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Abstract

Consider a robot with nonlinear dynamics that must quickly find a global optimum of an
objective function defined over its operating area, e.g., a chemical concentration, physical
measurement, quantity of material etc. The function is initially unknown and must be
learned online from samples acquired in a single trajectory. Applying classical optimiza-
tion methods in this scenario would be highly suboptimal, since they would place the
next sample arbitrarily far, without taking into account robot motion constraints, and
would not revise the path based on new information accumulated along it. To address
these limitations, we propose a novel algorithm called Path-Aware Optimistic Optimiza-
tion (OOPA). We formulate the decision of which robot action to apply as an optimal
control problem in which the rewards are refinements of the upper bound on the objec-
tive, weighted by bound and objective values to focus the search around optima. OOPA
is evaluated in extensive simulations where it is compared to path-unaware optimiza-
tion baselines, and in a a real experiment in which a ROBOTIS TurtleBot3 successfully
searches for the lowest grayscale location on a 2D surface.

Keywords: optimization, learning control, mobile robots.

1. Introduction

Consider a problem where a mobile robot must find the maximum of an objective
function defined over its operating area or volume. The function is initially unknown,
so it must be learned from samples collected along a single trajectory of the robot.
Different from classical optimization, the trajectory is important due to energy and time
considerations. This scenario, which we call “path-aware global optimization”, can be
applied to find for instance the maximal density of sea bottom, surface, or water-column
ocean litter (see http://seaclear-project.eu), the maximal or minimal location of
pollutant concentration, temperature, humidity etc. (Essa et al., 2020; Lilienthal and
Duckett, 2004), the strongest-signal location for radio transmission (Fink and Kumar,
2010; Busoniu et al., 2020), the largest sand height on the seabed for dredging, or the
maximal or minimal forest density (Sankey et al., 2017), among others.

Local optimization methods like gradient ascent (Nocedal and Wright, 2006), which
iteratively update a single point, can solve path-aware optimization after being modified
to approximate derivatives from samples, as done e.g. in zeroth-order optimization (Liu
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et al., 2020). Our first baseline is such an approximate version of gradient ascent. All
these methods however share a common limitation in that they only find a local optimum.

Global optimization techniques (Horst and Tuy, 1996) like branch-and-bound, see
Lawler and Woods (1966), Chapter IV of Horst and Tuy (1996), or Bayesian optimiza-
tion (Frazier, 2018; Shahriari et al., 2016) usually choose the next sample at a location
arbitrarily far away from the current robot position. We focus here on an algorithm from
the branch-and-bound class: deterministic optimistic optimization (DOO) (Munos, 2011,
2014), which makes a Lipschitz continuity assumption on the function. We consider a
variant of DOO that at each step samples a point associated with the maximum of an
upper bound computed based on the Lipschitz property and on the information from
previously observed samples. We pick DOO because of its soundness: in its original vari-
ant, it guarantees global convergence at a tightly-characterized rate towards the global
optimum (Munos, 2011).

However, in our path-aware setting, such a global optimizer would overcommit: from
the information accumulated along the path, it may become clear that this next sample
is now suboptimal, but the algorithm would still navigate there even though it no longer
makes sense to invest the energy and time, see also Figure 1 on page 5 for an intuition.
Designing an optimization algorithm that finds a global optimum without overcommitting
is a nontrivial challenge.

Our paper tackles this challenge by making the following key contributions. First, we
design a path-aware extension of DOO, by formulating the decision of which direction
to go at each time step as an optimal control problem. The robot can have general
nonlinear dynamics. To avoid overcommitment, unlike DOO, we do not travel the full
path to the largest-upper bound point. Instead, we pick a nearby position, reachable
by the robot in one step. To represent the aim of refining the upper bound around the
optima, the reward in the control problem includes the volume by which each action is
expected to lower the upper bound, i.e. the difference between the bound before, and
after measuring the new sample. Since exact refinements would require knowing the
future function samples, we must resort to approximations of these samples from known
position-function value pairs. We use nearest-neighbor approximation for this purpose,
leading to a predicted volume refinement. This refinement is weighted by the value of the
bound and of the function itself at the current point, to focus the algorithm around the
optima.

To solve the control problem of maximizing the cumulative rewards (weighted pre-
dicted refinements) along the trajectory, we use an online version of value iteration (Bert-
sekas, 2019) combined with interpolation to handle the general robot dynamics (Buşoniu
et al., 2010), and using a small number of updates to prevent extrapolating too much
from the available information (Busoniu et al., 2020). The overall algorithm obtained is
called path-aware optimistic optimization, OOPA.

The second key contribution is to validate OOPA in extensive experiments, in which
the key performance criterion is the path length taken to reach (close to) an optimum.
We begin with simulations for a mobile robot with unicycle-like nonlinear dynamics, in
which we study the impact of the tuning parameters of the algorithm and its robustness
to errors in the Lipschitz constant used to compute the upper bounds. The accuracy
of volume refinement predictions is studied. All of the above is done for a smooth,
deterministic function with multiple optima. Then, the algorithm is validated for noisy
and non-differentiable functions. Throughout the simulations, OOPA is compared with
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two baselines: gradient ascent and the classical DOO variant explained above.
Finally, to show the feasibility of the method in real life, it is applied to a TurtleBot3

ground robot for a physical embodiment of the smooth objective function from the sim-
ulations, realized as the black level of a printed grayscale surface. The behavior of the
real robot is similar to those seen in simulations, but interestingly, due to the limitations
of the camera, which “flattens out” the region of grayscale values observed, the Lipschitz
constant must be taken smaller in the real experiments.

Related work can also be found in other fields than classical optimization. For exam-
ple, in artificial intelligence, bandit algorithms are a class of sample-based optimization
of stochastic functions (Lattimore and Szepesvári, 2020). They also overcommit by sam-
pling at arbitrary distances, and must typically sample at least once everywhere to start
building their estimates. In robotics, mapping requires building a map of the environ-
ment, and leads to the famous SLAM problem (Durrant-Whyte and Bailey, 2006) when
the location of the robot is also unknown. Informative path planning chooses the path
of a robot so as to find a map or other quantity of interest in as few steps as possible
(Binney et al., 2010; Binney and Sukhatme, 2012; Lim et al., 2015). Other variants,
like coverage (Choset, 2001), aim to find a shortest path that examines the entire space
using the robot sensors. Different from all these robotics paradigms, the aim here is not
to build or sense the entire function, but rather just to find the optimum as quickly as
possible.

