
Optimistic planning for near-optimal control of nonlinear systems with
hybrid inputs

Ioana Lal, Constantin Morărescu, Jamal Daafouz, Lucian Buşoniu

Abstract— We propose an optimistic planning, branch-and-
bound algorithm for nonlinear optimal control problems in
which there is a continuous and a discrete action (input).
The dynamics and rewards (negative costs) must be Lipschitz
but can otherwise be general, as long as certain boundedness
conditions are satisfied by the continuous action, reward, and
Lipschitz constant of the dynamics. We investigate the structure
of the space of hybrid-input sequences, and based on this
structure we propose an optimistic selection rule for the subset
with the largest upper bound on the value, and a way to select
the largest-impact action for further refinement. Together, these
fully define the algorithm, which we call OPHIS: optimistic
planning for hybrid-input systems. A near-optimality bound
is provided together with empirical results in two nonlinear
problems where the algorithm is applied in receding horizon.

I. INTRODUCTION

We consider optimal control of nonlinear systems in
which the inputs (control actions) consist of a continuous
component and a discrete one; we refer to such systems as
hybrid-input. These systems can be encountered in several
fields, such as robotics [2], [7], industrial plants for multiple
tanks systems [9], [12], [13], hydraulic systems [8] or the
automotive industry, for joint control of engine power and
the transmission gear [15], [6]. A number of techniques
were used for solving this type of applications, such as
Branch and Bound [2], switching control [7], or MPC [13],
[8], [9], [12]. Compared to these methods, our solution
can handle problems with more general dynamics and cost
functions, while focusing on infinite-horizon optimal con-
trol, rather than finite-horizon. In addition, a near-optimality
bound is provided, along with a fully-specified, directly
implementable algorithm (which is not always the case with
some proposed approaches).

Specifically, we consider hybrid-input systems for which
the dynamics can be generally nonlinear and the cost func-
tions arbitrary, as long as they are Lipschitz with respect
to the state and continuous action. For such systems, we
propose a method called OPHIS: Optimistic Planning for
Hybrid-Input Systems, which like MPC produces at each
given state an open-loop sequence, and is meant to be
applied in receding horizon. The continuous action must be
scalar, a restriction that can be relaxed at extra computational

I. Lal and L. Buşoniu are with the Automation Department, Technical
University of Cluj-Napoca, Romania. C. Morărescu and J. Daafouz are
with Université de Lorraine, CRAN, UMR 7039 and CNRS, CRAN, UMR
7039, Nancy, France. Email addresses: ioanalal04@gmail.com,
constantin.morarescu@univ-lorraine.fr,
jamal.daafouz@univ-lorraine.fr, lucian@busoniu.net.
This work was been financially supported from by the Romanian National
Authority for Scientific Research, CNCS-UEFISCDI, SeaClear support
project number PN-III-P3-3.6-H2020-2020-0060.

cost. OPHIS creates a partition of the set of hybrid-input
sequences iteratively, by choosing for refinement at each
iteration an optimistic set that maximizes an upper bound on
the value. For this set, a dimension is chosen for refinement,
together with the type of split (continuous or discrete).

We provide a near-optimality bound for the algorithm,
which can be computed once it has terminated. We exemplify
OPHIS in simulations for two systems. For a relatively
simple two-tanks system, detailed simulations are given that
study the effect of tuning parameters. Then, a more complex
problem is shown, a two-link robot arm with one link
actuated and the second that can only be influenced by
a holding brake. In both cases, the algorithm succeeds in
controlling the system.

OPHIS essentially combines optimistic planning for de-
terministic, discrete-input systems (OPD) [5], [11] and OP
for continuous-input systems (OPC) [1]. The key technical
challenge is that the structure of the hybrid space of solutions
is significantly more complicated than either for OPC or
OPD, and consequently so are the refinement rules that we
must come up with to explore it in the novel algorithm.
OPHIS in fact specializes to OPD when the continuous action
is removed, and to OPC when the discrete action is removed.

Compared to nonlinear MPC, which typically focuses
on finite-horizon problems, here the objective is infinite-
horizon. For instance, in [12], the horizon used in simulations
is firstly 1, and then 3. Moreover, algorithmically, MPC
methods usually rely on derivatives, while our method only
requires Lipschitz continuity and thus, at the cost of more
computation, is more general with respect to dynamics and
cost functions. Some MPC versions require the linearization
of the model around several operating points [9], [8], while
OPHIS uses the nonlinear model directly. Branch and bound
is used in [2], in combination with sparse direct collocation.
However, no near-optimality analysis is provided for this
solution.

Another key difference between usual hybrid-input con-
trol approaches and OPHIS is that the former primarily
concentrate on stability, such as in [7], where a switching
control strategy is employed, whereas here we aim for near-
optimality. In effect, by using discounting and imposing a
joint condition on the discount factor and Lipschitz constant
of the dynamics, the system dynamics are instead required
to satisfy a certain contractiveness property. Promising guar-
antees of stability have been obtained both for the exactly
optimal solution of general discounted optimal control [11]
and for discrete-input optimistic planning [4]. However, the
behavior of OPHIS (and of OPC) when refining continuous

actions is much more intricate, and analyzing its stability
falls outside the scope of this paper.

