
Planning for optimal control andperformance certification in

nonlinear systemswith controlled or uncontrolled switches ⋆

Lucian Busoniu a, Jamal Daafouz b, Marcos Cesar Bragagnolo c,

Irinel-Constantin Morărescu b

aAutomation Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania
bUniversité de Lorraine, CRAN, UMR 7039 and CNRS, CRAN, UMR 7039, 2 av. Forêt de Haye, Vandœuvre-lès-Nancy, France

cUniversité de Reims Champagne-Ardenne, CReSTIC, BP 1039, 51687 Reims Cedex 2, France

Abstract

We consider three problems for discrete-time switched systems with autonomous, general nonlinear modes. The first is optimal
control of the switching rule so as to optimize the infinite-horizon discounted cost. The second and third problems occur
when the switching rule is uncontrolled, and we seek either the worst-case cost when the rule is unknown, or respectively the
expected cost when the rule is stochastic. We use optimistic planning (OP) algorithms that can solve general optimal control
with discrete inputs such as switches. We extend the analysis of OP to provide certification (upper and lower) bounds on the
optimal, worst-case, or expected costs, as well as to design switching sequences that achieve these bounds in the deterministic
case. In this case, since a minimum dwell time between switching instants is often required, we introduce a new OP variant
to handle this constraint, and analyze its convergence rate. We provide consistency and closed-loop performance guarantees
for the sequences designed, and illustrate that the approach works well in simulations.

Key words: Switched systems; optimal control; planning; nonlinear systems.

1 Introduction

Switched systems consist of a set of linear or nonlinear
dynamics called modes, together with a rule for switch-
ing between these modes [30]. They are employed to
model real-world systems that are subject to known
or unknown abrupt parameter changes such as faults
[15,29], including for instance embedded systems in
the automotive industry, aerospace, and energy man-
agement. This important class of hybrid systems is
therefore heavily studied, with a main focus on sta-
bility and stabilization, see surveys [38,31] and papers

⋆ Corresponding author L. Buşoniu. This work was sup-
ported by the Agence Universitaire de la Francophonie
(AUF) and the Romanian Institute for Atomic Physics (IFA)
under the AUF-RO project NETASSIST; and by the PICS
project No 6614 “Artificial-Intelligence-Based Optimization
for the Control of Networked and Hybrid Systems”. Addi-
tionally, the work of J. Daafouz and I.-C. Morărescu was
partially funded by the National Research Agency (ANR)
project “Computation Aware Control Systems” (No. ANR-
13-BS03-004-02). Some early ideas related to the analysis in
Section 5 were discussed with Remi Munos while developing
the work [8], and we thank him for that.

Email addresses: lucian@busoniu.net (Lucian Busoniu),
jamal.daafouz@univ-lorraine.fr (Jamal Daafouz),
marcoscesarbragagnolo@gmail.com (Marcos Cesar
Bragagnolo), constantin.morarescu@univ-lorraine.fr
(Irinel-Constantin Morărescu).

[33,6,14,18,28]. Performance optimization for switched
systems has also been investigated, see e.g. the sur-
vey [45] and [43,35,2,36,37,12]. Hybrid versions of the
Pontryagin Maximum Principle or dynamic program-
ming have been proposed [35,37], with the drawback of
lacking efficient numerical algorithms. Suboptimal so-
lutions with guaranteed performance include [41], [19].
The former efficiently represents the approximate value
function using relaxations. The latter proves that the
so-called min-switching strategies are consistent, i.e.
that they improve performance with respect to non-
switching strategies. Certification bounds [20] (lower
and upper bounds on performance) are provided for
linear switched systems with a dwell time assumption
in [24]. In [12], the problem is treated by introducing
modal occupation measures, which allow relaxation to a
primal linear programming (LP) formulation. Overall,
however, optimal control remains unsolved for general
switched systems.

Motivated by this, our paper makes the following con-
tributions. We propose an approach inspired from the
field of planning in artificial intelligence, to either design
switching sequences with near-optimal performance
when switching is controllable, or to evaluate the per-
formance when switching acts as a disturbance. We call
the first problem PO, and the second either PW when
the switching rule is unknown, in which case we estimate
the worst-case performance; or PS when the switches

Preprint submitted to Automatica 9 December 2016

evolve stochastically along a known Markov chain,
in which case we evaluate the expected performance.
Throughout, we consider a set of autonomous, general
nonlinear modes, and a performance index consisting
of the discounted infinite-horizon sum of general, non-
quadratic stage costs. Optimistic planning [23,8,32] is
used to search the space of possible switching sequences.
In all cases, our approach guarantees certification, lower
and upper bounds on the (expected) performance.

