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2.Université de Lorraine, CRAN, UMR 7039 and CNRS, CRAN, UMR 7039, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, France

Abstract:

We consider the generalized flocking problem in multiagent systems, where the agents must drive a subset of their state variables

to common values, while communication is constrained by a proximity relationship in terms of another subset of variables. We build a

flocking method for general nonlinear agent dynamics, by using at each agent a near-optimal control technique from artificial intelligence

called optimistic planning. By defining the rewards to be optimized in a well-chosen way, the preservation of the interconnection

topology is guaranteed, under a controllability assumption. We also give a practical variant of the algorithm that does not require to

know the details of this assumption, and show that it works well in experiments on nonlinear agents.
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1 Introduction

Multi-agent systems such as robotic teams, energy and

telecommunication networks, collaborative decision sup-

port systems, data mining, etc. appear in many areas of

technology. Their component agents usually only have a

local, limited view, which means decentralized approaches

are necessary to control the overall system. In this decen-

tralized setting, often consensus between the agents is de-

sired, meaning that they must reach agreement on certain

controlled variables of interest [1–3]. Inspired by the be-

havior of flocks of birds, researchers studied the flocking

variant of consensus, which only requires consensus on

velocities while also using position measurements [3, 4].

Flocking is highly relevant in e.g. mobile robot teams [5].

In this paper we consider a generalized version of the

flocking problem, in which agreement is sought for a sub-

set of agent variables, while other variables define the in-

terconnection topology between the agents. These two sub-

sets may, but need not represent velocities and positions.

The communication connections between agents are based

on a proximity relationship, in which a connection is ac-

tive when the agents are closer than some threshold in

terms of the connectivity variables. Each agent finds con-

trol actions (inputs) using the optimistic planning (OP) al-

gorithm from artificial intelligence [6]. OP works with dis-

crete actions, like the consensus method of [7], and finds

sequences of actions that are near-optimal with respect to

general nonquadratic reward functions, for general nonlin-

ear dynamics. The first major advantage of our technique

is this inherited generality: it works for any type of non-

linear agents. A controllability property is imposed that,

for any connected state, roughly requires the existence of

an input sequence which preserves connectivity. We de-

fine agent reward functions with separate agreement and

connectivity components, and our main analytical result

shows that if the connectivity rewards are sufficiently large,

the algorithm will preserve the interconnection topology.

In interesting cases, the computational complexity of the

flocking problem is not larger than if the agent would solve

the agreement-only problem. The theoretical algorithm is

restrictive in requiring to know the length of action se-

quences satisfying the controllability property. We there-

fore also provide a practical algorithm variant which does

not use this knowledge, and validate it in simulation to non-

holonomic agents and robot arms [8]. In the second prob-

lem we illustrate that despite our focus on flocking, the

method also works in the full-state consensus case.
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The main novelty of the OP approach compared to ex-

isting methods is that it is agnostic to the specific agent

dynamics, and so it works uniformly for general nonlin-

ear agents. In particular, our analysis shows that when a

solution that preserves the topology exists (in a sense that

will be formalized later), then irrespective of the details of

the dynamics the algorithm will indeed maintain the topol-

ogy. Existing topology preservation results are focused on

specific types of agents, mainly linear [9, 10], [11, Ch. 4],

or sometimes nonlinear as in e.g. [12] where the weaker

requirement of connectivity is considered. Our practical

flocking algorithm exhibits the same generality, whereas

existing methods exploit the structure of the specific dy-

namics targeted to derive predefined control laws, e.g. for

linear double integrators [3], agents with nonlinear acceler-

ation dynamics [13, 14], or nonholonomic robots [12, 15].

The technical contribution allowing us to achieve these re-

sults is the exploitation of the OP algorithm, and of its

strong near-optimality guarantees.

The approach presented here is a significant extension

of our earlier work [16]: it introduces a new algorithm that

is theoretically shown to preserve the topology, and also

includes new empirical results for nonholonomic agents.

Also related is our optimistic-optimization based approach

of [17], which only handles consensus on a fixed graph

rather than flocking, and directly optimizes over fixed-

length action sequences rather than using planning to ex-

ploit the dynamical structure of the control problem.

The remainder of this paper is organized as follows. Af-

ter formalizing the problem in Section 2 and explaining

OP in Section 3, the two variants of the consensus algo-

rithm and the analysis of the theoretical variant are given

in Section 4. Section 5 presents the experimental results

and Section 6 concludes the paper.

