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Abstract— We consider two problems for discrete-time
switched systems with autonomous, general nonlinear modes.
The first is optimal control of the switches so as to minimize
the discounted infinite-horizon sum of the costs. The second
problem occurs when switches are a disturbance, and the worst-
case cost under any sequence of switches is sought. We use
an optimistic planning (OP) algorithm that can solve general
optimal control with discrete inputs such as switches. We
extend the analysis of OP to provide sequences of switches
with certification (upper and lower) bounds on the optimal and
worst-case costs, and to characterize the convergence rate of the
gap between these bounds. Since a minimum dwell time between
switches must often be ensured, we introduce a new optimistic
planning variant that can handle this case, and analyze its
convergence rate. Simulations for linear and nonlinear modes
illustrate that the approach works in practice.

I. INTRODUCTION

Switched systems consist of a set of linear or nonlinear

dynamics called modes, together with a law for switching

between these modes [13]. They are employed to model real-

world systems that are subject to known or unknown abrupt

parameter changes, e.g. embedded systems in automotive

industry, aerospace, and energy management. This important

class of hybrid systems is therefore heavily studied, with a

main focus on stability and stabilization, see surveys [14],

[19]. Performance optimization for switched systems has also

been investigated, see e.g. the survey [22]. Hybrid versions of

the Pontryagin Maximum Principle or dynamic programming

have been proposed [17], [18], with the drawback of lacking

efficient numerical algorithms. Suboptimal solutions with

guaranteed performance include [21], [9]. The former ef-

ficiently represents the approximate value function using re-

laxations. The latter proves that the so-called min-switching

strategies are consistent, i.e. that they improve performance

with respect to non-switching strategies. Certification bounds

[6] (lower and upper bounds on performance) are provided

for linear switched systems with a dwell time assumption in

[10]. In [7], the problem is treated by introducing modal oc-

cupation measures, which allow relaxation to a primal linear

programming (LP) formulation. Overall, however, optimal

control remains unsolved for general switched systems.
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In this paper, we propose an approach inspired from the

field of planning in artificial intelligence, to search either

for the best performance when the switches are controllable,

or for the worst-case performance when switching acts as

a disturbance. We consider a set of autonomous, general

nonlinear modes, and a performance index consisting of

the discounted infinite-horizon sum of general, nonquadratic

stage costs. Optimistic planning [8], [15] is used to search the

space of possible sequences of switches. Since a minimum

dwell time between switches must often be guaranteed,

we introduce a new optimistic planner that handles this

constraint, and analyze its convergence rate. In both the

worst-case or optimal-control settings, our approach designs

a sequence that guarantees certification on the performance,

while optionally enforcing a minimum dwell-time.

Compared to the optimal control methods reviewed above,

the advantages of our approach include: a procedure to de-

sign a worst-case sequence, a characterization of the certifica-

tion bounds, and a method for the case of constrained switch-

ing. While a high computational complexity is unavoidable

due to the generality of the switched system considered, our

analysis is focused precisely on characterizing the relation

between computation and quality of the bounds. Note also

that we focus on optimality, without analyzing stability –

which is a separate, difficult problem for discounted cost

[12], [16]. In certain cases stability conditions exist, e.g.

for linear modes and a minimum dwell time [5], and our

approach can handle dwell-time constraints. Moreover, our

method and guarantees may be useful even if stability cannot

be formally decided.

Next, Section II formalizes the problem and Section III

gives the necessary background. Section IV describes the

proposed approach, and Section V evaluates it in two linear

examples and a nonlinear one. Section VI concludes.

II. PROBLEM STATEMENT

Consider a discrete-time nonlinear switched system with

states x ∈ X that can be at each step k in one of M modes

u ∈ U =
{

u1, . . . , uM
}

, where each mode is autonomous:

xk+1 = fuk
(xk) (1)

The dwell time is defined as the number of steps during

which the mode remains unchanged after a switch. A func-

tion g(xk, uk) assigns a numerical stage cost to each state-

mode pair. Under a fixed initial state x0, define an infinitely-

long sequence of modes u∞ = (u0, u1, . . . ) and the infinite-

horizon discounted cost of this sequence:

J(u∞) =

∞
∑

k=0

γkg(xk, uk) (2)



where γ ∈ (0, 1) is the discount factor and xk+1 = fuk
(xk).