Next, Section II formalizes the problem and Section III
discusses the background on OPC and OPD. OPHIS is
described in Section IV, while Section V provides the near-
optimality bound. Finally, Section VI considers the two
applications with the corresponding simulation results, and
VII gives the conclusions of this paper.

II. PROBLEM STATEMENT

We consider an optimal control problem for a hybrid-input,
nonlinear system xk+1 = f(xk, uk), with x ∈ X ⊆ Rm and
u ∈ U consisting of a continuous action and a discrete one:

uk =
[
ck dk

]T
(1)

where ck ∈ R and dk ∈ {0, 1, ..., p}, p ∈ N. We define
a reward function ρ : X × U → R, that takes as input a
state-action pair (xk, uk): rk+1 = ρ(xk, uk). Starting from
an initial state x0, we define an infinitely-long sequence of
actions u∞ = (u0, u1, ...) and its infinite-horizon discounted
value:

v(u∞) =

∞∑
k=0

γkρ(xk, uk) (2)

where γ ∈ (0, 1) is the discount factor (note that γ = 1
is excluded). We aim in principle to find the optimal value
v∗ := supu∞v(u∞) and a sequence that achieves it.

We make the following assumptions:

Assumption 1. We have (i) r ∈ [0, 1] and (ii) c ∈ [0, 1].

Together with discounting, the bounded rewards ensure
boundedness of the sequence values, a necessary condition
for our planning algorithms and the analysis. The bounded
continuous action is needed because we will numerically
refine that interval. Note that now U = ([0, 1]×{0, 1, ..., p}).
For both the reward and the continuous action, the unit
interval is used only for convenience and can be easily
obtained by scaling other intervals. The restriction to scalar
continuous actions can be relaxed, but at significant extra
computational cost for the extended algorithm; see [1],
supplementary material for such an extension in OPC.

Bounded costs are typical in AI methods for optimal con-
trol, such as reinforcement learning [14]. Boundedness could
e.g. follow from physical limitations in the system, or could
otherwise be achieved by saturating an a priori unbounded
reward function, which changes the optimal solution but is
often sufficient.

Assumption 2. (i) Both the dynamics and the rewards are
Lipschitz with respect to the state and the continuous action,
i.e., ∃Lf , Lp s.t. ∀x, x′ ∈ X and c, c′ ∈ [0, 1]:

‖f(x, [c, d]T)− f(x′, [c′, d]T)‖ ≤ Lf (‖x− x′‖+ |c− c′|)
|ρ(x, [c, d]T)− ρ(x′, [c′, d]T)| ≤ Lρ(‖x− x′‖+ |c− c′|)

(3)
(ii) The following inequality is satisfied:

γLf < 1 (4)

It should be noted that Lipschitz continuity is only im-
posed w.r.t. the continuous component c of the action;
whereas the variation w.r.t. d can be arbitrary. This is a
useful feature because switches often induce discontinuities
in the system. Furthermore, whereas typical derivative-based
MPC techniques [10] require differentiability, our condition
(i) allows the dynamics and rewards to be nondifferentiable
as long as they are still Lipschitz. This helps to model
effects like saturations, actuator deadzones, etc. Condition
(ii) means that the dynamics need not be strictly contractive
on their own, but should become so when combined with
a shrink rate equal to the discount factor γ. In principle,
this condition is not required, and the algorithm will work
without it; however, without this condition the contribution
of dimensions k in (5) can become unbounded as h grows,
which in practice would mean that the algorithm never finds
a long-horizon solution. Finally, note that in either of the
inequalities from (3), different Lipschitz constants might
apply to the dependencies in x and c, in which case we
simply take the maximum among these constants.

Lemma 3. For any two sequences u∞,u′∞ ∈ U∞, we have:

|v(u∞)−v(u′∞)| ≤ Lρ
h−1∑
k=0

|ck−c′k|γk
1− (γLf)h−k

1− γLf
+

γh

1− γ
(5)

where h is equal to the first step k at which dk 6= d′k.

Proof: Consider the two sequences u∞ and u′∞, and h
defined as above. Denote by uh and u′h the subsequences of
actions up until dimension h− 1, including this dimension.
Then:

|v(uh)− v(u′h)| = |
h−1∑
k=0

γkrk+1 −
h−1∑
k=0

γkr′k+1|

= |
h−1∑
k=0

γk(rk+1 − r′k+1)|

≤
h−1∑
k=0

γk|rk+1 − r′k+1|

≤ Lρ
h−1∑
k=0

γk(‖xk − x′k‖+ |ck − c′k|)

(6)

Then, from the first part of equation (3), we get:

‖xk − x′k‖ = ‖f(xk−1, [ck−1, dk−1]T)

− f(x′k−1, [c
′
k−1, dk−1]T)‖

≤ Lf (‖xk−1 − x′k−1‖+ |ck−1 − c′k−1|)
≤ Lf

(
Lf (‖xk−2 − x′k−2‖+ |ck−2 − c′k−2|)

+ |ck−1 − c′k−1|
)

≤ . . .