Compared to our preliminary work in the conference paper (Santejudean and Bu-
soniu, 2021)1, the present paper provides both algorithmic and experimental novelty.
Algorithmically, by exploiting interpolative value iteration, OOPA is generalized to non-
linear robot dynamics, whereas before the robot had to obey simple-integrator dynamics
and its position had to stay on a grid so that exact value iteration could be run. Exper-
imentally, all the simulations are performed for unicycle-like, nonlinear dynamics. More
importantly, fully novel experiments (i.e. that were not given before even for linear dy-
namics) are reported: for noisy samples and non-differentiable functions, together with
– crucially – the real TurtleBot experiments. Compared to the approach in (Busoniu
et al., 2020), which aimed to maximize the amount of transmitted data over a wireless
network, the robot model is similar but the problem is different: finding the maximal
function value. This leads to a more involved optimal control problem.

In Section 2 we introduce the background on DOO followed, in Section 3, by the
formal definition of the optimization problem as optimal control. Section 4 presents the
OOPA algorithm used to solve this problem. Empirical results, both in simulations and
with a TurtleBot3 robot are provided in the next section. Lastly, Section 6 summarizes
the main points and gives further extensions for the OOPA method.

2. Preliminaries

DOO is an algorithm belonging to the branch-and-bound class that aims to estimate
the optimum of a function f : P → R from successive function evaluations. It sequentially
splits the search space P into finer partitions and samples to expand further only those

1In turn, (Santejudean and Busoniu, 2021) is a synthesis of the BSc thesis of the first author, available
at http://rocon.utcluj.ro/files/santejudeanbsc.pdf.

3

http://rocon.utcluj.ro/files/santejudeanbsc.pdf


sets associated with the highest upper bound values on the objective function. After a
numerical budget has been exhausted, the algorithm approximates the maximum as the
location p with the highest f value evaluated so far. An assumption made by DOO is
that there exists a (semi) metric over P , denoted by l, and that f is Lipschitz continuous
w.r.t. this metric at least around its optima, in the sense:

f(p∗)− f(p) ≤ l(p∗, p), ∀p ∈ P (1)

where p∗ ∈ argmaxp∈P f(p). Note that for convenience, we will require here the property
to hold for any pair (p1, p2) ∈ P 2:

|f(p1)− f(p2)| ≤ l(p1, p2), (2)

and the Euclidean norm weighted by the Lipschitz constant will be chosen as the metric
l over P :

l(p1, p2) = M ||p1 − p2||, (3)
where M is the Lipschitz constant. Our method can be extended to any metric l.

We will use the Lipschitz continuity described in equations (1)-(3) and give a different
approach to the partition splitting in DOO: the construction of a so-called “saw-tooth”
upper bound (Munos, 2014). This upper bound function is defined as B : P → R so
that:

f(p) ≤ B(p) := min
(ps,f(ps))∈S

[f(ps) + l(p, ps)], ∀p ∈ P (4)

where ps is a sampled point and (ps, f(ps)) ∈ S, denoting with S the set of samples
(function evaluations) considered while building B. See Figure 2 for an example. At
each iteration, the next state to sample is given by the formula:

p+ := argmaxp∈PB(p). (5)

The algorithm iteratively samples points selected with equation (5). Note that B is
lowered (refined) with each new sample gathered by the robot, implicitly via (4).

Beyond this classical DOO algorithm, the bound (4) will drive our entire method, and
its implications in the problem definition and algorithm will be detailed in the following
sections.

3. Problem definition and formulation using optimal control

Consider a mobile robot described by the np-dimensional positions p ∈ P ⊂ Rnp

(np ≥ 1), auxiliary states y ∈ Y ⊂ Rny (ny ≥ 0) and control inputs u ∈ U ⊂ Rnu (nu ≥
1). Differently from our preliminary paper (Santejudean and Busoniu, 2021), where
dynamics were linear and first-order, here we consider general nonlinear dynamics of the
robot. To define these dynamics, we denote the overall system state by x := [pT , yT ]T ,
where x ∈ X := P × Y . Note that y can add velocities, headings etc. to the system
state x; if ny = 0, the state signal consists of only robot positions and the agent moves
with first order dynamics. We define next the dynamics, g : P × Y ×U → P × Y , in the
discrete-time setting:

[pTk+1, y
T
k+1]

T =: g([pTk , y
T
k ]

T , uk) (6)
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where k denotes the time step of the trajectory followed by the robot.
Denote as in Section 2 with f : P → R the function our robot needs to optimize.

Initially, f is unknown to the agent and must be learned online by sampling the states
visited during a single trajectory run. Due to dynamics constraints (e.g. limited veloc-
ity), our robot can only sample at the next, k + 1th-iteration the states reachable within
one step from its current position pk. These constraints, along with the goal of finding a
maximum p∗ while minimizing the trajectory length (which for constant robot velocity
also translates to minimizing the travelling time) define our path-aware global optimiza-
tion setting. Even though we aim to quickly find a global maximum, the algorithm
naturally explores near-optimal regions around the global optima. Such behavior can
be useful in problems often encountered in practice, when a mobile robot needs to find
the optimum of a physical quantity such as the highest density of surface or underwater
ocean litter, the maximal bandwidth location of a radio transmitter, areas with large
pollutant concentration throughout a city, etc.