Discounting is necessary for our planning algorithms, and

many other works use it, e.g. [1], [4], [11]. No specific form

is required for dynamics f , and a closed form need not even

exist (e.g. f may be represented as a computer program).

In this context, we define two different problems:

PO. Optimal control: Find the optimal value J =
infu∞

J(u∞) and a corresponding sequence of

switches that achieves it.

PW. Worst-case switches: Find the largest possible cost:

J = supu∞

J(u∞), and a corresponding sequence of

switches that achieves it.

PO is useful when the switches can be controlled, while

PW is interesting when they are a disturbance and we are in-

terested in the performance under the worst-case disturbance.

We rely on a central assumption of cost boundedness.

Assumption 1: The stage costs are bounded in [0, G].
Due to the discounting, this guarantees that the infinite-

horizon cost J in (2) is bounded to [0, G
1−γ ].

Example 1: A classical switched system is obtained when

the modes are linear and the cost is quadratic. A typical way

of ensuring Assumption 1 is to saturate the cost to G:

fuk
= Auk

xk

g(xk, uk) = min{x⊤
k Qxk, G}

This changes the optimal solution, but is often sufficient

in practice. For this system, Theorem 1 in [5] provides a

minimum dwell time which, if obeyed, guarantees stability

for any switching sequence. We provide an algorithm that

enforces a minimum dwell-time in Section IV-B. �

Of course, PO usually only makes sense if the system is

stabilizable, and PW additionally requires that it is stable

under any switching sequence. We focus here on optimality,

so we do not analyze stability. While stability conditions

sometimes exist, as in Example 1, stability under discounted

cost is generally a difficult problem [12], [16]. Nevertheless,

even when conditions to guarantee stability analytically

cannot be found, PO and PW may still make sense, and our

algorithms can be applied. If stability is empirically verified

by the trajectory generated, then our near-optimality bounds

remain meaningful.

III. BACKGROUND: OPTIMISTIC PLANNING FOR

DETERMINISTIC SYSTEMS

This section introduces optimistic planning for determin-

istic systems (OP) [8], [15], which forms the basis of our

approach: it supplies independence of the mode dynamics,

as well as a way to design sequences with known lower and

upper bounds on the performance. Both PO and PW will be

encompassed as variants of an optimal control problem that

involves maximizing a reward function ρ : X × U → [0, 1],
where U is the discrete set of M actions. Given an initial

state x0, the return of a sequence is:

v(u∞) =

∞
∑

k=0

γkρ(xk, uk) (3)
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Fig. 1. Illustration of an OP tree T . Nodes are labeled by actions, arcs
represent transitions and are labeled by the resulting states and rewards.
Subscripts are depths, superscripts index the M possible actions/transitions
from a node (here, M = 2). The leaves are enclosed in a dashed line, while
the gray path denotes a sequence.

Algorithm 1 Optimistic planning.

1: initialize tree T ← {u0}
2: for t = 1, . . . , n do

3: find optimistic leaf: u
† ← arg maxu∈L(T ) b(u)

4: add to T the children of u
†, labeled by u1, . . . , uM

5: end for

6: return sequence u
∗
d = arg maxu∈L(T ) l(u), lower

bound l∗ = l(u∗
d), upper bound b∗ = maxu∈L(T ) b(u)

and the optimal return is v∗ = supu∞

v(u∞). Under mild

technical conditions, this optimum exists, together with a

sequence that achieves it [2]. Define a finite-length sequence

of d actions as ud = (u0, . . . , ud−1).