When it makes sense to do so, namely in PO and PW, the
method also designs a switching sequence that achieves
the certification bounds. Since a minimum dwell time δ
between switching instants must often be ensured, we
introduce a new optimistic planner called OPδ that han-
dles this constraint, and analyze its convergence rate.
The analysis provides consistency and closed-loop per-
formance guarantees for the sequences designed. Differ-
ent from typical results, consistency shows improvement
with respect to any suboptimal sequences, not only sta-
tionary ones. Finally, we illustrate the practical perfor-
mance of the approach in simulations for several linear
examples and a nonlinear one.

Compared to the optimal control methods reviewed
above, the advantages of our approach include: a char-
acterization of the certification bounds, a procedure
to design a worst-case sequence, a design method with
minimum dwell time, improved consistency results, and
the ability to handle very general nonlinear modes.
While a high computational complexity is unavoidable
due to this generality, our analysis is focused precisely
on characterizing the relation between computation and
quality of the bounds.

An important remark is that much of the literature fo-
cuses on stability [38,31], whereas our aim is to provide
near-optimality guarantees. Stability is a separate, dif-
ficult problem for discounted costs [26,11,34]. Neverthe-
less, in some cases our approach can exploit existing sta-
bility conditions: e.g. for some types of linear modes sta-
bility may be guaranteed under a dwell time constraint
using [18], in which case OPδ can enforce this constraint
and thereby ensure stability.

The stochastic switching in PS leads to a Markov jump
system, and there is a large body of literature dealing
with such systems, again with a focus on linear modes
[5,13], see e.g. [39] for optimal control. A recent nonlin-
ear result is given in [44], where the stability properties
of optimal mode inputs are analyzed for Markov jump
systems with nonlinear controlled modes. The practical
implementation in [44] works for unknown mode dynam-
ics, but without error guarantees, whereas all our meth-
ods provide tightly characterized bounds.

In the context of existing planning methods, solving PO
and PW without dwell-time is a straightforward appli-
cation of optimistic planning [23]. In contrast, enforcing

a minimum dwell-time requires deriving a novel algo-
rithm and its accompanying analysis. Finally, solving PS
can be seen as a special case of optimistic planning for
stochastic systems [8], but the nature of this special case
allows us to derive a streamlined analysis. Compared to
the preliminary version of this work in [7], here we han-
dle the new case of stochastic switching, provide consis-
tency and closed-loop guarantees, and study two addi-
tional examples; in addition to including more technical
discussion at several points in the paper.

Next, Section 2 formalizes the problem and Section 3
gives the necessary background. The approach is de-
scribed in Section 4 for the optimal and worst-case prob-
lems PO and PW, and in Section 5 for the stochastic
switching problem PS. Section 6 evaluates the planners
in simulation examples of all these problems. Section 7
concludes.

List of symbols and notations

x,X, σ, S state, state space, mode, set of modes
M number of modes
fσ, p dynamics in mode σ, mode probabilities
d,σd depth, mode sequence of length/depth d
γ, g,G discount factor, stage cost, cost bound

J ;J, J, J̃ cost; optimal, worst-case, expected cost
ρ, v, ṽ reward function, value, expected value
r reward value
n computation budget
T , T ∗,L(T) tree, near-optimal tree, leaves of T
l, b lower, upper bound on determ. value
L,B lower, upper bound on expected value
l∗, b∗, L∗, B∗ best bounds found by the algorithms
d∗ largest depth found by the algorithms
ε near-optimality or sub-optimality
κ branching factor of near-optimal tree
K complexity of dwell-time problem
β complexity of stochastic problem
δ,∆ minimum dwell time, dwell time
e, λ leaf contribution, contribution cutoff
C, a, b, c constants
· , · quantity · in optimal, worst-case problem
·δ quantity · for minimum dwell-time δ
O(·),Ω(·) bounded above, below by · up to const.

Õ(·) bounded above by · up to log. terms
[·, ·] concatenation of two mode sequences

2 Problem statement

Consider a discrete-time nonlinear switched system with
states x ∈ X. The system can be at each step k in one
of M modes σ ∈ S =

{

σ1, . . . , σM
}

, where each mode
is autonomous:

xk+1 = fσk
(xk) (1)

2

The dwell time is defined as the number of steps dur-
ing which the mode remains unchanged after a switch.
A function g(xk, σk) assigns a numerical stage cost to
each state-mode pair, e.g. quadratic in xk up to satu-
ration limits, see Example 1. Given a fixed initial state
x0, define an infinitely-long switching sequence σ∞ =
(σ0, σ1, . . .) and the infinite-horizon discounted cost of
this sequence:

J(σ∞) =

∞
∑

k=0

γkg(xk, σk) (2)

where γ ∈ (0, 1) is the discount factor and xk+1 =
fσk

(xk). The dynamics f can be very general and a
closed-form mathematical expression may not be avail-
able for them; the only requirement is that f can be
simulated numerically.