The solution we propose applies DOO to build and refine with each new sample
gathered by the robot an upper bound approximator of f . Different from the classical
DOO approach, the goal here is not to always sample the maximal B-valued positions
at next iterations (steps), but rather exploit the underlying objective of refining the
bound around the optimum. The reasoning is as follows: due to dynamics constraints,
the agent cannot perform large steps throughout the search space to directly sample
the maximal-B states. Moreover, by committing to such trajectories without changing
direction until the maximal-B states are reached, the robot would not be using the
information (samples) gathered across the committed path, likely leading at some point
to suboptimal trajectories. We call this the danger of overcommitment and provide some
intuition in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5
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robot position

function optimum

overcommitted trajectory
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Figure 1: Based on the information available to the robot when it is at the black cross, a classical
algorithm decides to check the point at the black arrow. However, samples (dots) accumulated along
the black trajectory give more information about the optimum (blue disk), so it becomes apparent that
continuing along this trajectory would waste energy and time. Thus, the robot should change heading
to the magenta trajectory.
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To address overcommitment, we make DOO aware of its path by formulating the task
of choosing a decision at each step (e.g. the next waypoint to be followed, acceleration
and torque of the robot, etc.) as an optimal control problem (OCP). As stated above,
we do not aim to always sample the highest B-valued states; instead, the goal here is to
lower (refine) the upper bound of f around optima to implicitly find p∗. Thus, we aim
to maximize the refinements of the upper bound around points of interest that either:
a) have high upper bounds and optimistically can “hide” maxima points, or b) have high
function values that can lead to a maximum.

As the agent learns the function while searching for the optimum, our problem ex-
hibits the exploration-exploitation tradeoff present in reinforcement learning. Specifi-
cally, overly encouraging a) will lead to excessive refinements in untraveled regions, less
focused around high-value function points (too much exploration), while by overly en-
couraging b), the robot will overly refine areas where high function values were sampled
and visit less untraveled regions that can possibly contain maxima (too much exploita-
tion).

The OCP reward function defined next addresses this tradeoff. We consider the
volume between the function upper bound and the horizontal plane (we use the term
volume generically for any np; for np = 1 it reduces to an area). With each new sample
the upper bound is lowered according to (4). The difference between the old and the new
volumes is called volume refinement. Note that future samples are unknown and cannot
be used to compute exactly this refinement, instead we must rely on approximations to
predict it; see the example in Figure 2 for more intuition.

Formally, we define the reward as the volume predicted to be refined by taking action
u in position p of state x, weighted by the average of the function value and its upper
bound, both evaluated at p:

ρ(x, u) =
f̂(p) +B(p)

2
r(p, u) (7)

where ρ(x, u) is the reward function, f̂ is a function estimate obtained using a sample-
based approximator, B is the upper bound function defined in (4), and r(p, u) represents
the volume predicted to be refined. The refinement is computed in the following way.
First, denote with S = {(pj , f(pj))| pj = f(pj), j = 1, . . . , k} the set of samples acquired
up to step k. Compute next the upper bounds B1 and B2 using (4) and two slightly dif-
ferent sets of samples: B1 with S1 = S∪{(p, f̂(p))} and B2 with S2 = S1∪{(p+, f̂(p+))},
where p+ is the position of a possible next state x+ = g(x, u). The volume refined is
determined through numerical integration over the difference in bounds (B1−B2) across
the np dimensions of P .

A grid of points is used to determine approximately B1 and B2 and apply the inte-
gration over the bounds difference. This evaluation grid should not be taken too fine, as
its values are mostly estimations of their true upper bound quantities. In most cases a
rough approximation of B will suffice.

The terms B(p) and r(p, u) direct the refinements to locations with high upper bounds
where optimistically a maximum might be situated, and respectively where the robot has
the potential to significantly lower B (encouraging exploration). Factor f̂(p) in (7) tells
the robot to visit states closer to high function values (encouraging exploitation). As we
do not know the function at future positions, f̂(p) will be in most cases a prediction.
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We compute a nearest-neighbor prediction, by taking the function value of the closest
point to p that was already sampled. If state p was sampled before, its corresponding
function value is directly taken (this should rarely happen in practice). We will use this
simple approximator in experiments due to its light computational load, however, any
sample-based approximator could be used for f .

Figure 2 gives an example of the reward calculation for a simple 1D case, where the
evaluation point is denoted by pk and the next point (corresponding to g(xk, uk)) is pk+1.
As pk was already sampled, its function value f(pk) is chosen as the prediction of f̂(pk)
and f̂(pk+1) (since we are using the nearest-neighbor approximator and pk is the closest
sampled point to pk+1). Note that B(pk) = f(pk), as the bound evaluated in a sampled
position equals the function value according to (4).

Figure 2: The sampled function is drawn with an orange line and the saw-tooth envelope represents its
upper bound. Since pk is the closest, sampled position to pk+1, f(pk) (black star) is used to approximate
f̂(pk), f̂(pk+1) (red star) and to determine B(pk). The area refinement is colored in green.

More generally, note that the ideal reward function would use the true function values
and updated B-values at the next steps. However, this is impossible in practice because
it would require advance knowledge of the function samples. This is why we must resort
to approximations of f and of the refinement.

The OCP objective is to maximize the long-term value function V : X → R. As the
horizon is unknown to the robot (there is no telling how many steps it will take to reach
the optimum), we define V in the infinite horizon setting:

V h(x) =

∞∑
k=0

ρ(x, u) (8)

where h : X → U represents the control law and u = h(x). This objective aims to
maximize the upper bound based rewards, and we will experimentally investigate the
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resulting travelled distance until the optimum.2 We do not use a discount factor because
upper bounds should eventually get close to the function, making refinements approach
zero, and due to this long-term values are expected to be bounded. We are searching for
an optimal policy, denoted by h∗, such that:

V ∗(x) = V h∗
(x) ≥ V h(x), ∀x, h. (9)

Define also the optimal Q-function Q∗(x, u) = ρ(x, u) + V ∗(g(x, u)), which satisfies
the Bellman equation:

Q∗(x, u) = ρ(x, u) + max
u′

Q∗(g(x, u), u′) (10)

This equation is usually solved by iterative Q-value iteration updates:

Q+(x, u) = ρ(x, u) + max
u′

Q(g(x, u), u′) (11)

which converges to Q∗. Then, the optimal policy is given by h∗(x) = argmaxu Q
∗(x, u).