List of symbols and notations

|·| cardinality of argument set

n number of agents

G,V, E ,N graph, vertices, edges, neighbors

i, j agent indices

x, u, f state, action, dynamics

xa, xc agreement states, connectivity states

P communication range

ũ, f̃ extended action, extended dynamics

k absolute time step

K length of sequence ensuring connectivity

ud action sequence of length d

u
k
i action sequence of agent i at k

x
k
i state sequence of agent i at k

x̂
i,k
j state sequence prediction for agent j,

built by agent i at step k

uk
i,d, x

k
i,d, x̂

i,k
j,d the dth element of respective sequence

ρ, v reward function, value (return)

γ discount factor

∆, Γ agreement reward, connectivity reward

β weight of connectivity reward

T optimistic planning budget

T , T ∗,L tree, near-optimal tree, leaves

d depth in the tree (relative time step)

b, ν upper and lower bound on return

κ branching factor of near-optimal tree

2 Problem statement

Consider a set of n agents with decoupled nonlinear

dynamics xi,k+1 = fi(xi,k, ui,k), i = 1, . . . , n, where

xi and ui denote the state and action (input) of the ith

agent, respectively. The agents can be heterogeneous: they

can have different dynamics and state or input dimension-

ality. An agent only has a local view: it can receive in-

formation only from its neighbors on an interconnection

graph Gk = (V, Ek), which can be time-varying. The set

of nodes V = {1, . . . , n} represents the agents, and the

edges Ek ⊆ V × V are the communication links. Denote

by Ni,k = {j | (i, j) ∈ Ek } the set of neighbors of node i

at step k. A path through the graph is a sequence of nodes

i1, . . . , iN so that (il, il+1) ∈ Ek, 1 ≤ l < N . The graph is

connected if there is a path between any pair of nodes i, j.

The objective can be formalized as:

lim
k→∞

‖xa
i,k − xa

j,k‖ = 0 ∀i, j = 1, . . . , n

where xa selects only those state variables for which agree-

ment is desired, and ‖ · ‖ denotes an arbitrary norm. We

require of course that the selection produces a vector with

the same dimensionality for all agents. When all agents

have the same state dimension, xa = x, and Ek = E (a

fixed communication graph) we obtain the standard full-

state consensus problem [1, 2]. While our technique can

be applied to this case, as will be illustrated in the ex-

periments, in the analytical development we will focus on

the flocking problem, where the communication network

varies with the connectivity state variables xc. Usually, xa

and xc do not overlap, being e.g., the agent’s velocity and

position [3], so that velocities must be synchronized un-

der communication constraints dependent on the position.

Specifically, we consider the case where a link is active

when the connectivity states of two agents are close:

Ek =
{
(i, j)

∣∣ i 6= j, ‖xc
i,k − xc

j,k‖ ≤ P
}

(1)
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For example when xc is a position this corresponds to

the agents being physically closer than some transmission

range P .

Our approach requires discretized agent actions.

Assumption 1 Agent actions are discretized: ui ∈

{Ui} with |Ui| = Mi.

Remark 1 Certain systems have inherently discrete

and finitely-many actions, because they are controlled by

switches. When the actions are originally continuous, dis-

cretization reduces performance, but the loss is often man-

ageable. Other authors showed interest in multiagent coor-

dination with discretized actions, e.g. [7]. �

Further, to develop our connectivity analysis, we require

the following controllability condition. Denote ui,K =

(ui,0, ui,1, . . . , ui,K−1) ∈ UK
i a sequence of K actions

of agent i, and f̃i(xi,ui,K) the result of applying this se-

quence: the agent’s state after K steps, with f̃i the extended

dynamics.

Assumption 2 There exists K so that for any agent i,

and any states xi, xj , ∀j ∈ Ni,k so that ‖xc
i − xc

j‖ ≤ P ,

there exists some sequence ui,K so that ‖f̃ c
i (xi,ui,K) −

xc
j‖ ≤ P , ∀j ∈ Ni,k.

Remark 2 This is a feasibility assumption: it is dif-

ficult to preserve the topology without requiring such a

condition. The condition simply means that for any joint

state of the system in which an agent is connected to some

neighbors, this agent has an action sequence by which it

is again connected after K steps, if its neighbors do not

move. So if the assumption does not hold and the prob-

lem is such that the neighbors do stay still, the agent will

indeed lose some connections and topology cannot be pre-

served. Of course, in general the neighbors will move, but

as we will show Assumption 2 is nevertheless sufficient to

ensure connectivity.

K-step controllability properties are thoroughly studied

in the literature, e.g. [18] provide Lie-algebraic conditions

to guarantee them. We make a similar assumption in our

previous paper [17], where it is however much stronger,

requiring that the control is able to move the agent be-

tween any two arbitrary states in a bounded region. With a

sufficiently fine action discretization, such an assumption

would locally imply Assumption 2 in the present paper.