To start with, we define two different problems:

PO. Optimal control: Find the optimal value J =
infσ∞

J(σ∞) and a corresponding switching sequence
that achieves it.

PW. Worst-case switches: Find the largest possible cost:
J = supσ∞

J(σ∞), and a corresponding switching
sequence that achieves it.

PO is useful when the switching rule can be controlled,
while PW is interesting when switches are a disturbance
and we are interested in the performance under the worst
possible disturbance.

We will also consider a more refined case where the
switches are known to evolve stochastically, following a
Markov chain. In particular, the probability of moving
from mode i to j is P(σk+1 = j |σk = i) = p(i, j), with
p ∈ [0, 1]M×M known. The initial mode σ0 is distributed
with p0(σ0), p0 ∈ [0, 1]M (if the initial mode is known,
then p0 can give it probability 1). Both p and p0 must
define valid probability distributions. In this case, we are
interested in estimating the expected discounted cost.

PS. Stochastic switches: Find the expected discounted
cost J̃ = Eσ∞

{J(σ∞)}, over the possible switching
sequences σ∞ generated according to p0, p.

In all three problems, we rely on a central assumption
of cost boundedness.

Assumption 1 The stage costs are bounded, so that
g(x, σ) ∈ [0, G], ∀x ∈ X,σ ∈ S.

The main role of discounting and cost boundedness is to
ensure that the infinite-horizon cost J in (2) is bounded
to [0, G

1−γ], which implies the same for the expected

value J̃ . Our planning algorithms rely on this bound-
edness property and would not be implementable with-

out it. Note that many other works in control use dis-
counting, e.g. [17,1,25]. Bounded costs are typical in AI
methods for optimal control, such as the planning class
that we use [27] and reinforcement learning [42]. A good
way to achieve boundedness is by saturating a possi-
bly unbounded original cost function, see Example 1.
This changes the optimal solution (here, the sequence of
switches) in ways that are nontrivial to analyze, but is
often sufficient in practice. On the other hand, the phys-
ical limitations of the system may be meaningfully mod-
eled by saturating the states and actions. In this case, a
cost bound follows from the saturation limits.

Next, we impose a stability requirement.

Assumption 2 For any sequence of switches σ∞ that
can occur, the system is stable from x0 (the state trajec-
tory is bounded).

Regarding the qualifier “can occur”, in Section 4.2 we
will restrict the sequences so that a minimum dwell time
is respected; in that case, only those sequences can occur
and thus must lead to stability. Assumption 2 is natural
in PW, since if the worst sequence destabilizes the sys-
tem there is little point in investigating its cost. In the
stochastic switched systems relevant to PS, more refined
stability properties are usually assumed, such as almost
sure stability [13]. Our Assumption 2 is stronger since it
requires the system to be stable surely (in the probabilis-
tic sense). The situation is more involved in PO, since
our algorithms actually only examine near-optimal se-
quences, so strictly speaking the property is only needed
for those sequences; however a formal analysis of this
would require first a deep understanding of general sta-
bility properties with discounted cost, which are still in
their infancy [34] and, as previously noted, outside the
focus of this paper. Instead, we restrict ourselves in this
paper to the rather strong Assumption 2, which allows
us to focus on optimality. Note nevertheless that in some
simple cases, like in the upcoming linear example, con-
ditions to ensure stability exist.

Example 1 A classical switched system is obtained
when the modes are linear and the cost is quadratic.
Further, we saturate the quadratic cost to G to ensure
Assumption 1:

fσk
= Aσk

xk

g(xk, σk) = min{x⊤Qx,G}

where Q is positive definite. For these dynamics, Theo-
rem 1 in [18] provides a minimum dwell time which, if
obeyed, guarantees stability for any switching sequence.
We provide and analyze an algorithm that enforces a
minimum dwell-time constraint in Section 4.2. �

3

3 Background: Optimistic planning for deter-
ministic systems

This section introduces optimistic planning for deter-
ministic systems (OP) [23,32], which forms the basis of
our approach: it supplies independence of the mode dy-
namics, as well as a way to design sequences with known
lower and upper bounds on the performance. Both PO
and PW will be encompassed as variants of an optimal
control problem that involves maximizing a reward func-
tion ρ : X × S → [0, 1], where S is the discrete set of M
actions. Given an initial state x0, the value of a sequence
is:

v(σ∞) =
∞
∑

k=0

γkρ(xk, σk) (3)

and the optimal value is v∗ = supσ∞
v(σ∞). Under

mild technical conditions, this optimum exists, together
with a sequence that achieves it [3]. Denote ρ(xk, σk)
by rk+1, and a finite-length sequence of d actions by
σd = (σ0, . . . , σd−1).