≤
k∑
i=1

Lif (|ck−i − c′k−i|) + ‖x0 − x′0‖

=

k∑
i=1

Lif (|ck−i − c′k−i|)

(7)

For the last equality, we used the fact that the state sequences
start from the same initial state, and so, x0 = x′0. Then,
‖xk−x′k‖+ |ck− c′k| ≤

∑k
i=0 L

i
f (|ck−i− c′k−i|). Replacing

this in (6), we have:

|v(uh)− v(u′h)| ≤ Lρ
h−1∑
k=0

γk

(
k∑
i=0

Lif (|ck−i − c′k−i|)

)
=Lρ(|c0 − c′0|(γ0 + γ1L1

f + . . .+ γh−1Lh−1f)

+ |c1 − c′1|(γ1 + γ2L1
f + . . .+ γh−1Lh−2f)

+ . . .+ |ch−1 − c′h−1|(γh−1L0
f))

=Lρ

h−1∑
k=0

|ck − c′k|γk
1− (γLf)h−k

1− γLf

(8)

Starting with dimension k = h, the discrete actions differ,
so we have a maximum difference of 1 between the rewards
at each dimension. Therefore:

|v(u∞)− v(u′∞)|

≤Lρ
h−1∑
k=0

|ck − c′k|γk
1− (γLf)h−k

1− γLf
+

∞∑
k=h

1 ∗ γk

=Lρ

h−1∑
k=0

|ck − c′k|γk
1− (γLf)h−k

1− γLf
+

γh

1− γ
�

(9)

While this property is conservative in the sense that it
“only” exploits Lipschitz continuity, it is helpful in that it
drives our entire algorithm: actions will be prioritized for
refinement according to their importance in (5). In future
work we aim to exploit stability properties [11], [4] in order
to achieve tighter bounds. Note that the right-hand side of (5)
is a semimetric on the space of action sequences, in which
the first component describes the impact of differences in
continuous actions, and the second for the discrete actions.
These two components are fundamentally different from each
other. When there is no continuous action, the summation
disappears and the formula simplifies to γh

1−γ , the OPD met-
ric. Conversely, eliminating the discrete action is equivalent
to taking h → ∞, so we get Lρ

1−γLf

∑∞
k=0 |ck − c′k|γk, the

OPC metric.

III. BACKGROUND

Our algorithm specializes to OPD when there is no con-
tinuous action, and to OPC when there is no discrete action.
Therefore, it will be important to understand these basic
algorithms first.

A. Optimistic planning for continuous actions

OPC aims to find an infinitely-long sequence of continuous
actions ck that maximize the objective function v, without
discrete component d. The full explanation is given in
[1], and here we will provide a short description of the
algorithm. OPC refines a collection of infinitely-dimensional
(hyper)boxes of the form (µ0×· · ·×µK−1×[0, 1]×[0, 1] · · ·)
where µk is the interval of actions at step k, and K is the
first unrefined dimension; from there on, all the intervals
are full, [0, 1]. OPC starts with the full set of sequences

for K = 0, and iteratively refines it by selecting at each
iteration an optimistic set with the largest upper bound on
the value, and splitting it into M equal pieces along a well-
chosen dimension. We return to give the precise formula for
the upper bound and the choice of dimension after we have
introduced OPHIS, as it will be easier to understand at that
point. Here we only note that for each box, OPC needs to
simulate the system with the sequence at the center of the
set, up until step K − 1, and store the resulting state and
reward trajectories. At the end, OPC returns such a center
sequence that maximizes the discounted value along these
K steps.

B. Optimistic planning for discrete actions

OPD [5] is an algorithm used for systems with discrete
inputs. It works by building a tree, starting from a root
node that corresponds to the entire set of possible actions
(0, . . . , p)∞. Then, at each step, an optimistic leaf node is
chosen for expansion, by maximizing an upper bound that,
like for OPC, we clarify later. Each node is expanded by
making its next discrete action definite. For instance the root
node will have p+ 1 children, one for each value of d0, and
the remaining actions remain free. Expanding any of these
level-1 nodes makes the action d1 definite with p+1 children
at level 2, and so on. OPD returns a sequence on the tree with
maximal sum of discounted rewards for the definite actions.

IV. OPTIMISTIC PLANNING FOR HYBRID-INPUT
SYSTEMS

We next derive a novel algorithm that can search for
sequences of hybrid inputs. The main idea is to iteratively
split an optimistic set of inputs (like in OPC and OPD),
but refining either the discrete or the continuous action. The
key technical novelty compared to OPC and OPD is that
continuous- and discrete-action refinements must be inter-
spersed, in a way that is dictated by the intricate geometry
of the space of hybrid-input sequences.

A set is represented by an interval µ for each continuous
action and a discrete action set σ for each refined step k. Let
us define it as such:

Si =

∞∏
k=0

(µi,k, σi,k) (10)

where by the product of sets we mean the repeated appli-
cation of the cross-product ×, and notation (µ, σ) means a
set in which c ∈ µ and d ∈ σ. For clarity, from now on we
will refer to the set per step k (µi,k, σi,k) as a pair, and the
infinite-horizon Si as a set.

