0, and by the definition of Q∗; (iv) by definition;

(v) and finally from Lemma 1, B(z†i ) ≥ V ∗(x0)− γd(z∗
i
)ε. Therefore:

V ∗(x0)−Q∗(x0, u0) ≤ B(z†i ) + γd(z∗
i
)ε− L(z†i ) ≤ ε + γd(z†

i
)V̂ (x(z†i )) ≤ ε +

γd(z†
i
)

1− γ

and because this is true at any i, the proof is complete. �

Remarks: Lemma 1 limits the number of nodes that must be expanded, and
therefore, given a budget n, implicitly leads to a minimal depth reached by OPD+. The
regret bound of Theorem 1 shrinks with this depth.

To simplify the statements and the upcoming comparison with OPD, a conservative
step was made both in the lemma and the theorem: d(z∗i ), the largest depth along
optimal sequences, was replaced with 0. In reality, as the tree grows the term γd(z∗

i
)ε

shrinks. Further, the better the b-values, the more likely OPD+ is to expand optimal

sequences deeper, and the faster d(z∗i ) will grow. Also, replacing γd(z†)V̂ (x(z†)) by γd
+
max

1−γ
is conservative. �

We next overview the guarantees of OPD [9] as a baseline for our algorithm. In

OPD, the nodes that may be expanded are characterized by v(z) ≥ V ∗(x0) −
γd(z)

1−γ

(compare to Lemma 1), while the regret bound simplifies to R(x0) ≤
γdmax

1−γ (compare
to Theorem 1, noting that the maximal depths are usually different between OPD and
OPD+). Further, since the regret bound shrinks to 0 as n (and thus dmax) grows large,
an asymptotic analysis of the convergence rate can be provided, see [9].

In OPD+, since asymptotically the constant error ε dominates, a large-n analysis is
less informative. The advantage of OPD+ is manifested in the practical case of small
budgets n, when the uncertainty terms due to the shallower tree dominate. To charac-
terize this, let us first investigate when Lemma 1 leads to a smaller set of expandable
nodes than in OPD. This happens when:

ε(1 + γd(z)) ≤
γd(z)

1− γ
, or: d(z) ≤

log 1/(1−γ)−ε
ε

log 1/γ

So, as long as the expanded tree is shallower than this bound, OPD+ is expected to reach
larger depths than OPD given the same budget.

Finally, the overall regret bound is better for OPD+ when:

ε ≤
γdmax − γd+

max

1− γ

i.e. when ε and n are small, because then the left-hand side of the equation is small (due
to ε) and the right-hand side is large (because d+

max > dmax for small ε and n, as shown
above).

3.3. Stochastic Case

In stochastic problems, using OPMDP, the b-values keep their meaning of approxi-
mate value function, and the b-value updates remain a local form of VI on the current
tree. Therefore, the extension to learn b-values entirely parallels the deterministic case,
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and is summarized next. After each step, the set of new training samples Mnew is con-
structed with (8) and the approximator V̂ is updated. During planning, the b-values are
computed using:

b̂(z) =











V̂ (x(z)) if z is a leaf,

max
u

∑

z′∈C(z,u)

p(z′)
[

r(z′) + γb̂(z′)
]

otherwise (11)

rather than with (5). The resulting algorithm is called OPMDP+. Closed-loop planning
is the same as Algorithm 3, except it uses OPMDP+ instead of OPD+.

For the analysis, define:

α(z) = sup
h,z∈L(h),c(z)=max

z′∈L(h) c(z′)

δ(h)

namely, the largest uncertainty of any tree policy h among whose leaves z has the largest
contribution c(z), see (6). Intuitively α(z) quantifies the global impact of z on the
planning tree. Also, denote v(h) the best value among policies starting with h, formally
defined as v(h) =

∑

z∈L(h) P (z)[L(z)+ γd(z)V ∗(x(z))]. We recall the approximator error

ε, defined so that |V̂ (x)− V ∗(x)| < ε.

Lemma 2. OPMDP+ only expands nodes z belonging to some policy h so that v(h) ≥
V ∗(x0)− ε[1 + α(z)(1− γ)].

Theorem 2. The regret (9) of OPMDP+ satisfies:

R(x0) ≤ ε + αmin

where αmin = mini α(z†i ) is the smallest impact among the expanded nodes z†i at all

iterations i.