Due to the accumulation of new information, the OCP is a time-varying problem
in which ρ(x, u) changes with each new sample gathered. More specifically, the volume
refinements r, function estimate f̂ and upper bound B change as the agent follows its
path. The changes in ρ are expected to be limited (since we only add one sample per
step) and thus the solution of one problem should offer useful insight about the next.
We exploit this feature in the algorithm from the next section.

A formal convergence analysis would be difficult to achieve due to the heuristics
used. Nevertheless, intuitively, we expect the algorithm to asymptotically fill the entire
search space with samples up to the resolution afforded by the discretized actions, which
would mean that the optimum is also found with this resolution. The more interesting
question is however how fast this optimum is found, which requires understanding the
small-sample, nonasymptotic regime of the method.

In the following sections we will focus on exhaustive simulations and a real-robot
experiment to validate the method.

4. Algorithm

In this section we will first introduce an approximator for the computation of the
Q-function, then describe the optimal control algorithm and finally highlight the impact
of its tuning parameters.

Unlike the method presented in Santejudean and Busoniu (2021), the dynamics in
(6) allow the system state x to be continuous and include extra states in addition to
p; in particular p can take any arbitrary position in P (it is not limited to a grid of
points anymore). The action space remains a finite, discrete set and we will denote it by
Ud ⊂ U . Due to the continuity of x, we must in this paper resort to approximations of
the Bellman updates based on (10).

Multilinear interpolation is used further to represent Q(x, u). To give some intuition,
Figure 3 presents a simple interpolation example in which the discrete states x1, . . . , xN

2We also tried to include an explicit travel cost term in the reward, but this did not work better.
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comprise the interpolation grid. The points x1, . . . , xN are the centers of the N pyramidal
basis functions (PBFs) ϕ1, . . . , ϕN – the triangles in the 1D case of the figure. The action
space is composed of D discrete controls u1, . . . , uD. For each pair of ith-PBF and jth-
discrete action we have a different parameter θi,j , with a total of N ·D such parameters.
Note that the PBFs represent the weights with which each point on the grid participates
to the approximation.

ϕ
1

u

ϕ
2

ϕN

u
1

u
2

uD

x

+

+

+

θ2,D

θN,D

θ2,2

θ1,2

θN,2

θ2,1

θ1,1

θN,1
θ1,D

Figure 3: Illustration of a 2D interpolation example where the discrete states x1, . . . , xN make up the
interpolation grid. The action space Ud = {u1, . . . , uD}. For each pair (xi, uj) a parameter θi,j is
considered. The pyramidal basis functions ϕ1(x), . . . , ϕN (x), with the centers in x1, . . . , xN , give the
weights with which each point on the grid participates to the approximation.

We will expand the interpolation example to the np+ny dimensions of X and apply it
to our method. Define first the state grid Xgrid, composed of grids of points taken across
each interval domain of the state variables in x. Part of Xgrid is Pgrid, which represents
the discretized space of positions across P used for the B-related computations (lines
11− 14 of Algorithm 1). A linearly parameterized approximation of Q is obtained:

Q̂(x, uj ; θ) = ϕ(x)T θ·,j (12)

where ϕ : X → Rngrid represent the pyramidal basis functions and θ ∈ Rngrid their
corresponding parameters, with ngrid denoting the total number of points taken on the
state grid Xgrid. The parameters θi,j are associated with the centers xi ∈ Xgrid and
actions uj ∈ Ud and act as weights to the PBFs ϕi(x). Note that xi is the center of
the PBF ϕi and thus the parameter θi,j can be seen as Q̂(xi, uj), since ϕi(xi) = 1 and
ϕi′(xi) = 0, ∀ i′ ̸= i.

Finally, an approximate version of (11), also known as interpolative Q-iteration (Buşo-
niu et al., 2010), can be given:

Q̂(xi, uj ; θ+) = θ+,i,j = ρ(xi, uj) + max
j′

Q̂(g(xi, uj), uj′ ; θ), ∀i, j (13)

where θ+ represents the updated version of the current parameters θ.
The method in Algorithm 1 is called Path-Aware Optimistic Optimization (OOPA)

and extends the previous version presented in Santejudean and Busoniu (2021) by gen-
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eralizing g to arbitrary robot dynamics. Moreover, the OCP is approximately solved
through the interpolative Q-iteration of (13) instead of the discrete-state Q-iteration.

The algorithm workflow is as follows. The robot starts in a state x0 with no previous
samples available, i.e. S = ∅. At each trajectory step k, the agent takes a sample
f(pk) and adds it to the set S. We apply then an online version of the interpolative
value iteration (13) to solve the OCP defined in Section 3. We do not fully solve the
OCP at each step but rather approximate it by running a series of Q-iteration updates.
The reasoning will be given later. Note that the Q function is estimated across an
interpolation grid Xgrid (line 16) using the rewards computed in the algorithm lines
10− 15, previously described in page 6.

Next, the agent uses explicit enumeration over Ud (line 20) to choose the action
maximizing the approximated Q-values:

uk = arg max
u∈Ud

Q̂(xk, u; θk), (14)

applies it following the dynamics in (6) and measures the next state xk+1. This procedure
continues until the total number of trajectory steps n is exhausted.

Algorithm 1 Path-Aware Optimistic Optimization (OOPA).
Input: motion dynamics g, discretized action set Ud, state interpolation grid Xgrid (con-

taining also Pgrid), Lipschitz constant M , number of Q-iteration sweeps m, total
trajectory steps n

1: initialize sample set S ← ∅
2: initialize θ0,i,j ← 0, ∀xi ∈ Xgrid, uj ∈ Ud

3: measure initial state x0

4: for each step k = 0, . . . , n− 1 do
5: sample f(pk), add pair (pk, f(pk)) to S
6: θ0 = θk
7: for each sweep l = 0, . . . ,m− 1 do
8: for all states xi ∈ Xgrid, actions uj ∈ Ud do
9: x+,i ← g(xi, uj)

10: find f̂(pi), f̂(p+,i) and B(pi) using M , (4) and S

11: compute B1, B2 across Pgrid using M , (4), S1 ← [S, (pi, f̂(pi))] and
12: S2 ← [S1, (p+,i, f̂(p+,i))], respectively
13: predict volume refinement r(pi, uj) by applying numerical integration
14: over (B1 −B2) across Pgrid

15: find ρ(xi, uj) using r(pi, uj) and (7)
16: θl+1,i,j = ρ(xi, uj) + maxj′ Q̂(g(xi, uj), uj′ ; θl)
17: end for
18: end for
19: θk = θm
20: uk = argmaxu∈Ud

Q̂(xk, u; θk)
21: apply action uk, measure next state xk+1

22: end for
23: return p̂∗ = argmaxpk

f(pk), where (pk, f(pk)) ∈ S, k = 1, . . . , n.
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The tuning parameters of OOPA are as follows: the number m of Q-iteration sweeps
that are applied at each step of the algorithm, the Lipschitz constant M , and the state
grid Xgrid.