OP explores a tree representation of the possible action

sequences from the current system state, as illustrated in

Figure 1. Each node at some depth d is reached via a

unique path through the tree, corresponding to a unique

action sequence ud of length d. We denote the nodes by

their corresponding action sequences, the current tree by T ,

and its leaves by L(T ). For any node/sequence ud, because

all the rewards at depths larger than d are in [0, 1], the

following upper bound holds for the returns of all infinite

action sequences that share the initial subsequence up to ud:

b(ud) =

d−1
∑

i=0

γiρ(xi, ui) +
γd

1− γ
=: l(ud) +

γd

1− γ

where l(ud) is a lower bound. Here, xk, k ≥ 1 is the state

sequence obtained by applying ud.

OP starts with a root node representing the empty se-

quence, and iteratively expands n nodes, where expanding

a node adds M new children nodes, one for each possible

discrete action. This corresponds to appending each action

to the sequence of the expanded node. The expansion rule

is optimistic since it expands at each iteration the most

promising sequence: the one with the largest upper bound.

After n node expansions, a “safe” sequence that maximizes

l among the leaves is returned, together with bounds on

the performance, see Algorithm 1. While OP is a type of

nonlinear model-predictive control, its AI origins lead to

some atypical near-optimality guarantees, described next.



To analyze the complexity of finding the optimal sequence

from x0, define the near-optimal subtree:

T ∗ = {ud | d ≥ 0, v∗ − v(ud) ≤
γd

1− γ
} (4)

where the value of a finitely long sequence is v(ud) :=
supu∞

v((ud,u∞)), with (·, ·) denoting sequence concate-

nation. A core property of OP is that it only expands nodes

in T ∗. This subtree can be significantly smaller than the

complete tree containing all sequences, and to measure its

size let T ∗
d be the set of nodes at depth d on T ∗ and |·| denote

set cardinality. Then, define the asymptotic branching factor

as κ = lim supd→∞ |T
∗

d |
1/d

. This is a complexity measure

for the problem, see below for more intuition.

The upcoming theorem is a consequence of the analysis

in [8], [15]. Parts (i), (ii) show that OP returns a long, near-

optimal sequence with known performance bounds, and part

(ii) quantifies the length and bounds via branching factor κ.

Theorem 2: When OP is called with budget n:

(i) The optimal value v∗, as well as the value v(u∗
d) of the

sequence returned, are in the interval [l∗, b∗]. Further,

the gap ε := b∗− l∗ satisfies ε ≤ γd∗

1−γ where d∗ is the

largest depth of any node expanded.

(ii) The length d of sequence u
∗
d is at least d∗.

(iii) If κ > 1, OP will reach a depth of d∗ = Ω( log n
log κ ),

and ε = O(n−
log 1/γ
log κ ). If κ = 1, d∗ = Ω(n) and ε =

O(γcn), where c is a problem-dependent constant.1

Proof: Part (ii) follows from the proof of Theorem 2 in

[8], and (iii) from the proofs of Theorems 2 and 3 in [8].

Part (i) is stated here in a new form that brings out the lower

and upper bounds, so we will prove it.

Clearly, l∗ ≤ v(u∗
d) ≤ v∗ by definition. Consider now

a leaf sequence u
′ on the final tree, that is an initial

subsequence of an optimal sequence. Since b∗ is the largest

upper bound, b∗ ≥ b(u′) ≥ v∗, so combined with the first

inequality we get v∗, v(u∗
d) ∈ [l∗, b∗]. Further, by expanding

nodes the largest b-value on the tree can only decrease.

Hence, for any node u
† previously expanded, found at some

depth d, we have b∗ ≤ b(u†) and also ℓ∗ ≥ ℓ(u†), so

ε = b∗ − l∗ ≤ b(u†) − l(u†) = γd

1−γ . One such node is

at d∗, so ε ≤ γd∗

1−γ .

Note that d∗ is the depth of the developed tree minus

1. The smaller κ, the better OP does. The best case is

κ = 1, obtained e.g. when a single sequence always obtains

rewards of 1, and all the other rewards on the tree are 0.

In this case the algorithm must only develop this sequence,

and the gap decreases exponentially. In the worst case,

κ = M , obtained e.g. when all the sequences have the same

value, and the algorithm must explore the complete tree in

a uniform fashion, expanding nodes in order of their depth.