Remarks: The regret is given by the smallest impact among expanded nodes.
Lemma 2 implicitly bounds the number of nodes that must be expanded in order to
reach one with a certain (small) impact, and so for a given n leads to a (small) regret.

The proofs are rather technical extensions of the deterministic case, and are omitted
here. Instead, to understand the relationship with the OPD+ results, introduce the

notion of effective depth d̃(z) so that α(z) = γd̃(z)

1−γ . By using d̃(z), the condition in Lemma

2 is clearly analogous to that in Lemma 1; and similarly to Theorem 1, αmin = γd̃max

1−γ ,

where d̃max is the largest effective depth among expanded nodes. Note that the impact

(uncertainty) α(z) is spread over leaves at many depths, α(z) =
∑

z∈L(h) P (z)γd(z)

1−γ for

some h, so d̃(z) is fictitious in this sense; it would only correspond to a real depth if all
leaves L(h) were at the same depth. �

In the original OPMDP, the condition on expanded nodes simplifies to v(h) ≥ V ∗(x0)−
α(z), and the regret bound to R(x0) ≤ αmin. As long as the algorithm expands nodes
with large impacts compared to the error ε, i.e. in the practically relevant case of rela-
tively small budgets, OPMDP+ will reach nodes with smaller impacts. So it will lead
to a smaller α+

min, and (since ε is comparatively small) to a better regret bound. This
can be seen by reexamining the conditions from the deterministic case, and replacing the
real depths there by effective depths and their corresponding impacts.
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3.4. Learning Methods

Five approximators are selected to be representative, as follows. First, since the data
is naturally organized as a set of points, we favor memory-based methods over parametric
ones. The first method, Lipschitz approximation, is novel and specifically adapted for the
features of OP. Further, we select local linear regression (LLR) [30] because it is simple
and computationally inexpensive; and at the other end of the spectrum, an advanced
nonparametric technique called least-squares support vector regression (LSSVR), known
for its good generalization [31, 32]. The fourth approximator is a simple empirical exten-
sion of LSSVR that is newly proposed here, and imports the locality of LLR. A hybrid,
local LSSVR (L-LSSVR) is obtained with computational complexity similar to LLR but
hopefully preserving approximation quality from LSSVR. Finally, we do consider one
parametric method as a baseline, again chosen for good generalization: feedforward neu-
ral networks (NNs) [33].

Denote the current memory byM = {(xi, bi) | i = 1, . . . , N}, which stores a number N
of state–b-value pairs. For the parametric approximator, denote the vector of parameters
by ϕ ∈ R

W . Below, we briefly present every method, including also its list of parameters,
a description of the training process, and an investigation of the computational complex-

ity. The memory-based methods additionally involve a memory-management process,
which will be described in the next section. The discussion on complexity does not con-
sider this process, and it does not include either the ‘regular’ steps of the OP algorithms
(which take between O(n log n) and O(n2) computation, depending on how difficult the
problem is, see [10]). Instead, we focus on the complexity of the learning part: training
and using the approximator. We emphasize that the methods can be applied without
any changes in both deterministic and stochastic problems.

Lipschitz approximation relies on the assumption that the optimal value function
is Lipschitz continuous with constant ℓ ≥ 0:

|V ∗(x)− V ∗(x′)| ≤ ℓ‖x− x′‖

where ‖ · ‖ is a norm. The property holds under appropriate conditions when the tran-
sitions and rewards are Lipschitz continuous [34]. Given some b-value b(x) ≥ V ∗(x), we
then have b(x)+ ℓ‖x−x′‖ ≥ V ∗(x)+ ℓ‖x−x′‖ ≥ V ∗(x′). Taking the most favorable left
hand side among all the samples, we construct the following approximate b-function:

V̂ (x) = min

{

min
i=1,...,N

[bi + ℓ‖x− xi‖] ,
1

1− γ

}

(12)

If ℓ is not underestimated (i.e. the smoothness of b is not overestimated), then V̂ remains
a true upper bound for any x, ensuring that node expansions are strictly optimistic.
Parameters: The true Lipschitz constant ℓ is difficult to find in practice, so it is treated
instead as a tuning parameter of the algorithm. Training: consists of adding the new
samplesMnew to the memoryM. Complexity: is dominated by calling the approximator
at every node expansion, where each call involves a linear search3 for the minimum b-