Parameter m impacts the propagation of the upper bound-based rewards across the
state grid considered while approximating Q. As mentioned above, we do not fully solve
the OCP due (as a first reason) to the prohibitively expensive computations, but run m
iterative updates of the form (13) on the interpolation grid Xgrid. Fully converging to the
true solution would require the true rewards to be known in advance, as B-values change
(lower) with each new sample gathered by the robot, meaning that refinement gains at
later steps will be smaller. Not knowing in advance the evolution of B at future steps
will lead to overestimations of ρ in terms of refinement gains. This represents a second
reason why the number of Q updates needs to be limited. We suggest taking m ≤ 5.

Since the Lipschitz constant is generally unknown in practical scenarios, we must
resort to empirical tuning to approximate it. The recommended approach is to start with
a high M and decrease its value based on the feedback provided by the experiments. By
taking a lower M compared to its true value, the bound inequality f(p) < B(p) would
not hold anymore, creating incorrect upper bounds (and volume refinements in (7)) that
might break the algorithm.

Lastly, finer state grids (and discretized action spaces) are expected to lead the robot
closer to the optimum, thus approximating p∗ with better accuracy. We will study the
impact of the state space discretization in the next section.

5. Results and discussion

Consider a robot with unicycle-like dynamics in (6):

pk+1 = pk + Ts · uk,1 · [cos(uk,2), sin(uk,2)]
T (15)

where Ts = 1 s is the sampling period, while uk,1 and uk,2 respectively represent the
velocity and robot heading, with uk = [uk,1, uk,2]

T . The discretized set of actions is
built using the velocities uk,1 ∈ {0, 1}m/s, where the nonzero velocity is along one of
the headings uk,2 ∈ {0, π/4, . . . , 7π/4} rad. Note that we have simplified equation (6) by
taking no additional motion related states y in x, since such first-order dynamics help
with the readability and are enough to illustrate our ideas. More accurate models are,
of course, possible.

The nonlinearity in (15) comes from the usage of trigonometric functions in the unicy-
cle dynamics of the robot. An example of linear dynamics would be the simple choice of
up/down/left/right directions previously used in Santejudean and Busoniu (2021). Note
that our method could easily accommodate other dynamics, for instance “true” unicycle
dynamics with second order models (Lalish and Morgansen, 2008; Plaku et al., 2010).

The robot looks for an optimum in the space P = [0, 2]× [0, 2]m2. We define the grid
Pgrid of 21× 21 equidistant positions (the points on the grid are spaced at 0.1m on both
axes). Since x = p, Xgrid = Pgrid, and we will determine B and estimate Q on the same
grid Pgrid. Note that the dynamics are nonlinear and the next states can fall anywhere in
X (they are not limited to Xgrid). Thus, we must resort to the interpolative Q-iteration
in (13) to estimate the action-value function.
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The function sampled by the agent is represented by a sum of three radial-basis func-
tions (RBFs) with the following coefficients: widths bi = [0.65; 0.65], [0.3; 0.3], [0.5; 0.5],
respectively heights hi = [148.75, 255.0, 212.5] and centers ci = [0.375; 0.75], [1.375; 1.75],
[1.625; 0.375] (see Figure 10 on page 17 for a contour plot). The global optimum is at
p∗ = [1.375; 1.75] and has the value f∗ = 255.0. The Lipschitz constant was chosen
empirically as M = 730, so that it creates close to true upper bounds for f .

To study the performance of OOPA, throughout the simulations we will use as key
criterion the trajectory length required by the agent to reach close to the optimum. We
will also consider a successful approximation of p∗ a trajectory that reaches at least as
close as 0.1m (equal to the grid step size) to p∗.

We will compare OOPA to two different baselines. The first one is classical DOO
(CDOO) algorithm that, similarly to OOPA, uses the saw-tooth upper-bound (4). How-
ever, it fully commits to visit the maximum-B point (5) and thus changes its trajectory
only once this point was reached. CDOO is not using the information gathered along
the (possibly overcommited) trajectory until the next target point is reached.

The second baseline is Gradient Ascent. It applies Local Linear Regression on the
closest N neighbors to the current position to create a local approximation plane of the
sampled function. This plane is differentiated and the gradient direction that results
is followed by the robot with unit velocity. This method has the natural limitation of
converging only to local maximum points, likely at faster rates than the global methods
above.

We organize the empirical results as follows. Section 5.1 provides experiments with
a simulated mobile robot. It studies first the impact of the tuning parameters (Section
5.1.1) and the prediction accuracy of the volume refinements (Section 5.1.2). Section 5.1.3
compares the method against the CDOO and Gradient Ascent baselines. In Section 5.1.4
a study is provided to see how OOPA deals with noisy function evaluations, and Section
5.1.5 checks the behavior of OOPA for non-differentiable, pyramidal functions. Finally,
we provide a real-life illustration of the method in Section 5.2.

5.1. Results with a simulated mobile robot
5.1.1. Influence of tuning parameters

The first parameter to be tuned is m, the number of Q updates applied at each step
taken by the robot. In the following simulations we keep the total number of trajectory
steps set to n = 300, equivalent to 30m travel distance. On the setup defined above,
we run the algorithm for m ∈ {1, 2, 3, 4, 5} and study the maximum f -value sampled:
f = maxpk

(f(pk)), as well as the minimum distance until p∗: ∆p = minpk
(||p∗ − pk||),

where (pk, f(pk)) ∈ S. Another metric of interest is the minimum difference between the
optimum and the values of f sampled so far: ∆f = minpk

(f∗ − f(pk)), with pk having
the same meaning as above. The robot’s initial position is set to p0 = [0; 0].