When making the assumption, we could also use the fol-

lowing definition for the links:

Ek = {(i, j)|i 6= j, ‖xc
i,k − xc

j,k‖ ≤ P,

and if k > 0, (i, j) ∈ Ek−1} (2)

so that the agents never gain new neighbors, and only need

to stay connected to their initial neighbors. The analysis

will also hold in this case, which is important because with

(1), as k grows many or all the agents may become inter-

connected. For simplicity we use (1) in the sequel. �

3 Background: Optimistic planning for de-

terministic systems

Consider a (single-agent) optimal control problem for

a deterministic, discrete-time nonlinear system xd+1 =

f(xd, ud) with states x and actions u. Define an infinitely-

long action sequence u∞ = (u0, u1, . . . ) and its trunca-

tion to d initial actions, ud = (u0, . . . , ud−1). Given an

initial state x0, the return of a sequence is:

v(u∞) =

∞∑

d=0

γdρd+1(ud+1) (3)

where ρd : Ud → [0, 1] gives the reward after d steps and

γ ∈ [0, 1) is a discount factor, which given the bounded

rewards ensures bounded returns. For example, an approx-

imately quadratic problem is obtained if ρd(ud) = 1 −

max{xd
⊤Qxd, 1}, where xd is the result of applying ud

from initial state x0 and Q is properly chosen so that the

rewards are sensitive to the interesting region of x. Denote

v∗ = sup
u∞

v(u∞) the optimal return. Note that rein-

forcement learning [19] and adaptive dynamic program-

ming [20] also aim to solve this type of optimal control

problem.

ρ x  u( , )0        0

1

ρ x  u( , )0        0

2

f x  u( , )0        0

2

u
2

0u
1

0

f x  u( , )0        0

1

u
1

1 u
2

1

Fig. 1 Illustration of an OP tree T . Nodes are labeled by ac-

tions, arcs represent transitions and are labeled by the resulting

states and rewards. Subscripts are depths, superscripts index the

M possible actions/transitions from a node (here, M = 2). The

leaves are enclosed in a dashed line, while the thick path high-

lights a sequence.

Optimistic planning for deterministic systems (OP) [6,

21] explores a tree representation of the possible action

sequences from the current system state, as illustrated

in Figure 1. It requires a discrete action space U =
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{
u1, . . . , uM

}
; recall Assumption 1, which ensures this is

true for our agents. OP starts with a root node representing

the empty sequence, and iteratively expands T well-chosen

nodes. Expanding a node adds M new children nodes for

all possible discrete actions. Each node at some depth d is

reached via a unique path through the tree, associated to

a unique action sequence ud of length d. We will denote

the nodes by their corresponding action sequences. Denote

also the current tree by T , and its leaves by L(T ).

For a leaf node ud, the following gives an upper bound

on the returns of all infinite action sequences having in

common the initial subsequence up to ud:

b(ud) =
d−1∑

e=0

γeρe+1(ue+1) +
γd

1− γ
=: ν(ud) +

γd

1− γ

where ν(ud) is a lower bound. These properties hold be-

cause all the rewards at depths larger than d are in [0, 1].

OP optimistically explores the space of action se-

quences, by always expanding further the most promis-

ing sequence: the one with the largest upper bound,

u
† = arg max

u∈L(T ) b(u). After T node expansions, a

sequence that maximizes ν among the leaves is returned,

intuitively seen as a safe choice, see Algorithm 1.

Algorithm 1 Optimistic planning for deterministic

systems.

1: initialize tree: T ← {empty sequence u0}

2: for t = 1, . . . , T do

3: find optimistic leaf: u
† ← arg max

u∈L(T ) b(u)

4: add to T the children of u
†,

labeled by u1, . . . , uM

5: end for

6: return u
∗
d∗ , where u

∗
d∗ = arg max

u∈L(T ) ν(u)

Usually OP and its analysis are developed for time-

invariant reward functions [6, 21], such as the quadratic

reward exemplified above. However, this fact is not used

in the development, which therefore entirely carries over

to the time-varying case explained here. We provide the al-

gorithm and results directly in the time-varying case, since

this will be useful in the consensus context.

To characterize the complexity of finding the optimal se-

quence from a given state x, we use the asymptotic branch-

ing factor of the near-optimal subtree:

T ∗ = {ud | d ≥ 0, v∗ − v(ud) ≤
γd

1− γ
} (4)

where the value of a finitely long sequence is defined as

v(ud) = sup
u∞∈ud

v(u∞) and u∞ ∈ ud means that u∞

starts with ud. Let T ∗
d be the set of nodes at depth d on T ∗

and |·| denote set cardinality, then the asymptotic branch-

ing factor is defined as κ = lim supd→∞ |T
∗

d |
1/d

.

A sequence ud is said to be ε-optimal when v∗ −

v(ud) ≤ ε. The upcoming theorem is a consequence of

the analysis in [6, 21]. It is given here in a form that brings

out the role of the sequence length, useful later. Part (i)

of the theorem shows that OP returns a long, near-optimal

sequence, while part (ii) quantifies this length and near-

optimality, via branching factor κ.

Theorem 1 When OP is called with budget T :

(i) The length d∗ of the sequence u
∗
d∗ returned is at least

d(T ) − 1 where d(T ) is the depth of the tree devel-

oped. This sequence is γd∗

1−γ -optimal.

(ii) If κ > 1 OP will reach a depth of d∗ = Ω( log T
log κ ), and

its near-optimality will be O(T−
log 1/γ
log κ ). If κ = 1,

d∗ = Ω(T ) and near-optimality is O(γcT ), where c

is a problem-dependent constant. �

Proof Part (i) follows from the proof of Theorem 2

in [6], and (ii) from the proofs of Theorems 2 and 3 in [6].