1For g, h : [0,∞) → [0,∞), g(t) = O(h(t)) (or g(t) = Ω(h(t)))
means ∃t0, c > 0 so that g(t) ≤ ch(t) (or g(t) ≥ ch(t)) ∀t ≥ t0.

IV. APPROACH AND ANALYSIS

A. Applying OP to switched systems

OP can be applied to the system in Section II by inter-

preting the mode switches as discrete actions. To solve the

optimal control problem PO and the worst-case problem PW,

the reward function is taken, respectively, as:

ρ(x, u) := 1−
g(x, u)

G
, ρ(x, u) =

g(x, u)

G
(5)

so that maximizing ρ is equivalent to minimizing costs g,

and maximizing ρ to maximizing costs g. We use underline

to denote quantities under PO and overline for PW, e.g. κ
and κ are the complexity measures (branching factors) in the

two problems. Then OP is simply applied with either of these

two reward functions, and it will produce certification bounds

and design a sequence that achieves them, as described next.

Corrolary 3: (i) When applied to PO, OP returns bounds

l, b so that the optimal value J is in the interval [G( 1
1−γ −

b), G( 1
1−γ − l)], as well as a sequence u that achieves these

bounds. The gap (interval size) is Gε = O(n−
log 1/γ
log κ ) when

κ > 1, or O(γcn) when κ = 1.

(ii) When applied to PW, OP returns bounds l, b so that

the worst-case value J is in the interval [Gl,Gb], as well as

a sequence u that achieves these bounds. The gap is Gε =

O(n−
log 1/γ
log κ ) when κ > 1, or O(γcn) when κ = 1.

Proof: For any infinitely long sequence u∞, it is easily

seen that the value under ρ is v(u∞) = 1
1−γ −

1
GJ(u∞),

and so v∗ = 1
1−γ −

1
GJ . Using this fact and Theorem 2, Part

(i) is derived immediately. We similarly observe v(u∞) =
1
GJ(u∞) and easily derive Part (ii).

The results above are for a single sequence starting at x0.

In practice (and in our examples below), the algorithm is

used in receding horizon, by only applying the first action

u0 of the sequence, then recomputing a new sequence from

x1 and applying its first action u1, etc.

B. Enforcing a dwell-time constraint

It is often important to ensure that after switching, the

system remains in the same mode for a certain number of

steps – the dwell time. This is because for some systems

fundamental properties (stability, performance, etc.) can be

guaranteed only under dwell time constraints, see e.g. Ex-

ample 1 and [5]. Another reason is that in practice, it may

be unsuitable or impossible to switch arbitrarily fast, so the

designer must guarantee by construction a minimum dwell

time.

Therefore, we introduce and analyze an algorithm that

enforces a dwell time of at least δ along any sequence. We

start from OP and introduce a function ∆(u), which takes

as input any finite-length sequence u and provides the last

dwell time at the end of the sequence. Then, the dwell-time

condition is checked for every node to be expanded. If the

dwell time is at least δ, a switch can occur, and so children

are created for all the actions (modes). Otherwise, a switch is

not allowed, so only the child that keeps the mode constant is

created. Figure 2 illustrates the complete tree down to depth
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Fig. 2. Illustration of a constrained, OPδ tree for δ = 2. Nodes are labeled
by integer actions. The gray nodes have dwell time 1, so they are allowed
only one child, the one keeping the action unchanged. The children of the
gray nodes have dwell time 2, so they are eligible for full expansion. If δ
were 3 instead, then these children would not satisfy the constraint either.

Algorithm 2 OP with a dwell-time constraint.

1: initialize tree T ← {u0}
2: for t = 1, . . . , n do

3: find optimistic leaf: u
† ← arg maxu∈L(T ) b(u)

4: if ∆(u†) ≥ δ then

5: create all children of u
†, labeled by u1, . . . , uM

6: else

7: create one child, labeled by last action u on u
†

8: end if

9: end for

10: return u
∗
d = arg max

u∈L(T )

l(u), l∗ = l(u∗
d), b

∗ = max
u∈L(T )

b(u)

3 (the algorithm may only create some of these nodes). By

convention, it is assumed that the dwell time condition is

satisfied at d = 1, see also the discussion on closed-loop

application at the end of the section. The resulting procedure

is called OP with a dwell-time constraint (OPδ) and shown

in Algorithm 2.