In addition, a set also has two characteristics: Di and Ci,
representing the number of refined discrete and continuous
dimensions, respectively. For all k ≥ Ci, µi,k = [0, 1]. For all
k < Di, σi,k = di,k, a single, definite value, and for all k ≥
Di, σi,k = {0, 1, ..., p}. A sequence of actions corresponding
to each set would then be (ui,0, ui,1, ui,2, ...), where

ui,k =
[
ci,k, di,k

]T
(11)

Here, ci,k ∈ µi,k and di,k ∈ σi,k. A continuous split can be
done along any dimension k ≤ Ci, by dividing the interval
µi,k into M equal pieces and thus generating M new sets.
A discrete split is always done for dimension k = Di,
by adding p + 1 new sets that make discrete action dk
definite, one set for each discrete possibility. Note that the
ways of splitting continuously and discretely, respectively,
are fundamentally different. We provide examples splits of
each type below.

To decide which set to split, let us first consider reward
ri,k+1 = ρ(xi,k, ui,k), where with a slight abuse of notation
we now refer by ci,k to the specific action that is at the center
of interval µi,k. Define then the sample value of a set i:

v(i) =

Di−1∑
k=0

γkri,k+1 (12)

Each continuous interval µi,k has a certain length ai,k. For
k ≥ Ci, ai,k = 1. For each set, we define its diameter in the
semimetric of (5):

δ(i) = Lρ

Di−1∑
k=0

ai,kγ
k 1− (γLf)Di−k

1− γLf
+

γDi

1− γ
(13)

Given the sample value of a set i and its diameter, we
have the upper bound:

B(i) = v(i) + δ(i) (14)

so that v(u∞) ≤ B(i),∀u∞ ∈ Si. This inequality is shown
as follows. By the definition of set Si, for all k < Di we
have dk = σi,k and ck ∈ µi,k, so |ck − ci,k| ≤ ai,k. All
the quantities without subscript i refer to the sequence u∞.
Thus:
∞∑
k=0

γkrk+1 =

Di−1∑
k=0

γkrk+1 +

∞∑
k=Di

γkrk+1

≤

[
v(i) + Lρ

Di−1∑
k=0

ai,kγ
k 1− (γLf)Di−k

1− γLf

]
+

γDi

1− γ

= v(i) + δ(i) = B(i)
(15)

where the bound on the first summation (in square brackets)
follows as in the proof of Lemma 3, and the bound on the
second summation holds because all rewards are at most 1.

The algorithm works iteratively, by selecting for refine-
ment at each iteration an optimistic set that maximizes the
upper bound:

i† = arg maxi∈AB(i) (16)

where A is the collection of all sets.
In order to select whether we have a continuous or discrete

split, and along which dimension, we look at the contribution
of each dimension k up to Di† − 1 to the diameter, as well
as at the contribution γ

D
i†

1−γ of the first unrefined dimension.
Whichever contribution is the greatest among those in (13)
dictates where we split. Thus:

k† = arg maxk∈{0,1,...,D
i†}
{Lρai†,kγk

1− (γLf)Di†−k

1− γLf
}

(17)

If Lρai†,k†γk
† 1−(γLf)

D
i†−k

†

1−γLf ≤ γ
D
i†

1−γ , we have a discrete
split, at dimension Di† . Otherwise, we have a continuous
split, along dimension min(k†, Ci†). Recall that for dimen-
sions k between Ci† and Di† − 1 the size a of the interval
is 1. Further, note that by this rule, we always have D ≥ C
for any set.

An example is given in Figures 1 and 2, for a
continuous refinement and a discrete one, respectively.
In both cases, we start from a set i, which already
had 6 discrete refined dimensions (Di = 6), and
5 continuous discretized dimensions (Ci = 5).
The set is Si = {([4/9, 5/9], 1), ([1/3, 2/3], 0),
([2/3, 1], 0), ([0, 1/3], 1), ([1/3, 2/3], 1), ([0, 1], 0),
([0, 1], {0, 1, ..., p})∞}. We take the center of
the interval as the continuous action, and thus
we will have the following sequence of actions

{
[
1/2
1

]
,

[
1/2
0

]
,

[
5/6
0

]
,

[
1/6
1

]
,

[
1/2
1

]
,

[
1/2
0

]
}. Then,

f and ρ are called at each step, for this sequence of actions
from x0, to determine both the sequence of states and
rewards for set Si.

Figure 1 shows a continuous split, along dimension 1. In
the figure, one can observe in black the parent set, from
which M = 3 new sets are formed, having the same
continuous intervals for all dimensions other than k = 1, and
the same discrete actions. The number of refined continuous
dimensions C remains 5 for all children sets and D remains
6. The resulting intervals at k = 1 are shown with different
colors and styles. At the top of the figure, we have added,
symbolically, a trajectory that represents the states and the
rewards. These are the same until step k = 1 (the refined
dimension), and differ afterwards, based on the fact that the
continuous actions at step 1 will be 7/18, 1/2 and 11/18,
respectively. The middle set will have the same continuous
action and trajectories as the parent, so these trajectories can
be reused.