3The following applies to the memory search and matrix inversion steps of all the memory-based
learning methods. Efficient algorithms are available to search the memory, such as kd-trees, which
reduce the O(N) factor to O(log N), but in our Matlab implementation we use linear searches, which
run fast using built-in code. The complexity O(m3) for inverting a matrix of size m holds for e.g.
Gauss-Jordan elimination, and can be brought down to approximately O(m2.3) with the Coppersmith-
Winograd method.
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value, leading to an overall complexity O(nN).
LLR estimates the value of a query point x by fitting a hyperplane trough a given

number knn of samples from the memory that are closest to x according to some metric
on X. The predicted value V̂ (x) is taken as the value of the hyperplane at x. Parameters:

Once the metric is chosen (we use the standard Euclidean norm), LLR’s only parameter
is the number of neighbors knn taken into account for regression. Training: consists, as
for the Lipschitz appproximator, of adding the new samples to the memory. Complexity:

is again dominated by calling the approximator. This time, a call involves a nearest-
neighbor search and solving a linear system of knn+1 equations (where the extra equation
is for an affine term used to offset the hyperplane along the vertical axis), leading to the
overall complexity of O(n(N + (knn + 1)3)).

LSSVR maps the input space onto a higher dimensional feature space, then in this
feature space a hyperplane is fitted trough the samples. In order to avoid making calcu-
lations in that high dimensional space the kernel trick is used, which makes the mapping
implicit [35]. We use LSSVR with Gaussian kernels. Parameters: the kernel width σ
and a regularization factor C. Training: is performed after each memory update, with
all available data. Complexity: is dominated by this training step, which involves the
inversion of a data-size (plus one) matrix having a complexity O((N + 1)3).

L-LSSVR avoids the large-matrix inversion required by LSSVR, by training a local
model to estimate V̂ on demand, using (like LLR) only the nearest neighbors from
the memory. Parameters: kernel-width σ, regularization factor C, number of nearest
neighbors knn. Training: consists of adding the new data to the memory. Complexity:

the single inversion of a large matrix from LSSVR is traded for many inversions of smaller
matrices plus a nearest-neighbor search, leading to O(n(N + (knn + 1)3)) overall.

NNs are parametric so, differently from the other approximators, they do not need to
store and maintain a memory. We use single hidden layer NNs with sigmoidal activation
functions and a linear output function. Before the network is used, it is pre-trained such
that b̂(x) ≈ 1

1−γ , ∀x ∈ X (the uninformed bound 1
1−γ is still explicitly used at the first

step, as described in Algorithm 3). Parameters: include the number of neurons in the
hidden layer nhl, a regularization factor C and the number of epochs nepoch used for
training. Training: is performed at every step with the Levenberg-Marquardt algorithm
in batch mode, using the new batch of data Mnew. Complexity: is dominated by the
training process, which is O(nepochW 3) with W the number of parameters in the network
(related to the dimensionality of X and the number of hidden neurons). A similar cost
is paid to perform the pretraining.

Table 1: Complexity of learning methods

Method Complexity

Lipschitz O(nN)
LLR O(n(N + (knn + 1)3))
LSSVR O((N + 1)3)
L-LSSVR O(n(N + (knn + 1)3))
NN O(nepochW 3)

Table 1 collects the computational complexity of all the methods. From this table,
the Lipschitz learner is expected to have the lowest complexity, smaller than the three
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other memory-based methods, LLR, LSSVR and L-LSSVR. Usually knn ≪ N , in which
case LLR and L-LSSVR invert much smaller matrices and have a lower complexity than
LSSVR. NNs are difficult to compare with the other methods, since the method is very
different and depends on other variables.

3.5. Memory Management

The memory-based learning methods must manage the contents of the memory, for
several reasons:

• Computation time: nonparametric function approximators must perform various
operations on the memory, such as detecting the nearest neighbors of a sample.
Since the computational complexity of these operations scales with the memory size
(see again Table 1), maintaining a large memory will lead to high computational
costs.

• Non-stationarity: let us consider the application of OPD at two subsequent time
steps, at which algorithm explores the same state. During the first time step the
b-value estimate of that state is stored. When an improved estimate becomes avail-
able at the second time step, without memory management the previous estimate
is also kept in the memory. Then, an estimate that is made later of that state’s
value will use outdated information.