Denote now by U δ the set of sequences satisfying the

constraint, and the constrained optimal values:

v∗
δ = sup

u∞∈Uδ

v(u∞)

vδ(ud) = sup
u∞s.t. (ud,u∞)∈Uδ

v((ud,u∞))

Of course, the constrained optimum is generally worse than

the unconstrained one, v∗
δ ≤ v∗, so enforcing the constraint

comes at a price. We analyze in the sequel the bounds

and gap provided by OPδ, in the general case of a reward

function ρ. Then, by choosing the rewards as in (5), we

can solve either PO or PW under the dwell-time constraint.

Note that whenever the distinction between unconstrained

and constrained values is not clear, we explicitly add the

subscript δ to the quantity in the constrained problem.

As for OP, define the near-optimal constrained subtree:

T ∗
δ = {ud | d ≥ 0,ud ∈ U δ, v

∗
δ − vδ(ud) ≤

γd

1− γ
} (6)

where ud ∈ U δ means that there exist some infinite

constrained sequence starting with ud. Then, the following

properties similar to OP also hold in the constrained case.

Lemma 4: OPδ only expands nodes in T ∗
δ , and the op-

timal constrained value v∗
δ , as well as the value vδ(u

∗
d) of

the sequence returned, are in the interval [l∗, b∗]. Further, the

gap [l∗, b∗] satisfies ε ≤ γd∗

1−γ where d∗ is the largest depth

of any node expanded by OPδ.

Proof: By definition of the algorithm all sequences

expanded satisfy the first condition ud ∈ U δ . Further,

for any finite tree there exists some leaf sequence u
′ so

that b(u′) ≥ v∗
δ , and since u

† maximizes the b-value,

b(u†) ≥ v∗
δ , or equivalently l(u†) + γd

1−γ ≥ v∗
δ . This implies

vδ(u
†)+ γd

1−γ ≥ v∗
δ , the same as the second condition in (6).

So finally u
† ∈ T ∗

δ . The remainder of the lemma is proven

like Theorem 2(i), by replacing all the unconstrained values

v by constrained ones.

So far the analysis simply established that OPδ preserves

some interesting properties of OP. The main novelty in

our analysis follows: studying the new gap ε obtained by

the constrained algorithm. To this end, the cardinality of

the near-optimal tree must be characterized using a new

complexity measure, which is defined as follows.

Definition 5: The complexity measure is the smallest

value of K for which there exists a constant c > 0 so that
∣

∣

∣
T ∗

d,δ

∣

∣

∣
≤ c ·Kd/δ, ∀d ≥ 0.

Here T ∗
d,δ denotes the nodes of T ∗

δ at depth d. Note that

due to the special cases below, a K always exists and belongs

to the interval [1,Mδ] (it may be non-integer). Constant

K plays a similar role to the branching factor κ in the

unconstrained problem, and in some cases a relationship

between the two quantities can be found, as we show later.

Our results hold for any pair c,K, but we take the smallest

K. Using K, the gap ε is characterized as follows.

Theorem 6: Given a computational budget n, OPδ algo-

rithm produces a gap ε = O(n−δ
log 1/γ
log K ) if K > 1, and

ε = O(γ
n
c ) when K = 1, where c is the constant from the

definition of K.

Proof: Define dn to be the smallest depth so that n ≤
∑dn

i=0

∣

∣

∣
T ∗

d,δ

∣

∣

∣
; this means the algorithm has expanded nodes

at dn (perhaps not yet at dn + 1), so d∗ ≥ dn and ε ≤ γdn

1−γ .

If K > 1, then2 n ≤
∑dn

i=0 cKd/δ = c (K1/δ)d+1−1
K1/δ−1

≤

c1K
d/δ, from which dn ≥ δ (log n−log c1)

log K ≥ δ log n/ log K−

c2. Thus, after some manipulations ε ≤ c3n
−δ

log 1/γ
log K .