Figure 2 shows what a discrete split looks like, starting
from the same parent set. In the case of a discrete split, we
always refine dimension Di, in this case 6. One can see the
new added children with colors and different line styles. They
inherit the continuous intervals from the parent, as well as
the previous discrete actions. Again, the sample values are
the same for the children sets, until dimension k = 6, and
then differ, based on the new discrete action.

We have mentioned before that our algorithm specializes
to OPC when there is no discrete action, and to OPD
when there is no continuous action. OPC chooses a set to
expand based on an upper bound given by b(i) = v(i) +
δ(i) :=

∑Ci−1
k=0 γkri,k+1+max(

Lρ
1−γLf , 1)

∑∞
k=0 γ

kai,k. The
maximum is there to cover with a unified formula the
contribution of discretized and undiscretized (unsimulated)
dimensions [1]. A dimension to refine is chosen in OPC
as k† = arg maxk=0,...,Ci

γkai†,k, without comparing to
the discrete-action contribution because there is none. Note
that the OPC diameter is differently structured only for
convenience reasons, and in fact a tighter diameter can be

Fig. 1. Example of continuous split: top - states or rewards trajectories,
middle - discrete actions, bottom - continuous intervals

Fig. 2. Example of discrete split: top - states or rewards trajectories, middle
- discrete actions, bottom - continuous intervals

written: δ(i) = Lρ
∑Ci−1
k=0 ai,kγ

k 1−(γLf)Ci−k
1−γLf + γCi

1−γ . This
follows in the same way as the diameter of OPHIS, except
that now instead of stopping at Di, we stop at Ci because
we have not discretized actions further so their rewards are
unknown.

For OPD, only the optimistic set is chosen for expansion,
based on an upper bound given as b(i) = v(i) + γDi

1−γ ;
we do not need to take into account any continuous-action
deviations from the center sequence.

So that we are able to reuse the center sequence at a
continuous split, we impose for the remainder of the paper
that M is odd (this will also help in the analysis).

Next, a pseudocode of the algorithm is given. We must
pass the model of the system, as well as the initial state.
The algorithm outputs a near-optimal sequence of actions.

We discuss now the algorithm inputs that are selected by
the user. The budget should, of course, be taken as large
as computationally feasible to get as close as possible to the
optimal solution. For M we suggest to take it 3, the smallest
feasible odd value, since that enables center sequence reuse
without costing too much computation at each continuous
refinement. Regarding now the Lipschitz constants Lf and
Lρ, while in principle they are given by the problem, in
practice they may be difficult to compute (especially Lf),

or computing them might give overly conservative values
that work poorly across most of the state-action space. Thus
we suggest treating them as tuning parameters. Similarly,
γ may be fixed by the problem objective, but if it is not,
then it can be treated as a tuning parameter that should
not be very far from 1; larger γ will promote looking for
longer-horizon solutions at the expense of refining less the
continuous actions; while smaller γ will refine more the
continuous actions at the expense of the horizon.

Algorithm 1: Optimistic Planning for Hybrid-Input
Systems

Input: state x0, model f , ρ, split factor M , discrete
set {0, 1, ..., p}, budget n, Lipschitz constants
Lf and Lρ, discount factor γ

1 initialize collection of sets A with S0
2 while budget still available do
3 select set i† = arg maxi∈AB(i);
4 select dimension with max contribution for

continuous actions k† =

arg maxk∈{0,1,...,D
i†}
{Lρai†,kγk

1−(γLf)
D
i†−k

1−γLf };

5 if Lρai†,k†γk
† 1−(γLf)

D
i†−k

†

1−γLf ≤ γ
D
i†

1−γ then
/*split discretely*/

6 create p+ 1 children sets from i†;
7 children sets inherit continuous intervals and

discrete actions up to dimension Di† − 1;
8 create one child set for each d - this action is

added for dimension Di† ;
9 all children will have D = Di† + 1 and

C = Ci† ;
10 else /*split continuously*/
11 expand set i† along k† by creating its M

children sets;
12 children sets inherit continuous intervals and

discrete actions up to dimension Di† − 1;
13 interval at step k† is refined by splitting into

M equal parts;
14 all children will have D = Di† and C = Ci†

if k† 6= Ci† , or C = Ci† + 1 if k† = Ci† ;

Output: sequence û of set i∗ = arg maxi∈A v(i)

At each call, the algorithm computes an open-loop, hybrid-
input sequence. However, in practice the algorithm should be
applied in receding horizon. This means that at each step, we
run the algorithm starting from the current state, we apply the
first action of the returned sequence to the system, reaching
the next state, where we reapply the algorithm, and so on.
Thus, overall, a closed-loop control scheme is obtained.

In order to obtain a measure of the required computation,
we need to look to the number of calls made to the dynamics
f and the reward function ρ. Of course other operations
matter as well in the computation time. However, when the
dynamics are nonlinear, the numerical integration is usually
expensive, making the number of calls to f dominant. If we

have a discrete expansion, we make p + 1 calls to simulate
the new discrete step with each of the p+ 1 discrete actions
and continuous action 0.5. When we have a continuous split
of set i† at dimension k†, we need (M−1)(Di†−k†) calls to
simulate the M − 1 sequences (except the center one, which
is reused) from step k† to step Di† .