Figure 4 shows that higher values of m (m ∈ {3, 4, 5}) perform well in finding the
maximum with higher accuracy, while lower values (m ∈ {1, 2}) are suboptimal. The
optimum was found sooner for m ∈ {3, 5} (recall the meaning of ”found” – 0.1m close
to p∗): in 10.3m compared to the 25.1m when m = 4. Among these values we choose
m = 3, as this both provides better accuracy when searching for p∗ and requires less
computation (due to a lower number of Q updates). The intuition is that rewards based
on the volume refinements need to be propagated across the state space, but not too
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Figure 4: Illustration of the maximum value sampled so far (left) and the minimum distance to the
maximum p∗ (right), denoted with ∆p; for m ∈ {1, 2, 3, 4, 5}. The legend on the left shows the minimum
distance between the samples of f and its maximum value f∗, denoted by ∆f .

much, since they are mostly approximate predictions and in most cases their values are
overestimated, especially in the beginning of the experiment.

Figure 5: Left: The sampled function (in orange) is bounded from above by the refined B function (in
blue), both evaluated on the same grid. Right: The sampling trajectory of the robot, drawn with blue
’x’ and starting from the black ’x’.

Figure 5 (left) presents the refined upper bound of the sampled function built using
(4) and the n = 300 samples acquired, for m = 3. The robot trajectory in Figure 5
(right) shows more steps being spent in the higher-valued regions where the three RBFs
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(centered in the red, orange and magenta ’x’) are situated. Thus, the choice of m = 3
gives balanced results in terms of both exploration and exploitation.

Next, we will check the robustness of the algorithm to overestimation or underestima-
tion of the Lipschitz constant, to get some intuition on M . For this, let us take M ′ = λ·M ,
where M is the previous value of 730, and λ ∈ {0.01; 0.05; 0.1; 0.5; 1; 2; 5; 10; 50; 100}. We
run the algorithm with m = 3 and study its behavior using the metrics from above.
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Figure 6: Robustness of the algorithm’s performance to underestimation (left) and overestimation (right)
of the Lipschitz constant.

Figure 6 shows that larger values of the Lipschitz constant always find p∗ and do not
break the algorithm. However, taking M ′ one or two orders of magnitude less than M ,
while upper bounds are no longer valid for M ′ < M , can lead to finding the optimum
with less accuracy or even break the algorithm. Interestingly, even when M ′ was set
to M/2 the optimum was still found with good accuracy. This might suggest that the
values of the Lipschitz constant which estimate p∗ well belong to a larger interval range
than initially expected. Finally, we suggest starting with a high M and tune (lower) its
value empirically, as this is safer.

It would be instructive to check if finer grids lead to better approximations of p∗. For
this experiment the state space is split into grids of size {162, 212, 262, 312, 362} and the
parameters of the algorithm are set to m = 3 and M = 730. The step length of the robot
is changed to the grid step size (δ) of each experiment respectively. Then, n will be the
(rounded up) ratio between the initial trajectory length of 30m and the grid step.

Figure 7 reports the results. Except for the case of 362, each grid leads the robot
to an approximation error of the optimum (∆p) lower than the corresponding δ. The
intuition for the “unlucky case” (362) is as follows. For smaller step sizes the number of
m updates should also be increased so that the information spreads further over the grid
of states (comparably to the larger discretization steps). However, this would increase
the already high computational times (due to a large number of grid points over which
the Q updates are run), possibly overly extrapolating the high estimates of the initial
rewards. An alternative could be obtained by encouraging more the exploitation behavior
of the algorithm, i.e. using a higher weight for f̂ compared to B in (7). Redoing the 362
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experiment with the weights 0.75 and 0.25 for f̂ and B respectively, i.e. ρ(x, u) =
3f̂(p)+B(p)

4 r(p, u), the maximum is found with accuracy of ∆p = 0.02 < δ362 = 0.057 and
∆f = 1.95. This is a good result, as the approximation accuracy of p∗ is lower than the
step size of the experiment.

Figure 8 shows the computation times and leads to the conclusion that the average
execution time has a quadratic growth with respect to the grid discretization.
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Figure 7: Performance of the algorithm for varying grid size.
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Figure 8: Execution time for varying grid size.

5.1.2. Prediction accuracy of the volume refinements
Since the reward values (7) are based on predictions of upper bound refinements, we

will evaluate the accuracy of these predictions. Figure 9 compares at each step of the
robot the predicted refinements with the actual ones (computed after the step has been
executed and the new function value has been observed), for m = 3, M = 730 and 300
trajectory steps. The two values follow largely the same trend, with somewhat poorer
accuracy at the beginning of the simulation, improving as the upper bound decreases and
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the estimate f̂(p+) gets closer to the true f(p+). Thus, using the predictions is justified.
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Figure 9: Prediction accuracy of the upper bound-based refinements.

5.1.3. Comparison to baselines
OOPA is next compared to the Classical DOO (CDOO) and Gradient Ascent baselines

previously described at the start of Section 5. To have an informative comparison, we
consider 5 equidistant starting positions placed along each side of the triangle linking
the 3 centers of the RBFs. The robot will move with a fixed step of 0.1m, equal to the
step size of the 212 grid that is used in this experiment. Note that all methods sample
the function with the same frequency, so that e.g. CDOO takes multiple samples along
the (possibly overcommited) trajectory to the next chosen point. The number of nearest
neighbors for the Gradient Ascent is set to N = 4 (at least three points are required to
create the approximation plane).

Figure 10 reports the baseline comparison of OOPA. Near each starting position,
drawn with ’x’, the distance until the optimum for each method is given (when p∗ is not
found, the distance is replaced by a dash). The entries of each label correspond to OOPA,
CDOO and Gradient Ascent, in this order, separated by slashes. For each algorithm, the
number before the comma gives the distance traveled by the robot until reaching as close
as 1 grid step size to p∗. After the comma, letters ‘y’ (for yes) or ‘n’ (no) show whether
the maximum was found with δ = 0.1m accuracy. Note that for Gradient Ascent, we
give the distance until convergence even when the algorithm reaches a local optimum (in
which case ‘n’ is displayed).