If K = 1, then n ≤
∑dn

i=0 c ≤ c(dn + 1), and dn ≥
n−1

c

leading to ε ≤ γ
n−1

c . The theorem is proven.

While we measure complexity by the number n of nodes

expanded, the number of children of a node may be either

1 or M , so the computational cost of expansion varies.

Nevertheless, this only amounts to a constant factor in

the relationships, and so it does not affect the asymptotic

analysis. Next, we find the complexity measure K and

illustrate its relation to κ in two interesting cases.

Case 1: All sequences optimal: Consider a problem

where all the rewards are identical, say equal to 1 or to

0. While any sequence is optimal in this problem, it is

nevertheless an interesting worst case, which highlights the

(correct) behavior of the algorithm in general. In this case

2We denote by ci positive constants whose value is irrelevant to the
asymptotic analysis.



the algorithm must explore the entire tree uniformly, in the

order of depth. Counting the size of this tree is tedious

but straightforward, and we skip the proof. The result is
∣

∣

∣
T ∗

d,δ

∣

∣

∣
≤M2δ(δM)

d
δ , so K = Mδ. Since T ∗

d,δ has the largest

possible size, Mδ is also the upper limit of the possible

values of K.

Comparing to OP, K equals δ times the branching factor

M in the OP tree. The two algorithms explore trees that

grow exponentially with the depth, but have different size.

Consider the resulting rates: ε = O(n−
log 1/γ
log M ) for OP, and

ε = O(n−δ
log 1/γ
log Mδ ) for OPδ. Since δ log 1/γ

log Mδ ≥
log 1/γ
log M for all

M, δ ≥ 2, OPδ converges faster in this worst-case sense. Of

course, this does not mean that OPδ is faster for any given

particular problem, and in fact the relationship varies. �

Case 2: One optimal sequence: In this case, a single

sequence has maximal rewards (equal to 1), and all other

transitions have a reward of 0. Here, two situations are

possible. If the optimal sequence is within the constrained

set, OPδ always expands this sequence further, we have
∣

∣

∣
T ∗

d,δ

∣

∣

∣
= 1 and K = 1, the easiest type of problem. This

also leads to the lower limit of 1 for K. In this situation,

the original OP explores the same path so κ = 1. Thus the

best-case convergence rate of the two algorithms is the same

– exponential.

Otherwise, the optimal sequence leaves the constrained

set at a node u0 at some finite depth, and then the algorithm

must explore uniformly the subtree having u0 at the root

(perhaps in addition to some other nodes). Then, since the

analysis is asymptotic, for large depths, K has the maximal

value of Mδ again. Since OP is still allowed to refine the

optimal sequence, κ = 1 and here introducing the constraint

has made the problem significantly more complex. �

Having completed the analysis of generic OPδ, its proper-

ties in the context of PO and PW for switched systems are

summarized in the following direct adaptation of Corrolary 3.

The differences are that the values become constrained, and

the convergence rates change to those of OPδ.

Corrolary 7: (i) When applied to PO, OPδ returns bounds

l, b so that the optimal value Jδ := infu∞∈Uδ
J(u∞) is in

the interval [G( 1
1−γ − b), G( 1

1−γ − l)], as well as a sequence

u that achieves these bounds. The gap is Gε = O(n−δ
log 1/γ
log K )

when K > 1, or O(γn/c) when K = 1.

(ii) In PW, OPδ returns bounds l, b so that the worst-case

value Jδ := supu∞∈Uδ
J(u∞) is in the interval [Gl,Gb], as

well as a sequence u that achieves these bounds. The gap is

Gε = O(n
−δ

log 1/γ

log K ) when K > 1, or O(γn/c) when K = 1.

The following remark is important for receding-horizon

applications. If a switch occurs at step k, then to guarantee

the dwell-time constraint the mode must be kept constant

(keeping the loop open) until k + δ − 1, so OPδ only needs

to be called again at step k + δ. Note that this means some

of the nodes at d = 1 have dwell time 1 so they become

constrained, unlike our simplifying assumption stated before

Algorithm 2, which holds at k = 0. However this is easy to

take into account in the implementation.