• Size: when unmanaged, the size of the memory will grow rapidly. Since memory is
cheap nowadays, this is a smaller problem than those above. Nevertheless, physical
limits can be reached.

New samples are always presented in batches corresponding to the interior of the
developed trees. To derive a good memory management procedure, note first that trees
developed at subsequent steps will contain many identical states, since the state resulting
from applying the chosen action is by definition one of the nodes at depth 1 in the planning
tree. Such duplicate states should be merged into a single point, keeping the smallest
b-values across all duplicates. Duplicate removal is always applied, in all memory-based
methods.

The other steps are different between the Lipschitz method and the other approxi-
mators. The specialized form of the Lipschitz approximator allows deriving an adapted
memory management algorithm. Specifically, if a pair (xi, bi) in the memory satisfies
bi ≥ V̂−i(xi), where V̂−i is computed with (12) without including pair i in the minimum,
then the point does not contribute to V̂ at any state, and it can be removed.4

For the other three memory-based methods (LLR, LSSVR, and L-LSSVR), we pro-
pose a heuristic management technique based on the assumption that old samples are
redundant in regions where new samples become available. Define D(Mnew) as the
smallest hyperrectangle in R

p that contains all the states x in Mnew. All the samples
of M that lie inside D(Mnew) are removed, and then the new samples are added to

4If the memory requirements are still too large, an extra heuristic step can be taken, by extending the
redundancy formula to assign a score si = V̂−i(xi)− bi to each point, and removing points in increasing
order of their score; this removes the least-contributing points first, preserving as much information in
the memory as possible. We will not use this heuristic in the sequel.
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the memory. The choice of using a hyperrectangle domain to assess redundancy makes
this memory management method quite rough. It could be refined e.g. by using the
convex hull of the new samples. However, calculating a convex hull is computationally
expensive and preliminary experiments showed no significant improvement, so we use
the hyperrectangle method in the paper. Algorithm 4 presents the memory management
method.

Algorithm 4 Memory management

Input: current memory M, new batch of samples Mnew

1: if approximator is LLR, LSSVR, or L-LSSVR then

2: compute hyperrectangle D(Mnew)
3: M←M\D(Mnew)
4: end if

5: M←M∪Mnew

6: remove duplicates inM, keeping the smallest b-value
7: if approximator is Lipschitz then

8: remove all redundant points i, for which bi ≥ V̂−i(xi)
9: end if

Output: M, the updated memory

Recall that OP with NNs does not use a memory management mechanism, relying
instead on the incremental training process to track the time-varying b-function.

4. Experimental Study

4.1. Deterministic Case: Resonating Arm

We investigate the effectiveness of learning for OPD in experimental studies on prac-
tically relevant problems involving two variants of a resonating robot arm [36]. In these
experiments, the original OPD is compared to L-OPD with all five approximators, for
different values of the node expansion budget n.

The resonating arm (RA) is designed to perform pick-and-place tasks in an energy-
efficient manner, exploiting a nonlinear spring mechanism. We use variants of the RA
with 1 or 2 degrees of freedom (DOF). A schematic representation of the 1DOF variant
is shown in Figure 3. The mechanism consists of a large pulley (radius r1) and a small
pulley (radius r2), connected by a belt and a spring. The elongation ∆l of this spring,
given with respect to the angle θ of the arm, is calculated as:

∆l =
(

r2 sin

(

r1

r2
θ

)

+ r1 sin(θ)2 + r2 cos(
r1

r2
θ)− r1 − r2 − dl)

2
)

1
2 − l0 (13)

The physical parameters of the system are declared in Table 2. With the elongation
known, the potential energy stored in the spring is P (∆l) = 1

2k∆l2 + F0 ·∆l, while the
torque working on the arm, τspring, is the derivative of P . When seen as a function of
θ, P has two local minima at θ = ±0.85 rad. At these two working points, almost no
torque needs to be applied by the motor to stabilize the arm, nevertheless there is energy
stored in the spring. When the arm needs to traverse from one of these working points
to the other, this stored energy is used.
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Figure 3: The resonating arm with one degree of freedom.