V. A POSTERIORI ANALYSIS OF NEAR-OPTIMALITY

We provide a bound on the near-optimality of the sequence
returned that is explicitly available for use a posteriori, once
the algorithm has run.

Proposition 4. The sequence i∗ returned by the algorithm
satisfies:

v∗ − v(i∗) ≤ δmin

where δmin is the smallest diameter among all the sets
expanded by the algorithm.

Proof: Consider any set i+ expanded at some iteration.
We have B(i+) ≥ v∗, for the following two reasons. First,
as the sets currently considered by the algorithm form a
partition of the set of solutions, one of them (let us call
it iopt) contains the optimal solution with value v∗. Thus,
B(iopt) ≥ v∗. Second, set i+ is optimistic, hence it has the
largest upper bound among all sets in the collection at that
iteration, and in particular B(i+) ≥ B(iopt).

Moreover, each split produces at least one child set ic with
v(ic) ≥ v(i+): a discrete split adds new, positive rewards to
the end of the center sequence; and at a continuous split the
center sequence is inherited by the middle child from the
parent. This means that in the final collection of sets, there
is at least one set il that is a descendant of i+ for which
v(il) ≥ v(i+). But v(i∗) ≥ v(il) by the selection rule of i∗,
so v(i∗) ≥ v(i+).

Overall, v(i+) ≤ v(i∗) ≤ v∗ ≤ B(i+), thus v∗ − v(i∗) ≤
B(i+)−v(i+) = δ(i+), and since this is true at any iteration,
the inequality is also satisfied with δmin. �

Note we can easily compute lower and upper bounds on
the optimal value: v∗ ∈ [v(i∗), B∗], where B∗ is the smallest
upper bound of any set expanded. Such bounds are popular
in hybrid systems, where they are called certification bounds
[3].

Such properties are standard for OP algorithms; both OPD
and OPC ensure similar bounds. The property of increasing
set values along continuous splits is not trivial, especially
for OPHIS where we need to handle discrete and continuous
splits at the same time.

In future work, we also expect to obtain an a priori
convergence rate of δmin to 0 with increasing budget n. This
requires a deep understanding of the shape of the sets given
by the expansion rules, and of the amount of sets expanded.

VI. SIMULATION RESULTS

This section discusses the results of applying this algo-
rithm for 2 hybrid-input problems. First, a system of two
cascaded tanks is considered, and then a two-link robot arm
example is presented.

Fig. 3. Tanks system, taken from [13]

A. Cascaded tanks

We begin by discussing the case of two cascaded tanks,
a buffer tank and a supply tank. The setup can be seen in
Figure 3. The model is taken from [13] and its details are
given next. The state is x = [x1, x2, x3, x4]T , where x1 and
x3 are the buffer and supply levels and x2 and x4 are the
buffer and supply temperatures. The continuous action c is uc1
and represents the heater’s power, while the discrete action d
is ud2 and represents whether the pump is closed, half-open,
and open. Discrete signals, ud3 and ud4, for the inlet and outlet
valves, are always 1 (open, because it is undesirable to have
inlet and outlet valves closed), so we do not consider them as
inputs. Moreover, v1, v2, v3 represent the inflow, the inflow
temperature and the outflow, respectively, and are considered
constant. Setting all these constant values was also done in
[13], where the parameters of the model are also given. Here,
we present only the dynamics of the system:

ẋ1 = 1
Ab

(v1u
d
3 − αud2)

ẋ2 = 1
Abx1

(−x2v1ud3 + v1v2u
d
3)

ẋ3 = 1
As

(αud2 − v3ud4)

ẋ4 = 1
Asx3

((x2 − x4)αud2 +
uc1
clρl

)

(18)

The goal is to control the temperature in the supply tank,
by bringing it to a desired value. Neither of the tanks should
become empty or overflow. The setpoint for the supply tank
temperature is x40 = 22◦C. The operating points for the
variables are: x10 = 7m, x20 = 18◦C, x30 = 1, 5m,
u10 = 280kW, u20 = 1m3/min, u30 = 1 (open), u40 =
1 (open), v10 = 1(stage 1), v20 = 18◦C, v30 = 1m3/min.
Control is performed in discrete time with a sampling period
∆ = 0.25min. Recall that the state variables, as well as u1
and u2 will change values, while the remaining variables
are considered constants and equal to their operating point
values. We have mentioned in Section II that c should be
bounded and in interval [0, 1]. In the algorithm, c = 0 means
that the heater is off, while c = 1 represents 2u10, maximum
heating. The discrete action d can take 3 values: 0 for pump
closed, 1 for pump half open, and 2 for pump open. These
are the same conditions for the simulations as used in [13].