A sketch for part (ii) is given here, since it will be use-

ful later in our analysis. A core property of OP is that it

only expands nodes in T ∗. According to item (i), perfor-

mance is dominated by the depth reached. Thus the worst

case is when nodes in T ∗ are expanded in the order of their

depth. Now, T ∗ contains T = O(κd) nodes up to depth d

when κ > 1, and T = O(d) otherwise. Inverting these

relationships obtains the formulas for d∗ in the Theorem

statement, and replacing these expressions for d∗ into γd∗

1−γ

provides the corresponding near-optimality bounds. �

The smaller κ, the better OP does. The best case is

κ = 1, obtained e.g. when a single sequence always ob-

tains rewards of 1, and all the other rewards on the tree

are 0. In this case the algorithm must only develop this se-

quence, and suboptimality decreases exponentially. In the

worst case, κ = M , obtained e.g. when all the sequences

have the same value, and the algorithm must explore the

complete tree in a uniform fashion, expanding nodes in or-

der of their depth.

4 Flocking algorithm and analysis

The OP-based approach to the flocking problem in Sec-

tion 2 works as follows. At every time step k, a local op-

timal control problem is defined for each agent i, using

information locally available to it. The goal in this prob-

lem is to align the agreement states xa with those of the

neighbors Ni,k, while maintaining the connection topol-
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ogy by staying close to them in terms of xc. OP is used

to near-optimally solve this control problem, and an ini-

tial subsequence of the sequence returned is applied by the

agent. Then the system evolves, and the procedure is ap-

plied again, for the new states and possibly changed graph.

To construct its optimal control problem, each agent

needs the predicted behavior of its neighbors. Here, agents

will exchange the predicted state sequences resulting from

the near-optimal action sequences returned by OP. Because

the agents must act at the same time, how they exchange

predictions is nontrivial. If predictions do not match, a co-

ordination problem may arise where mismatching actions

are applied. Coordination is a difficult challenge in multi-

agent systems and is typically solved in model-predictive

control by explicit, iterative negotiation over successive

local solutions, e.g. [22]. However, it is unlikely that the

agents can computationally afford to repeatedly commu-

nicate and reoptimize their solutions at every step. Thus

we adopt a sequential communication procedure in which

agents optimize once per step, similar to the procedure for

distributed MPC in [23]. We show in Section 4.1 that con-

nectivity can be guaranteed despite this one-shot solution.

To implement the sequential procedure, each agent

needs to know its index i as well as the indices of its

neighbors. One way to ensure this is an initial, centralized

assignment of indices to the agents. Agent i waits until

the neighbors j with j < i have solved their local opti-

mal control problems and found their predicted state se-

quences. These agents communicate their predictions to i.

For j > i, agent i constructs other predictions as described

later. Agent i optimizes its own behavior while coordinat-

ing with the predictions. It then sends its own, newly com-

puted prediction to neighbors j > i.

To formalize the approach, first note that when Algo-

rithm 1 is called, we internally relabel time k to 0, so that

indices/depths d in OP and the analysis of Section 3 are

relative to k. Externally, we denote quantities that depend

on the time step by superscript k. Then, the planner of

some agent i returns at step k an action sequence denoted

u
k
i = (uk

i,0, u
k
i,1, ..., u

k
i,d−1), which leads to predicted state

sequence x
k
i = (xk

i,0, x
k
i,1, . . . , x

k
i,d). Here xk

i,0 = xi,k is

the state measurement, and the other states are predictions.

Sequences found at different time steps may have different

actions at corresponding positions (e.g., uk
i,1 may be dif-

ferent from uk+1
i,0 even though they correspond to the same

time index, k + 1 = (k + 1) + 0).

Consider now a specific agent i. At every step k, it re-

ceives the states xj,k of its neighbors j ∈ Ni,k. For neigh-

bors j ∈ Ni,k, j < i, it directly receives their prediction

at k and uses this as an estimation of their future behav-

ior: x̂
i,k
j = (x̂i,k

j,0, x̂
i,k
j,1, . . . ) = x

k
j . For j ∈ Ni,k, j > i,

updated predictions are not available, instead a different

prediction x̂
i,k
j is formed in a way that we specify later.

We add i to the superscript to highlight that the predictions

are from the point of view of agent i.

The local optimal control problem of agent i is then de-

fined using the reward function:

ρk
i,d(ui,d) = (1− β)∆k

i,d(ui,d) + βΓk
i,d(ui,d) (5)

where ∆k
i,d : Ud

i → [0, 1] rewards the alignment be-

tween agreement states and Γk
i,d : Ud

i → [0, 1] rewards

the preservation of neighbor connections, with β weighing

the relative importance of these terms. Typically, β ≥ 1−β

so that connectivity is given priority. Recall that depth d in

the planning tree is equivalent to a time index relative to

k. Both ∆ and Γ may use the predictions x̂
i,k
j . Note that

d may exceed the length of the available predictions; when

that happens the predictions are heuristically kept constant

at the last value available.