V. SIMULATION RESULTS

We evaluate our approach for an optimal control problem

PO in a nonlinear switched system, and for worst-case

disturbance PW in a linear switched system.

A. Optimal control for nonlinear modes

Consider PO for the double-tank system with nonlinear

modes from [20]. The two states of the system correspond

to the fluid levels in an upper and a lower tank. The output

of the upper tank flows into the lower tank, the output of

the lower tank exits the system, and the flow into the upper

tank is restricted to be either 1 or 2. The two modes have

continuous-time dynamics:

ẋ(t) =

[

1−
√

x1(t)
√

x1(t)−
√

x2(t)

]

, ẋ(t) =

[

2−
√

x1(t)
√

x1(t)−
√

x2(t)

]

The cost is defined as (x−x∗)
⊤

Q(x−x∗) with x∗ = [0, 3]
⊤

,

and Q = diag(0, 2), so the first state is not optimized and

the second must reach value 3. Different from [20], we

numerically integrate the dynamics over sampling intervals

of Ts = 0.1 to obtain the discrete-time modes f1 and f2, see

again (1).

We examine the effect of the computational budget n on

performance, which is measured by the undiscounted cost

along the trajectory in order to be consistent with usual

formulations of optimal control of switched systems. OP is

run for a range of budgets from 10 to 200 in increments of 2,

using the initial state x0 = [2, 2]
⊤

, γ = 0.98 and a trajectory

length of 20 s. Figure 3, top reports the results, showing that

the cost decreases with larger budgets as expected, although

the differences are small, showing that the problem is simple

enough to be solved well with small budgets. Note that the

cost no longer decreases for significantly larger budgets,

which indicates the solution is likely already optimal (for

discounted costs). Figure 3, bottom shows the trajectory for

n = 200, which stabilizes the level to 3 in around 6 s, like

the approach in [20].

B. Worst-case disturbance with a dwell-time constraint

Next, we illustrate a problem of type PW: worst-case

disturbance. We borrow the example of [5], having two linear

modes A1 = eB1Ts and A2 = eB2Ts with:

B1 =

[

0 1
−10 −1

]

, B2 =

[

0 1
−0.1 −0.5

]

The sampling time is Ts = 0.5, the cost is quadratic with

Q = I and the initial state is x0 = [1, 1]
⊤

. In [5] stability is

guaranteed under a minimum dwell-time of δ = 6, and we

take advantage of this guarantee by applying the constrained

algorithm OPδ with δ = 6, and keeping the very first mode

constant for 6 steps. We select γ = 0.98, a budget n =
2000, an experiment length of 300 s, and derive G by taking

bounds of 30 for both state variables; these bounds are never

reached in the experiments. The undiscounted cost obtained

by running the algorithm in receding horizon is 142.10, close

to the upper bound 152.17 obtained by [5]. Note that we

reached our value by designing a switching control, whereas
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Fig. 3. Top: Influence of computational budget for the nonlinear tanks.
Bottom: Control and state trajectories in the same problem.
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Fig. 4. Controlled trajectory for worst-case disturbance.

[5] do not (but have the advantage of providing a stability

analysis). Figure 4 illustrates the results.

VI. CONCLUSIONS AND FUTURE WORK

We provide an approach to optimize discounted costs

in discrete-time switched systems with possibly nonlinear

modes, which is able to optionally include a minimum dwell-

time constraint. This approach provides upper and lower

bounds on either the optimal cost when the switches are

controlled, or on the worst-case cost when the switches are a

disturbance. The convergence rate of the gap between bounds

as a function of computation is characterized.

An important future direction is an explicit treatment of

stability guarantees, either by connecting with existing condi-

tions in the switched systems literature, or with our approach

for systems without switches in [16]. Approaches can be

developed for systems where switches occur stochastically,

or where some of the switches are controlled and some are a

disturbance. Suitable planning methods exist [3], [15]. OPδ
can also be modified to handle a maximum dwell-time, which

requires novel complexity analysis as in Section IV-B.
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