Simulations were run in a receding horizon manner. The
integration was done using the Euler method, in one step
per sampling period, so that xk+1 = xk + ∆ẋk. The reward
function used was:

ρ(xk, uk) = (5− (x4,k+1 − x4,0)2)/5; (19)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
15

20

25

te
m

p
[°

C
]

x
2

x
4

x
4,0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

time[min]

0

5

10

le
v
e

l
[m

]

x
1

x
3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

time[min]

0

1

2

u

c

d

Fig. 4. Evolution in time of the states and actions for the two-tanks system

where x4,k+1 is the fourth state resulting at the next step.
Note that [13] used undiscounted cost, while we have a
discount factor in (2); to compare the approaches, we will
therefore report the undiscounted costs obtained by our
method, even though this method works with discounting.
Any unbalance in this comparison is in favor of the baseline.

The initial state was x0 = [7, 18, 1.5, 24]. For all the
experiments, we keep γ = 0.8 and a continuous interval
is always split in M = 3 intervals. Initially we selected
the budget to be 100, and Lf = Lρ = 1.2. These Lips-
chitz constants were tuned experimentally, for the reasons
explained in Section IV, see also Figure 6 for the tuning
results; for simplicity we kept the two constants equal. We
ran the simulations for 2 minutes of simulated time. The
results can be seen in Figure 4, where we can observe the
states and the two actions, respectively. The first subplot
shows the temperature in the two tanks. The temperature in
the buffer tank (blue dashed line) remains the same, as there
is no disturbance. The temperature in the supply tank (red,
continuous line) decreases to reach its nominal value (black,
dash-dotted line). The second plot in the figure represents
the levels in the tanks, with red continuous for the supply
tank, and blue dashed line for the buffer tank. There has been
no overflowing or emptying of the tanks. The third subplot
shows in blue continuous line the values of the continuous
action c, with u1 = 2 · c · u10, and in red, the values of the
discrete action d at each step. As you can see, the temperature
reaches the setpoint value in 0.75 minutes. Compared to the
classical nonlinear MPC method in [13], we obtain the same
results. So in this relatively simple problem, we recover the
performance from the literature with a small budget, which
provides confidence in the algorithm. Note that even though
our bound (5) is conservative, we recover the classical MPC
performance, while having a more general algorithm.

Next, we change some of the parameters, to see their
influence on the performance and execution time of the
algorithm. First, we are interested in tuning the budget.
Figure 5 shows first the undiscounted cost as a function
of the budget and then the average time for the algorithm

0 50 100 150 200 250 300 350 400 450 500
7.4

7.6

7.8

u
n

d
is

c
o

u
n

te
d

 c
o

s
t

0 50 100 150 200 250 300 350 400 450 500

budget

10-5

100

105

a
lg

o
ri
th

m
 a

v
e

ra
g

e
 t

im
e

Fig. 5. Undiscounted cost and average execution time as a function of
budget; For the bottom subplot, the Y axis is logarithmic

0.6 0.7 0.8 0.9 1 1.1 1.2

L
f
=L

7.765

7.77

7.775

7.78

7.785

u
n

d
is

c
o

u
n

te
d

 c
o

s
t

Fig. 6. Undiscounted cost as a function of Lipschitz values

to run once, in seconds. When we increase the budget, the
time of course increases, but so does the performance of
the algorithm. However, in this simple example of the two
cascaded tanks, even a small budget is sufficient in order to
have a good performance. The timing is good enough for
this problem, as even with 1000 budget, it takes about 8
seconds to run the algorithm once, which is roughly half of
the sampling time ∆ = 0.25min = 15s.

We now tune the Lipschitz constants, keeping them equal
to one another. The budget remained 100. Figure 6 shows
again the undiscounted return for different Lipschitz values.
The performance in terms of cost is not very sensitive to the
Lipschitz value (note the vertical scale).

B. Two-link robot arm

This subsection presents the simulations run for a robot
arm with 2 joints, one controlled joint and one which can
only have a brake set [2]. Figure 7 shows its kinematic
structure. The model of this robot is given in [7] and is
not presented here, as it would take too much space. The
state vector is represented by the two angles and the angular
velocities:

x = [θ1, θ̇1, θ2, θ̇2] (20)

The continuous control action is the torque τ1, correspond-
ing to the first joint, and the discrete action is represented by
the braking torque τb. The dynamics are derived using Euler-
Lagrange and are given in [7]. The parameters used are the
same as in [2]. In addition, we take the following values
for the parameters that are not given in the cited papers: the
angle α = −π/12, τb will either take the value 0 or 1 and the
maximum value of τ1 will be 20, which will be rescaled to
1 for continuous action c. The numerical integration is done

Fig. 7. Two-link robot arm, taken from [7]

0 2 4 6 8 10 12
-5

0

5

0 2 4 6 8 10 12
-10

0

10

0 2 4 6 8 10 12

time[s]

-0.5

0

0.5

1

1.5

Fig. 8. Evolution in time of the states and actions for the two-link robot
arm

using the Euler method, for 5 integration steps per control
sampling time, which is ∆ = 0.05s. The goal is to get the
state to a desired setpoint xf . The reward function is:

ρ(xk, uk) = (10− |x1k+1
− x1f | − |x3k+1

− x3f |)/10 (21)

where xk+1 is the state at the next step. We took a nondif-
ferentiable reward to showcase that the algorithm is resilient
to this.