In the implementation, if the agents have their neigh-

bors’ models, they could also exchange predicted action

sequences instead of states. Since actions are discrete and

states usually continuous, this saves some bandwidth at the

cost of extra computation to resimulate the neighbor’s tran-

sitions up to the prediction length. In any case, it should be

noted that agents do not optimize over the actions of their

neighbors, so complexity does not directly scale with the

number of neighbors.

So far, we have deliberately left open the specific form

of the rewards and predictions for neighbors j > i. Next,

we instantiate them in a theoretical algorithm for which we

guarantee the preservation of the interconnection topology

and certain computational properties. However, this theo-

retical variant has shortcomings, so we additionally present

a different instantiation which is more suitable in practice

and which we later show works well in experiments.

4.1 A theoretical algorithm with guaranteed topology

preservation

Our aim in this section is to exploit Assumption 2 to

derive an algorithm that preserves the communication con-

nections. We first develop the flocking protocol for each

agent, shown as Algorithm 2. Our analysis proceeds by

showing that, if sequences preserving the connections ex-

ist at a given step, the rewards can be designed to en-

sure that the algorithm will indeed find one such sequence

(Lemma 1). This property is then used to prove topology
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preservation in closed loop, in Theorem 2. Finally, Theo-

rem 3 shows an interesting computational property of the

algorithm: under certain conditions the extra connectiv-

ity reward does not increase the complexity from the case

where only agreement would be required.

Define a prediction for agents j > i held constant to the

latest exchanged state, x̂
i,k
j = (xj,k, xj,k, . . . ). Then, the

connectivity reward for agent i is an indicator function that

becomes 0 only if agent i breaks connectivity with some

neighbor(s) after K steps:

Γk
i,d(ui,d) =






0 if d = K and

∃j ∈ Ni,k, ‖x̂i,k,c
j,d − xk,c

i,d‖ > P

1 otherwise

(6)

The agreement reward is left general, but to fix ideas, it

could be for instance:

∆k
i,d(ui,d) = 1−

1

|Ni,k|

∑

j∈Ni,k

max{‖x̂i,k,a
j,d − xk,a

i,d ‖, 1}

(7)

where the distance measure ‖ · ‖ (which may be a norm

or more general) is properly weighted to be sensitive to

the relevant regions of xa. Then, the agents always apply

in open loop the first K actions from their computed se-

quences, after which they close the loop, measure the state,

and repeat the procedure, see Algorithm 2.

Algorithm 2 OP flocking at agent i – theoretical variant.

1: set initial prediction x
−1
i to an empty sequence

2: for ℓ = 0, 1, 2, . . . do

3: current step is k ← ℓK

4: exchange state at k with all neighbors j ∈ Ni,k

5: send x
k−1
i to j < i

6: wait to receive new predictions x̂
i,k
j from all j < i

7: form predictions x̂
i,k
j for j > i

8: run OP with (5) and (6), obtaining u
k
i and x

k
i

9: send x
k
i to j > i

10: execute K actions uk
i,0, . . . , u

k
i,K−1 in open loop

11: end for

The reader may wonder why we do not simply redefine

the optimal control problem in terms of the multistep dy-

namics f̃i. The answer is that this would introduce expo-

nential complexity in K: instead of Mi actions, we would

have MK
i , and this would also be the number of children

created with each node expansion in OP. In contrast, apply-

ing OP directly to the 1-step problem leads to significantly

decreased computation – in some cases no more than solv-

ing a 1-step problem without connectivity constraints, as

shown in Theorem 3 below.

Moving on to the analysis now, we first show that when

it is possible, each agent preserves connectivity with re-

spect to the predicted states of its neighbors.

Lemma 1 Take β ≥ 1/(1−γ)+ε
1/(1−γ)+γK−1 for some ε ∈

(0, γK−1). Assume that there exists a sequence that pre-

serves connectivity with the neighbors at step K, i.e.

Γk
i,K(ui,K) = 1. Then for any agent i, given a sufficiently

large budget T , the solution returned by OP contains at

least K actions and does indeed preserve connectivity.

Proof The value of a solution that preserves connec-

tivity at step K is at least v1 = β
1−γ , while for a solution

that does not it is at most v2 = 1
1−γ − βγK−1, since the β

reward is not received at step K. We have:

v1 − v2 ≥
β

1− γ
−

1

1− γ
+ βγK−1 ≥ ε

obtained by replacing the value of β. Therefore, the opti-

mal value satisfies v∗ ≥ v1, and as soon as the OP reaches

depth d+1 for which γd

1−γ < ε, due to Theorem 1(i) it will

return a solution that is closer than ε to v∗ and which there-

fore preserves connectivity. For sufficiently large T , depth

max{d,K} + 1 is reached which guarantees both that the

precision is ensured and that the length of the solution at

least K. The proof is complete. �

Putting the local guarantees together, we have topology

preservation for the entire system, as follows.