According to Figure 10, the DOO-based methods always find the global optimum
with δ accuracy. OOPA scores, on average, 43.9% less travel distance to p∗ compared to
CDOO. On the other hand, the Gradient Ascent converges to the optimum only in a fifth
of the runs, however, it does so at faster rates compared to the DOO-based algorithms.
More specifically, the gradient-based method converges to a local optimum unless it starts
in a position close to p∗.

5.1.4. Influence of noisy function evaluations
We study the behavior of OOPA in the case of stochastic function evaluations. Each

sample of f is multiplied before being used in the algorithm by a moderate noise coeffi-
cient z: f̃(p) = zf(p); where f(p) is the expected value of f̃(p). In this experiment z is
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Figure 10: Baseline comparison of OOPA to the CDOO and Gradient Ascent methods.

drawn from a Rice distribution (Busoniu et al., 2020) with moderate variance, as most of
the probability mass belongs to the interval z ∈ [0.8, 1.2]. This type of noise is realistic
e.g. in radio transmission, where f could represent the signal-to-noise ratio.

Figure 11 reports the best function sample against the travel distance for a determin-
istic run and 25 runs with stochastic function evaluations of OOPA. The deterministic
results are drawn with a blue line, while the red line shows, on average, the best func-
tion sample for each trajectory step in the stochastic case. The mean performance of
the stochastic experiments is following to a good extent the shape of the deterministic
scenario. Together with the 95% confidence interval (colored in grey), this highlights
that the algorithm handles reasonably well a moderate noise level, even though it was
not specifically designed for it.

5.1.5. Behavior with a non-differentiable function
In the simulations to follow, we keep the setup from above with the exception of the

RBFs which are replaced by rectangular pyramidal functions (PBFs). The goal here is
to check the behavior of the method when the objective function is non-differentiable.
The parameters of the PBFs are: side lengths bi = [1.3; 1.3], [0.6; 0.6], [1; 1], heights hi =
[148.75, 255.0, 212.5], rotation angles ai = [π/4, 2π/5, π/6] and centers ci = [0.375; 0.75],
[1.375; 1.75], [1.625; 0.375] (see Figure 12 for a representation of a generic pyramidal func-
tion and Figure 14 for a contour plot of the new f). The value of the global optimum
and its position remain unchanged. The Lipschitz constant is computed starting from
the tangent of the angles between the pyramid lateral faces and the horizontal plane and
then tuned empirically to M = 850. This value of M creates close-to-true upper bounds
for the new objective f .
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Figure 11: Illustration of the stochastic experiments with 95% confidence interval on the average per-
formance of OOPA.

Figure 12: Representation of the parameters for a pyramidal function. Side lengths bi, height hi and
center ci are shown on the left plot. On the right figure, the angle ai rotates clockwise the pyramid basis
around its center starting from the parallel to the horizontal axis passing through ci.

We start by verifying the behavior of the method in the event of underestima-
tion/overestimation of the Lipschitz constant by setting M ′ = λ · M , with M = 850
and λ ∈ {0.01; 0.05; 0.1; 0.5; 1; 2; 5; 10; 50; 100}. Figure 13 presents the outcome of the
experiment. When M ′ took large values or was set to M/2, the optimum was found with
the required δ accuracy. However, p∗ is poorly approximated when M ′ is chosen one or
two orders of magnitude less than M . Similar results to the case of the RBF-based f are
obtained therefor.

Next, the baseline comparison is performed. Note that because f is now non-
differentiable, applying the Gradient Ascent is mostly an heuristic attempt. Figure 14
shows that, except for a few outliers, the DOO-based algorithms find p∗ with accuracy of
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Figure 13: Robustness of the algorithm’s performance to underestimation (left) and overestimation
(right) of the Lipschitz constant, for the pyramid-based objective function.

δ = 0.1m. When this happens, OOPA scores about half the travel distance on average
to p∗ (roughly 52.7%) compared to CDOO. Finally, the gradient-based method finds the
global maximum in only 3 out of the 15 trials, but with faster convergence rates. Again,
overall similar results are obtained to the RBF functions.
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Figure 14: Baseline comparison of OOPA to the CDOO and Gradient Ascent methods in the case of
pyramidal-based objective function.
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5.2. Real-life experiment with a TurtleBot3
Finally, we provide an indoor experiment with the OOPA method in which a ROBO-

TIS TurtleBot3 searches for the grayscale optimum of a 2D printed map.
The robot moves according to the nonlinear, unicycle-like dynamics (15) with steps

of 0.1m taken along one of the headings {0, π/4, . . . , 7π/4}. During a sampling period
of Ts = 12 s, the agent samples f , runs a series of interpolative Q-iteration updates,
applies the resulting control command up to the next evaluation point of OOPA, and
finally communicates the completion of the sequence to a remote controller. The rather
high sampling period is due to the low linear and angular velocities of the robot, chosen
to reduce the accumulation of position errors. Note that each high-level control action
generates a new reference pose that will be tracked by a low-level controller as explained
below.

The printed map over which P is taken recreates the RBF-based objective function
from Section 5 (see Figure 15 for a view of the experimental setup). Thus, P = [0, 2] ×
[0, 2]m2 and the optimum is situated in p∗ = [1.375; 1.75]. We are using for image
acquisition a Raspberry Pi Camera Module V2 placed at o = 20 cm in front of the robot
and pointing down perpendicular to the ground at a height of 20 cm. Note that the offset
of the camera is relative to the center of the robot, i.e. the middle point of the segment
linking the two back wheels. A sample of f is determined as follows. Compute first the
RGB average value of all the pixels situated in the region of interest (ROI) of a sampled
image. The ROI is the center rectangle of the image after splitting it into 9 smaller
rectangles with equal width and height. To search for the darkest point on the map, f
will be the subtraction between 255 (as the pixels are represented with byte values) and
the RGB average value computed before. We will informally call such a sample of f a
grayscale value.