Table 2: Parameters of the resonating arm

Symbol Description Value

r1 radius of large pulley 0.105 m
r2 radius of small pulley 0.02 m
dl distance between pulleys 0.1 m
l0 initial length of spring 0.1 m
k spring constant 150 N/m
F0 pre-stress of spring 5 N

The continuous-time model of the RA dynamics is:

θ̈ =
1

J
(τfriction + τspring + u) (14)

where the friction torque τfriction is modeled as a combination of viscous and Coulomb
friction and u is the torque delivered by the motor. In our experiments, the discretized
actions U = {−2, 0, 2} are used, since they are sufficient to solve the task, and planning
algorithms work best with a small action space. The system state is x = [θ, θ̇]T and the
sampling time is Ts = 0.05 s. The objective is to control the arm from the first working
point, x0 = [−0.85, 0]T , to the second working point, xgoal = [0.85, 0]T . This objective is
represented by the reward function:

ρ(x′) = e−(x′−xgoal)
T
S(x′−xgoal) (15)

where S is a scaling matrix that assigns importance to the deviation from the goal state
for each state variable. In the 1DOF experiments S is taken as S = diag(2, 0.04). The
discount factor is γ = 0.95.

To obtain the 2DOF RA, a second link (lower arm) is added to the the 1DOF RA,
actuated by a motor in the ‘elbow’. The resulting configuration is shown in Figure 4. In
the experiments with the 2DOF variant, the arm is controlled from x0 = [−0.85 0 0 0]T

to xgoal = [0.85 0 0 0]T , where the state vector is x = [θ1 θ2 θ̇1 θ̇2]
T . Nine discretized
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actions U = {−2, 0, 2} × {−2, 0, 2} are used. The reward function has the same form as
in (15), but now with the weighting matrix S = diag(10, 5, 0, 0). Thus both links must
reach the goal position, but the first link is considered more important so it is assigned a
larger weight; note that stabilizing the links at the goal position implicitly requires zero
velocity even though the velocities are not directly considered in the rewards.

Figure 4: The 2DOF resonating arm.

Results for the 1DOF Resonating Arm. In the experiments for the 1DOF RA, we
compare L-OPD with original OPD, and also with several other state-of-the-art planning
methods: SOO for planning (SOOP) [13], Lipschitzian planning (LP) [37, 13], and hier-
achical OLOP (HOLOP) [12], for details see the respective references. We must note here
that these methods find continuous-valued actions; that LP uses Lipschitz continuity of
the dynamics and rewards, not of the value function like the learning variant; and that
HOLOP samples solutions stochastically. The experiments are performed for planning
budgets n = 25, 50, 75, 100, and for each value of n, the method-dependent parameters
are varied as follows:

• L-OPD with Lipschitz: ℓ ∈ {0.5, 1, 1.5, . . . , 7.5}.

• L-OPD with LLR: knn ∈ {3, 5, 7, 9, 11}.

• L-OPD with LSSVR: C ∈ {500, 550, 600, . . . , 1000} and σ ∈ {0.1, 0.2, 0.3, 0.4}.

• L-OPD with L-LSSVR: C ∈ {400, 450, 500, . . . , 1000}, σ ∈ {0.1, 0.2, 0.3, 0.4}, and
knn ∈ {11, 13, 15, 17}.

• L-OPD with NN: nhl ∈ {10, 20, 30, 40, 50}, C ∈ {0, 0.2, . . . , 0.8}, and nepoch ∈
{250, 300, 350, . . . , 1000}.
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• SOOP: parameter α ∈ {0.1, 0.2, . . . , 0.9}.

• LP: Lipschitz constant G ∈ {0.1, 0.2, . . . , 1.5}.

• HOLOP: sequence length K ∈ {2, 3, 4, 5, 10, 15, 20, 25, 30}.

Experiments are performed for all the combinations of parameter values. The results
shown below for each n are the best across these parameter grids (those with largest
discounted returns along the trajectory).

Table 3: 1DOF resonating arm, returns

Method n = 25 n = 50 n = 75 n = 100

OPD 5.38 5.42 5.43 5.43
L-OPD with Lipschitz 5.44 5.44 5.44 5.44
L-OPD with LLR 5.41 5.43 5.44 5.43
L-OPD with LSSVR 5.40 5.44 5.44 5.43
L-OPD with L-LSSVR 5.40 5.44 5.44 5.44
L-OPD with NN 5.44 5.44 5.44 5.44
SOOP 4.90 5.12 5.17 5.19
LP 4.52 4.77 4.79 4.90
HOLOP 4.35 4.60 4.63 4.72

HOLOP uncertainty ±0.21 ±0.12 ±0.18 ±0.19
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Figure 5: 1DOF resonating arm, controlled trajectory.