Theorem 2 Take β and T as in Lemma 1, then under

Assumption 2 and if the graph is initially connected, Algo-

rithm 2 preserves the connections at any step k = ℓK.

Proof The intuition is very simple: each agent i will

move so as to preserve connectivity with the previous state

of any neighbor j > i, and then in turn j will move while

staying connected with the updated state of i, which is

what is required. However, since Assumption 2 requires

connectivity to hold globally for all neighbors, the formal

proof is somewhat technical.

To make it easier to understand, define relation

C(i, j1, . . . , jNi
), where indices jl are all the neighbors

Ni,k at k sorted in ascending order, and Ni = |Ni,k|.

This relation means that i is connected with all jl, i.e.

‖xc
i,k − xc

jl,k
‖ ≤ P , for l = 1, . . . , Ni. When some agents

have superscript ‘+’ in the relation, this means that the re-

lation holds with their updated states after K steps.

Assume the agents are connected via edges Ek at

step k, a multiple of K. We will show by induction

that C(i+, j+
1 , . . . , j+

l(i), jl(i)+1, jNi
) where l(i) is the last

neighbor smaller than i. For the base case i = 1, we
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have C(1, j1, . . . , jN1
) by the fact that (1, jl) ∈ Ek.

Hence the conditions of Assumption 2 are satisfied and

there exists some u1,K that preserves connectivity with

the previous states of all neighbors. By Lemma 1 the al-

gorithm finds and applies such a sequence, which im-

plies C(1+, j1, . . . , jN1
). For the general case, we have

that C(i, j+
1 , . . . , j+

l(i), jl(i)+1, . . . , jNi
) by simply look-

ing at earlier cases stated where the first argument of

relation C is m = j1, . . . , jl(i) (they are earlier cases

since jl(i) < i). As above, this means the conditions

of Assumption 2 and therefore Lemma 1 are satisfied

for the updated states of j+
1 , . . . , j+

l(i), and therefore that

C(i+, j+
1 , . . . , j+

l(i), jl(i)+1, . . . , jNi
) which completes the

induction.

Take any (i, j) ∈ Ek for which i > j, which is sufficient

since the graph is undirected. Then, j ≤ jl(i) and the al-

ready shown relation C(i+, j+
1 , . . . , j+

l(i), jl(i)+1, . . . , jNi
)

implies (i, j) ∈ Ek+K . So all the links are preserved, and

since the derivation holds for arbitrary k, they are pre-

served in closed loop. �

Theorem 2 guarantees that the topology is preserved

when the initial agent states correspond to a connected

network. However, this result does not concern the stabil-

ity of the agreement. In practice, we solve the agreement

problem by choosing appropriately the rewards ∆, such as

in (7), so that by maximizing the discounted returns the

agents achieve agreement. In Section 5, we illustrate that

this approach performs well in experiments. Note that The-

orem 2 holds whether the graph is defined with (1) or (2).

It is also interesting to study the following result about

the performance of OP. Consider some agent i at step k.

Since we need to look into the details of OP for a sin-

gle agent i at fixed step k, for readability we suppress

these indices in the sequel, so we write ρd(ud) = (1 −

β)∆d(ud) + βΓd(ud) for reward function (5). We de-

fine two optimal control problems derived from this reward

function. The first removes the connectivity constraint, so

that ρd,u(ud) = (1 − β)∆d(ud) + β. The second is the

agreement (only) problem with ρd,a(ud) = ∆d(ud), i.e.

for β = 0. Denote v∗
u = sup

u∞

vu(u∞) and v∗
a =

sup
u∞

va(u∞) where vu and va are the discounted returns

under the new reward functions.

We will compare performance in the original problem

with that in the agreement problem.

Theorem 3 Assume v∗ = v∗
u. For OP applied to

the original problem, the near-optimality bounds of The-

orem 1(ii) hold with the branching factor κa of the agree-

ment problem.

Proof We start with a slight modification to the anal-

ysis of OP. For any problem, define the set:

T̃ = {ud | d ≥ 0, v∗ ≤ b(ud)}

Note that T̃ ⊆ T ∗ of (4), since:

v(ud) +
γd

1− γ
≥ ν(ud) +

γd

1− γ
= b(ud)

and so the condition in T̃ implies the one in (4). Further,

OP only expands nodes in T̃ , since in any tree considered,

there always exists some sequence u with b(u) ≥ v∗ (e.g.,

the initial subsequence of an optimal sequence), and OP

always expands a sequence that maximizes b.

Denote now T̃u and T̃a the corresponding sets for the

unconstrained and agreement cases. Take a sequence ud ∈

T̃ , the set in the original problem. By assumption v∗ = v∗
u,

and by construction b(ud) ≤ bu(ud), so v∗ ≤ b(ud) im-

plies v∗
u ≤ bu(ud), and T̃ ⊆ T̃u. Next, v∗

u = (1 − β)v∗
a +

β
1−γ and bu(ud) = νu(ud) + γd

1−γ = (1 − β)νa(ud) +
γd

1−γ = (1−β)ba(ud)+ βγd

1−γ . Replacing these in condition

v∗
u ≤ bu(ud), we obtain:

(1− β)v∗
a + β

1− γd

1− γ
≤ (1− β)ba(ud)

which implies v∗
a ≤ ba(ud), and so T̃u ⊆ T̃a.