The following values were used for the algorithm: M =
3, budget of 1000, Lf = Lρ = 1.2, γ = 0.8. Thus,
only the budget is changed from the previous problem,
without retuning anything else. Again, a receding horizon
simulation is done, for 12 seconds. The starting position
is x0 = [1.2, 0, 0.8, 0]. The desired final state is xf =
[π/2, 0,−π/2, 0]. The results can be seen in Figure 8, which
shows the evolution of the states and actions in time. The top
subplot presents the angles, and the middle one the angular
velocities. With blue continuous lines we can see the states
corresponding to the first, actuated, joint. The red, dashed
lines represent the states of the second joint, which can only
be influenced by a holding brake. As one can observe, both
angles reach their desired setpoints, which are represented
in black dotted lines. Also, the final velocities are oscillating
around 0, and the brake is not set. The last subplot presents
the evolution in time of the 2 actions: with blue continuous
line c and with red dashed line d.

A comparison with [2] is unfortunately not possible, since,
as stated above, there are several missing parameters (α, τb

and the maximum of τ1), which have a great influence on
the model, according to other simulations that we have run.

VII. CONCLUSIONS

The Optimistic Planning for Hybrid-Input Systems algo-
rithm is proposed for systems with both continuous and
discrete actions. It is successful for two examples, a simple
two-tanks system and a two-link robot arm.

In the future, we plan to extend the analysis of the
algorithm so as to include convergence rate guarantees,
as explained in Section V. Also, we aim to derive a so-
called simultaneous version of the algorithm, which does not
require to know the Lipschitz constants.

REFERENCES

[1] L. Buşoniu, E. Páll, and R. Munos, “Continuous-action planning for
discounted infinite-horizon nonlinear optimal control with Lipschitz
values,” Automatica, vol. 92, pp. 100–108, 2018.

[2] M. Buss, M. Glocker, M. Hardt, O. Von Stryk, R. Bulirsch, and
G. Schmidt, “Nonlinear hybrid dynamical systems: modeling, optimal
control, and applications,” in Modelling, Analysis, and Design of
Hybrid Systems. Springer, 2002, pp. 311–335.

[3] J. C. Geromel and R. H. Korogui, “H2 robust filter design with
performance certificate via convex programming,” Automatica, vol. 44,
no. 4, pp. 937–948, 2008.

[4] M. Granzotto, R. Postoyan, L. Buşoniu, D. Nešić, and J. Daafouz, “Op-
timistic planning for the near-optimal control of nonlinear switched
discrete-time systems with stability guarantees,” in 2019 IEEE 58th
Conference on Decision and Control (CDC). IEEE, 2019, pp. 3405–
3410.

[5] J.-F. Hren and R. Munos, “Optimistic planning of deterministic sys-
tems,” in European Workshop on Reinforcement Learning. Springer,
2008, pp. 151–164.

[6] J. Lygeros, C. Tomlin, and S. Sastry, “Hybrid systems: modeling,
analysis and control,” Electronic Research Laboratory, University of
California, Berkeley, CA, Tech. Rep. UCB/ERL M, vol. 99, 2008.

[7] J. Mareczek, M. Buss, and G. Schmidt, “Robust global stabilization of
the underactuated 2-DOF manipulator R2D1,” in Proceedings. 1998
IEEE International Conference on Robotics and Automation (Cat. No.
98CH36146), vol. 3. IEEE, 1998, pp. 2640–2645.

[8] N. N. Nandola and S. Bhartiya, “A multiple model approach for
predictive control of nonlinear hybrid systems,” Journal of process
control, vol. 18, no. 2, pp. 131–148, 2008.

[9] N. N. Nandola and K. Puttannaiah, “Modeling and predictive control of
nonlinear hybrid systems using disaggregation of variables-A convex
formulation,” in 2013 European Control Conference (ECC). IEEE,
2013, pp. 2681–2686.

[10] L. G. J. Pannek and L. Grüne, “Nonlinear Model Predictive Control:
Theory and Algorithms,” in Nonlinear Model Predictive Control.
Springer, 2011, pp. 2267–2274.

[11] R. Postoyan, L. Buşoniu, D. Nešić, and J. Daafouz, “Stability analysis
of discrete-time infinite-horizon optimal control with discounted cost,”
IEEE Transactions on Automatic Control, vol. 62, no. 6, pp. 2736–
2749, 2016.

[12] M. Sarailoo, Z. Rahmani, and B. Rezaie, “A novel model predictive
control scheme based on bees algorithm in a class of nonlinear
systems: Application to a three tank system,” Neurocomputing, vol.
152, pp. 294–304, 2015.

[13] O. Slupphaug, J. Vada, and B. A. Foss, “MPC in systems with
continuous and discrete control inputs,” in Proceedings of the 1997
American Control Conference (Cat. No. 97CH36041), vol. 5. IEEE,
1997, pp. 3495–3499.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[15] A. J. Van Der Schaft and J. M. Schumacher, An introduction to hybrid
dynamical systems. Springer London, 2000, vol. 251.