Table 3 shows the returns obtained. Looking first at OPD with and without learning,
the learning methods all form an improvement over the original algorithm. Both Lipschitz
learning and NNs achieve the largest return for all computational budgets. However, the
improvements are only marginal, which is also seen in Figure 5 where the controlled
trajectories and control signals of OPD and L-OPD with L-LSSVR are compared for
n = 50. L-OPD with L-LSSVR obtains a bang-bang solution, which is near-optimal in
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this problem.5 The small improvements are partly due to the nature of the solution to
this problem; Figure 5 shows that the control signals of both methods are equal until
t = 0.55 s, which means that possible differences in rewards appear after that time.
Because of the discounted setting, these rewards have a small influence on the return.
The second reason for the small improvements is simply that OPD is already able to find
a good solution in this not too difficult problem. Comparing now to the state-of-the-
art methods, they all obtain poorer returns than OPD and therefore than the learning
variants. This is likely because they search for continuous actions while the bang-bang
solution favors discrete actions. Note that, since HOLOP is a stochastic algorithm, mean
values are shown with the half-length of the 95% confidence interval.

Table 4: 1DOF resonating arm, average tree depths and horizons (rounded to integer)

Method n = 25 n = 50 n = 75 n = 100

OPD 8 13 26 28
L-OPD with Lipschitz 12 18 22 27
L-OPD with LLR 13 24 37 41
L-OPD with LSSVR 13 22 35 43
L-OPD with L-LSSVR 13 22 37 49
L-OPD with NN 13 26 35 46
SOOP 3 3 4 5
LP 9 20 23 27
HOLOP 3 3 3 3

From Table 4, which shows the planning depths averaged across all steps of the
trajectory, it can be seen that the learning methods lead to increases in the planning
depth (with an outlier for the Lipschitz approximator when n = 75 and n = 100).
This means that despite the small performance difference, learning does increase the
exploration efficiency. SOOP, LP, and HOLOP do not build trees, and the quantity
most similar to depth is a maximal search horizon, which is shown in the table (and for
HOLOP in fact equals K). The LP horizons are comparable to the depths of OPD, and
much smaller for SOOP and HOLOP.

Table 5 shows the execution times. The state-of-the-art methods take similar time to
OPD, with HOLOP more expensive for low n. The execution times of learning methods
largely follow the expectations from the computational complexity study of Section 3.4.6

Note that the time needed by the Lipschitz approximator is comparable to LLR, due to
the more computationally intensive sample redundancy test used by Lipschitz learning,
which was not taken into account in Section 3.4. Further, even if complexity is theo-
retically the same for LLR and L-LSSVR, the execution times of L-LSSVR are higher
because of the need to compute the Gaussian kernels. NNs are very slow. We postpone
a definitive discussion on the choice of approximator until the results in the 2DOF case,
where the performance differences are clearer.

Next, the performance of the learning methods for OPD is further investigated for
the 2DOF RA, a more challenging control problem.

5This was verified by computing a solution using an approximate VI algorithm with an accurate
approximator [3].

6Note also that in our Matlab implementation, L-OPD cannot yet be used in real-time control.
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Table 5: 1DOF resonating arm, execution times in seconds

Method n = 25 n = 50 n = 75 n = 100

OPD 0.59 1.17 1.97 3.28
L-OPD with Lipschitz 0.86 1.84 2.78 3.73
L-OPD with LLR 0.95 2.04 3.21 4.02
L-OPD with LSSVR 0.78 1.61 2.39 3.42
L-OPD with L-LSSVR 1.00 2.09 3.28 4.73
L-OPD with NN 14.49 20.83 27.61 36.55
SOOP 0.87 1.34 1.91 2.53
LP 0.62 1.15 1.79 2.26
HOLOP 1.16 1.84 2.41 2.03

HOLOP uncertainty ±0.06 ±0.10 ±0.04 ±0.12

Results for the 2DOF Resonating Arm. For the 2DOF RA, experiments are per-
formed for OPD with and without learning, for budgets n = 250, 500, 750, 1000 and
the following method-dependent parameters:

• L-OPD with the Lipschitz approximator and NN: the parameters are the same as
in the 1DOF case.

• L-OPD with LLR: knn ∈ {13, 17, 21, 25, 29}.