Therefore, finally:

T̃ ⊆ T̃u ⊆ T̃a ⊆ T
∗
a

Given budget T , the smallest possible depth reached by

OP in the original problem is that obtained by exploring

the set T̃ uniformly, in the order of depth. Due to the in-

clusion chain above, this depth is at least as large as that

obtained by exploring T ∗
a uniformly. The latter depth is

Ω(log T/ log κa) if κa > 1, or else Ω(T ). The bounds fol-

low immediately as in the proof of Theorem 1. �

Theorem 3 can be interpreted as follows. If the uncon-

strained optimal solution would have naturally satisfied

connectivity (which is not unreasonable), adding the con-

straint does not harm the performance of the algorithm, so

that flocking is as easy as solving only the agreement prob-

lem. This is a nice property to have.

4.2 A practical algorithm

Algorithm 2 has an important shortcoming in practice: it

requires knowing a value of K for which Assumption 2 is

satisfied. Further, keeping predictions constant for j > i is

safe, but conservative, since better predictions are usually



8

available: those made by the neighbors at previous steps,

which may not be expected to change much, e.g. when a

steady state is being approached.

Next, we present a more practical variant that does not

have these issues. It works in increments of 1 step (rather

than K), and at step k, it forms the predictions for neigh-

bors j > i as follows: x̂
i,k
j = (xj,k, xk−1

j,2 , ..., xk−1
j,d ); Thus

for the present step xj,k is used since it was already mea-

sured and exchanged, while for future steps the previously

communicated trajectories are used.

Since K is unknown, the agent will try preserving con-

nectivity at every step, with as many neighbors as possible:

Γk
i,d(ui,d) =

1

|Ni,k|

∑

j∈Ni,k

{
1 if ‖xk,c

i,d − x̂i,c
j,d‖ ≤ P

0 otherwise

(8)

For the links, definition (1) is used, since old neighbors

may be lost but the graph may still remain connected

due to new neighbors. So the aim here is only connectiv-

ity, weaker than topology preservation. For the agreement

component, (7) is employed. Algorithm 3 summarizes the

resulting protocol for generic agent i.

Algorithm 3 OP flocking at agent i – practical variant.

1: set initial prediction x
−1
i to an empty sequence

2: for step k = 0, 1, 2, . . . do

3: exchange state at k with all neighbors j ∈ Ni,k

4: send x
k−1
i to j < i, receive x

k−1
j from j > i

5: wait to receive new predictions x̂
i,k
j from all j < i

6: form predictions x̂
i,k
j for j > i

7: run OP with (5) and (8), obtaining u
k
i and x

k
i

8: send x
k
i to j > i

9: execute action uk
i,0

10: end for

The main advantage of our approach, in both Algorithm

2 and Algorithm 3, is the generality of the agent dynam-

ics it can address. This generality comes at the cost of

communicating sequences of states, introducing a depen-

dence of the performance on the action discretization, and

a relatively computationally involved algorithm. The time

complexity of each individual OP application is between

O(T log T ) and O(T 2) depending on κ. The overall com-

plexity for all agents, if they run OP in parallel as soon

as the necessary neighbor predictions become available, is

larger by a factor equal to the length of the longest path

from any i to any j > i. Depending on the current graph

this length may be significantly smaller than the number of

agents n.

5 Experimental results

The proposed method is evaluated in two problems

with nonlinear agent dynamics. The first problem concerns

flocking for a simple type of nonholonomic agents, where

we also study the influence of the tuning parameters of

the method. In the second experiment, full-state consen-

sus for two-link robot arms is sought. This experiment il-

lustrates that the algorithm can on the one hand handle

rather complicated agent dynamics, and on the other hand

that it also works for standard consensus on a fixed graph,

even though our analytical focus was placed on the flock-

ing problem.

While both types of agents have continuous-time under-

lying dynamics, they are controlled in discrete time, as is

commonly done in practical computer-controlled systems.

The discrete-time dynamics are then the result of integrat-

ing the continuous-time dynamics with zero-order-hold in-

puts. Then, in order for the analysis to hold for Algorithm

2, Assumption 2 must be satisfied by these discretized dy-

namics. Note that in practice we apply Algorithm 3, and

the numerical integration technique introduces model er-

rors that our analysis does not handle.

5.1 Flocking of nonholonomic agents

Consider homogeneous agents that evolve on a plane

and have the state vector x = [X,Y, v, θ] with X,Y the

position on the plane [m], v the linear velocity [m/s], and

θ the orientation [rad]. The control inputs are the rate of

change a of the velocity and ω of the orientation. The

discrete-time dynamics are:

Xk+1 = Xk + Tsvk cos θk

Yk+1 = Yk + Tsvk sin θk

vk+1 = vk + Tsak

θk+1 = θk + Tsωk

where Euler discretization with sampling time Ts was em-

ployed. The aim is to agree on xa = [v, θ]
⊤

, which rep-

resent the velocity vector of the agent, while maintaining

connectivity on the plane by keeping the distances between

the connectivity states xc = [X,Y ]
⊤

below the communi-

cation range P .