Figure 15: Overview of the TurtleBot3 experimental setup. Note the view is from the ”left” of the
surface in Figure 10.

Next, we present a simple method for dealing with the offset o, as positions of the
20



camera will be used in the algorithm and not of the actual robot. To avoid confusion
we keep the previous notation pk as the current camera location, while the pose of the
robot will be denoted by xr,k = [pTr,k, βr,k]

T , where pr,k and βr,k are the position and
orientation of the robot at step k. Given xr,k, an action is sought such that the robot
is led to a pose that brings the camera into pk+1 required by the algorithm at the next
iteration. A possible solution is given by the equations:

βr,k+1 = atan2(pk+1,2 − pr,k,2, pk+1,1 − pr,k,1) (16)
d = ||pk+1 − pr,k|| − o (17)
pr,k+1 = pr,k + d · [cos(βr,k+1), sin(βr,k+1)]

T (18)

where atan2 is the two-argument arctangent. Then, xr,k+1 = [pr,k+1, βr,k+1]
T represents

the next, reference pose of the robot, which will be executed by the low-level controller,
while pk+1 is used in OOPA as the evaluation point of f at step k + 1.

The parameters of OOPA are taken similar to the simulations performed above. In-
terpolation is done across a state grid of 21 × 21 equidistant points. We do not include
additional state signals y in x. The number of Q-iteration updates is set to m = 3 and
the trajectory steps reduced to n = 150. A series of natural limitations are present in
this experiment: camera (hardware) errors, the printed map not exactly having the gra-
dients present in the simulations, somewhat poor indoor lighting conditions, etc. The
latter issue leads to a tighter range of possible grayscale samples, as white is perceived
by the camera as a light gray. The lower plots in Figure 17 show that during two of the
experiments, the values of f roughly ranged in the interval [100; 240] instead of the usual
[0; 255].

We provide next an overview of the implementations. The algorithm was developed
using the Robot Operating System (ROS) framework in Python and the Matlab ROS
Toolbox. Figure 16 presents the overall system architecture through a simplified version
of an rqt graph. This graph shows the workflow of the application and the way in which
its components (nodes, topics, etc.) interact with each other.

Figure 16: Simplified view of an rqt graph illustrating the control structure of the TurtleBot3 experiment.
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The TurtleBot3 robot and a remote computer are simultaneously connected to the
same ROS network. The remote computer runs the matlab_global_node which imple-
ments the high-level control through the OOPA algorithm. At each trajectory step k,
a new image is received from the raspicam_node which publishes to the topic Image/
compressed. Then, the image is processed and a grayscale value is plugged as the f(pk)
input of the method. OOPA returns the new reference position for the camera and uses
the odometry information given by the topic odom to compute the next control action.
Each action is translated into a pose reference that is published by matlab_global_node
on the waypoint topic as a geometry_msgs/Pose message. Note that we are publishing
the next robot pose computed using (16)-(18), so that the camera will reach the next
waypoint required by the algorithm.

The node waypoint_follower runs on the single-board computer of the TurtleBot3
robot. It is a subscriber of the waypoint topic and is responsible for the implementation
of the low-level control of the robot. This control requires that the robot positions evolve
as constant-speed, ramp signals. Each time a new message is published to waypoint
a callback function is run to immediately track the reference pose. The translational
and rotational speed of the robot are set at this point and further published to the
cmd_vel topic to be executed by the core node provided by the manufacturer. Once the
corresponding control sequence was successfully executed, an action completion flag is
published on the waypoint_performed topic as a std_msgs/String message. Then, a
callback function is run on the matlab_global_node side to resume the OOPA iterations.
The cycle continues until the number of trajectory steps set at the beginning of the sweep
is exhausted.

Due to the experimental limitations from above (smaller grayscale range), we expect
the Lipschitz constant to be lower than M = 730 used in the simulations. However,
this value represents a good starting point from which we will empirically tune M . The
upper plots of Figure 17 report the trajectory results of two experiments in which M
was taken 500 and 300. The plot in the top left is obtained for M = 500 and shows a
trajectory that repeatedly encircles the middle point of the search space without focusing
the refinements on the high f -valued regions. This is due to too much exploration. Thus,
M needs to be decreased. M = 300 was chosen in the plot in the top right where a better
exploration-exploitation tradeoff was obtained. Indeed, the robot spends more steps close
to the higher RBF centers and approximates the optimum better as a result. It samples
the highest f -value of f = 237.5 as close as 2 cm to the optimum, approximating p∗ in
p̂∗ = [1.38, 1.73]. In the previous sweep when M was set larger, p∗ was found with an
error of 14 cm in p̂∗ = [1.46, 1.64], where f = 221.7. Note that the best function samples
acquired so far for the two experiments are presented in the lower plots of Figure 17.

The paths followed by the robot on the physical map are not exactly the ideal ones
presented in Figure 17. Due to the accumulation of errors in the control procedure, the
robot drifts about 5−10 cm from its expected position by the end of the OOPA run. As a
result, the values of f that are sampled are not quite the expected ones. Such limitations
are unavoidable in practice and could be partially solved by implementing a more precise
positioning. For example a SLAM approach using a LiDAR could track more accurately
the robot pose and thus lower the control errors.

The full video of the second real-life experiment highlighted in the right plots of Figure
17 is available online at http://rocon.utcluj.ro/files/oopa_turtlebot.mp4. Note
that the video still in Figure 15 originates from the very same video, which is accelerated
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Figure 17: Left/Right plots: Trajectory and best sample acquired so far by the TurtleBot3 for M =
500/M = 300.

by a factor of 30 to fit in 1min.

6. Conclusions

We presented an approach for optimization that can be used by a robot that travels
in the physical space on which the function is defined. Extensive simulations showed that
the algorithm works well when compared to baselines from local and global optimization
that do not take into account the path taken by the robot. The algorithm was also
illustrated for a mobile ground robot.

Future work includes extending the approach to multiple agents, and attempting to
find analytical near-optimality guarantees for the algorithm. Furthermore, it will be
important to illustrate the method in practical problems with a “real” objective function
like litter density.
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