• L-OPD with LSSVR: C ∈ {400, 500, 600, . . . , 1000} and σ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

• L-OPD with L-LSSVR: C ∈ {200, 300, 400, . . . , 1000}, σ ∈ {0.1, 0.2, 0.3, . . . , 0.6}
and knn ∈ {9, 11, . . . , 17}.

The reason for the increased number of neighbors in LLR is that for a higher dimensional
space, the method needs more samples to create a good fit. The grids of LSSVR and
L-LSSVR differ from the 1DOF case because each time a method’s best solution was
found at the edge of a grid, we increased the grid. Like before, the best results across all
combinations of parameters are reported.

Table 6: 2DOF resonating arm, returns

Method n = 250 n = 500 n = 750 n = 1000

OPD 2.11 2.11 2.11 2.33
L-OPD with Lipschitz 3.50 3.99 4.14 4.39
L-OPD with LLR 3.59 4.43 3.98 3.92
L-OPD with LSSVR 4.61 4.98 5.03 4.78
L-OPD with L-LSSVR 5.05 5.07 5.05 5.04
L-OPD with NN 5.12 5.12 5.04 5.06

Table 6 shows the returns obtained by each method, while Table 7 shows the average
planning depths. It can directly be seen that all learning methods achieve a signifi-
cant improvement over original OPD in this more challenging 2DOF system. Figure 6
confirms this conclusion via a controlled trajectory for OPD and L-OPD with NN for
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Table 7: 2DOF resonating arm, average depths (rounded to integer)

Method n = 250 n = 500 n = 750 n = 1000

OPD 4 4 4 5
L-OPD with Lipschitz 10 9 20 18
L-OPD with LLR 18 45 94 55
L-OPD with LSSVR 11 87 12 8
L-OPD with L-LSSVR 45 116 166 97
L-OPD with NN 32 36 111 215
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Figure 6: 2DOF resonating arm, controlled trajectories.

n = 250. Whereas in the 1DOF case Lipschitz learning showed good performance, we
now notice that it underperforms all other learning methods. This might happen because
the smoothness of the b-function varies across the state-action space, in which case the
global Lipschitz constant will be conservative (too large) in smoother regions, leading to
poor b-value accuracy in these regions.

Returns are usually larger for larger depths, as predicted by the analysis, although
there are exceptions (e.g. for NNs n = {750, 1000} have less performance than n =
{250, 500} despite larger depths). Such exceptions are not surprising, as sometimes
the returns of explored sequences can be nonmonotonic in the planning horizon, as ex-
emplified in [5]. A more interesting fact is that depths are often smaller for n = 1000
than 750, leading to slightly worse performance. The reasons are not entirely clear, but
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may be related to the fact that approximator errors ε start dominating at large depths,
as indicated in Section 3.2, which could bias parameter optimization towards shallower
trees.

Table 8: 2DOF resonating arm, execution times in seconds

Method n = 250 n = 500 n = 750 n = 1000

OPD 13.70 30.03 49.36 70.76
L-OPD with Lipschitz 21.00 66.04 84.30 137.47
L-OPD with LLR 21.87 53.13 96.75 136.59
L-OPD with LSSVR 37.32 89.59 103.57 272.81
L-OPD with L-LSSVR 30.32 72.48 133.26 182.08
L-OPD with NN 117.52 229.45 343.92 472.01

Table 8 shows execution times, which follow similar trends to the 1DOF case. For
the same budget, L-OPD will cost more time than OPD, since using an approximated
b-function requires additional operations. Nevertheless, learning allows using smaller

budgets while attaining better performance: e.g. all learning methods have larger returns
for n = 250 than OPD at the maximal budget n = 1000. All learning methods except
NNs are also faster at n = 250 than OPD at n = 1000, so they are better for online use.

Summarizing the results so far, NNs offer the best returns but are very computa-
tionally demanding and therefore poorly suited for online use. L-LSSVR offers a good
compromise between performance and computation, and is recommended as the method
of choice.