The specific multiagent system we experiment with con-

sists of 9 agents initially arranged on a grid with diverging

initial velocities, see Figure 2, top. Their initial communi-

cation graph has some redundant links. In the reward func-

tion, β = 0.5 so that agreement and connectivity rewards

have the same weight, and the agreement reward is (7) with
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the distance measure being a 2-norm weighted so that it

saturates to 1 at a distance 5 between the agreement states.

The range is P = 5. The sampling time is Ts = 0.25 s.
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Fig. 2 Results for nonholonomic agents. Top: initial configura-

tion, with the agents shown as colored dots, their initial velocities

and orientations symbolized by the thick lines, and their initial

graph with thin gray lines. Middle: trajectories on the plane, also

showing the final configuration of the agents. Bottom: evolution

of agreement variables.

Figure 2 shows that the OP method preserves connec-

tivity while achieving flocking, up to errors due mainly

to the discretized actions. The discretized action set was

{−0.5, 0, 0.5} m/s2×{−π/3, 0, π/3} rad/s, and the plan-

ning budget of each agent is T = 300 node expansions.

For all the experiments, the discount factor γ is set to 0.95,

so that long-term rewards are considered with significant

weight.

Next, we study the influence of the budget T and a cutoff

length L for the communicated state predictions, a crucial

parameter for the communication requirements of the al-

gorithm. With a finite L, even if OP provides a longer se-

quences of predicted states, only the first L values are com-

municated to the neighbors, and they set subsequent state

predictions constant at the last known values. To character-

ize performance in each experiment with a single number,

a mean inter-agent disagreement is computed at every step:

δk = 2
n(n−1)

∑
i<j ‖x

a
i,k − xa

j,k‖, and the average of δk

across all steps in the trajectory is reported.

The following budgets are used: T =

25, 50, 75, 100, 200, . . . , 600, and the length of the pre-

dictions is not limited. As shown in Figure 3 and as ex-

pected from the theoretical guarantees of OP, disagree-

ment largely decreases with T although the decrease is not

monotonic. 1
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Fig. 3 Influence of the expansion budget.

The influence of the prediction length is studied for fixed

T = 300, by taking L = 0, 1, 3, 4 and then allowing full

predictions. 2 Figure 4 indicates that performance is not

monotonic in L, and medium-length predictions are bet-

ter in this experiment. While it is expected that too long

predictions will not increase performance since they will

rarely be actually be followed, the good results for com-

municating just the current state without any prediction are

more surprising, and need to be studied further.
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Fig. 4 Influence of the maximal prediction length (“Inf” means

it is not limited).

5.2 Consensus of robotic arms

Consider next the full-state consensus of two-link

robotic arms operating in a horizontal plane. The state vari-

ables for each agent are the angles and angular veloci-

1 See [24], footnote 4 for an example showing how nonmonotonicity can happen.
2 In effect, predictions with this budget do not exceed length 4 so the last two results will be identical.
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ties of the two links, xi = [θi,1, θ̇i,1, θi,2, θ̇i,2], and the

agreement variables comprise the entire state, xa
i = xi,

without a connectivity state or reward component. The ac-

tions are the torques of the motors actuating the two links

ui = [τi,1, τi,2]. The model is standard so we omit the de-

tails and just note that the sampling time is Ts = 0.05 s;

the other parameters can be found in [25]. Applications of

this type of consensus problem include decentralized ma-

nipulation and teleoperation.

Three robots are connected on a fixed undirected com-

munication graph in which robot 1 communicates with

both 2 and 3, but 2 and 3 are not connected. The ini-

tial angular positions are taken random with zero ini-

tial velocities, see Figure 5. The distance measure is the

squared Euclidean distance, weighted so that the angular

positions are given priority. The discretized actions are

{−1.5, 0, 1.5} Nm × {−1, 0, 1} Nm, and the budget of

each agent is T = 400. Consensus is achieved without

problems.
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Fig. 5 Leaderless consensus of multiple robotic arms: angles

and angular velocities for the two links, overimposed for all the

robots. Angles wrap around in the interval [−π, π).

6 Conclusions

We have provided a flocking technique based on opti-

mistic planning (OP), which under appropriate conditions

is guaranteed to preserve the connectivity topology of the

multiagent system. A practical variant of the technique

worked well in simulation experiments.

An important future step is to develop guarantees also

on the agreement component of the state variable. This is

related to the stability of the near-optimal control produced

by OP, and since the objective function is discounted such

a stability property is a big open question in the optimal

control field [26]. It would also be interesting to apply op-

timistic methods to other multiagent problems such as gos-

siping or formation control.
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