4.2. Stochastic Case: Inverted Pendulum Swingup

The stochastic problem chosen is an inverted pendulum with a weak, unreliable actu-
ator [5]. The states are the angle θ and the angular velocity θ̇, and the goal is to stabilize
them at 0 (pointing up), starting from the pointing-down state. The DC motor actuator
is weak in the sense its voltage u is limited to [−3, 3] V, which is insufficient to push the
pendulum up in one go; instead, the pendulum needs to be swung back and forth to
gather energy. It is unreliable as it only applies the intended action u with probability
0.6, and with probability 0.4 it applies only 0.7u (when the intended action is 0 it stays
0). This makes it more difficult to perform the swingup, and corresponds to M = 2
possible stochastic next states. The pendulum is a relevant problem due to its highly
nonlinear solution and the difficulty in planning the long-horizon swings. Unnormalized,
quadratic rewards are defined:

ρunnorm(xk, uk, xk+1) = −xT Qx− uT Ru

with Q = diag[5, 0.1] and R = 1, and are then shifted and scaled into [0, 1]. The discount
factor is γ = 0.95. Actions are discretized into K = 3 values, namely −3, 0, and 3 V.

For L-OPMDP, we test the Lipschitz approximator (the only one with the upper-
bound property), and local LSSVR (since it provided the best computation-performance
tradeoff in the experiments above). We also apply standard OPMDP and HOLOP, as
SOOP and LP only work in deterministic systems. The budgets are n = 50, 100, 200,
and 400, with the following method-dependent parameters:
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• L-OPMDP with the Lipschitz approximator: ℓ ∈ {0.01, 0.1, 0.5, 1, 5}.

• L-OPMDP with L-LSSVR: C ∈ {500, 750, 1000}, σ ∈ {0.1, 0.2, 0.3, 0.4} and knn ∈
{5, 10, 10}.

• HOLOP: K ∈ {5, 10, 15, 20, 25, 30}.

For each combination of parameters, 20 independent runs of the experiment are per-
formed, and we report means and 95% confidence intervals on these means. For every n,
the other parameters are optimized by selecting the combination with the largest upper
confidence bound.7
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Figure 7: Returns obtained by L-OPMDP with the Lipschitz and L-LSSVR approximator, compared
to OPMDP and HOLOP. For readability, results are separated into two graphs, with OPMDP on both
graphs for reference.
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Figure 8: Execution times for the inverted pendulum.

Figure 7 shows the returns obtained. Compared to the original OPMDP, adding learn-
ing is nearly always beneficial – results are only inconclusive for L-LSSVR and n = 200.
Note that the different returns correspond to real differences in task-solving performance:
for n = 100, OPMDP cannot swing up the pendulum, while adding Lipschitz-based learn-
ing always results in successful swingups. The Lipschitz approximator performs better
than L-LSSVR in this problem, indicating that a good estimate of the Lipschitz con-
stant can be found. Looking now at HOLOP, with small budgets it is able to get ahead
of OP-MDP and even achieve similar performance to L-LSSVR, likely because its fixed
planning depth allows it to examine longer sequences early on. However, its performance
does not improve with increased budget, which makes it overall less interesting.

7We use smaller parameter grids since the repeated experiments in the stochastic case require more
computation than in the deterministic case.
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Finally, from Figure 8, there is little difference in execution time between the two
learning methods. Mirroring the deterministic case, for the same budget learning incurs
additional costs compared to just planning. However, a well-chosen approximator can
still attain at least as good performance for smaller budgets as just planning with larger
budgets, while remaining comparatively cheaper (compare e.g. Lipschitz approximation
at n = 100 with OPMDP at n = 200 or 400, or with HOLOP at n = 400).

5. Conclusions and Future Work

We introduced a method to learn b-values online in optimistic planning for determin-
istic and stochastic Markov decision processes. We analyzed the performance of OP with
learned b-values, characterizing the dependence on the accuracy of the representation
used. The analysis brings out that for small errors, the learning variant performs better.
We compared several different b-function representations, for two versions of a determin-
istic resonating robotic arm, as well as a stochastic pendulum swingup problem. The
Lipschitz approximator is a good option when the value function is well-behaved, but
otherwise may provide poor performance. Neural networks perform very well, but have
too high computational cost to be used online. A good compromise between performance
and complexity is offered by a local variant of least-squares support vector machines.

A first extension of the work in this paper would be to learn b-values online in
other flavors of OP, such as Upper Confidence Trees [7] or OP for continuous-action
systems [12]. On the analytical side, it would be interesting to exploit techniques from
approximate value iteration [3] to analyze the convergence of the b-function to the optimal
values across multiple steps of online control, and couple this with the existing guarantees.
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