At a high level, OP iteratively refines promising action
sequences until a computational budget n, related to
the number of evaluations of the model f , is exhausted.
Based on the information accumulated about the values
of these sequences, OP then chooses a sequence that is
as good as possible.

ba bb

L
T

d = 1

d = 2

d = 3

b

d 0=

r = 0 r =0

0 0.1 0.1 0

00.8

[0.25, 0.5]

[0, 0.5] [0.05,0.55] [0, 0.5]

[=0.05, =0.3]l b

aa ab

a

aba abb

Fig. 1. Illustration of an OP tree T . Nodes are labeled by
action sequences, while arcs represent transitions and are
labeled by the associated rewards, shown in blue. Near the
nodes, lower bounds l and upper bounds b are shown in red
boldface, see (4) for their definition. The leaves are enclosed
in a dashed line. The tree is shown after 4 expansions, and
γ = 0.5. (Figure best viewed in color.)

In more detail, the planning process can be visualized
using a tree structure T . Fig. 1 shows such a tree for a
problem with two actions a and b (so, M = 2). Each
node at some depth d is labeled by the corresponding
action sequence σd; for example, the gray node at d = 3
has sequence σ3 = (a,b, a). Each node is also labeled
by the state resulting from applying the sequence; state
labels are not shown in the figure. Planning begins with
a single root node labeled by the empty sequence and
x0, and proceeds by iteratively expanding nodes. The

expansion of a node σd, xd consists of simulating all
M actions from the associated state xd, and adding for
each j a child node labeled by the one-action-longer se-
quence σd+1 = [σd, σ

j] and by the state fσj (xd), where
[·, ·] denotes sequence concatenation. We will use nodes
and sequences interchangeably. An arc between a parent
and a child corresponds to a transition between the cor-
responding states, and is itself labeled by the reward as-
sociated with this transition. E.g. in Fig. 1, the arc lead-
ing to the gray node has reward 0.8. Unexpanded states
in the tree T are called leaves, and the set of leaves is
denoted L(T).

For any node/sequence σd, because all the rewards at
depths larger than d are in [0, 1], we can define a lower
bound l(σd) and an upper bound b(σd) on the values
v(σ∞) of all infinite action sequences that share the ini-
tial subsequence up to σd, as follows:

b(σd) =
d−1
∑

i=0

γiρ(xi, σi) +
γd

1− γ
=: l(σd) +

γd

1− γ
(4)

Here, xi, i = 0, . . . , d− 1 is the state sequence obtained
by applying σd. The algorithm is optimistic because it
expands at each iteration one most promising sequence,
having the largest upper bound. After n node expan-
sions, a greedy, “safe” sequence that maximizes l among
the leaves is returned, together with bounds on the per-
formance, see Algorithm 1.

Algorithm 1 Optimistic planning.

1: initialize tree T ← {σ0}, the empty sequence
2: for t = 1, . . . , n do
3: find optimistic leaf: σ

† ← arg maxσ∈L(T) b(σ)

4: add to T the children of σ
†

5: end for
6: return sequence σ

∗
d = arg maxσ∈L(T) l(σ), lower

and upper bounds l∗ = l(σ∗
d), b∗ = maxσ∈L(T) b(σ)

To exemplify, consider first the dashed node in Fig. 1. It

has the upper bound 0 + γ · 0.1 + γ2

1−γ = 0.55, which is

maximal among all leaves, so this node is the optimistic
one and will be expanded next. The gray node has the
lower bound 0 + γ · 0.1 + γ2 · 0.8 = 0.3, again maximal,
so this is the greedy node which would be returned if the
algorithm were stopped. As a useful exercise, the reader
may verify that the algorithm indeed obtains the tree of
Fig. 1 after running for 4 iterations.

We will use the OP form described above to introduce
our approach, but note that the actual implementation
can be designed to avoid the explicit maximizations
over the leaves. While OP is a type of nonlinear model-
predictive control, its AI heritage (e.g. the A* graph
search algorithm) leads to some atypical near-optimality
guarantees, described next.

4

To analyze the complexity of finding the optimal se-
quence from x0, define the near-optimal subtree:

T ∗ = {σd | d ≥ 0, v∗ − v(σd) ≤
γd

1− γ
} (5)

where the value v(σd) := supσ∞
v([σd,σ∞]) of a finite

sequence σd is the best achievable after applying the
actions in this sequence, by continuing optimally after-
wards. A core property of OP is that it only expands
nodes in T ∗. This subtree can be smaller than the com-
plete tree containing all sequences, and to measure its
size let T ∗

d be the set of nodes at depth d on T ∗ and
|·| denote set cardinality. Then, define the asymptotic

branching factor as κ = lim supd→∞ |T
∗

d |
1/d

. This is a
complexity measure for the problem, and intuitively rep-
resents an average number of children per node in the
infinite subtree T ∗; see also below for its meaning in spe-
cific cases.

The upcoming theorem follows from the analysis in
[23,32]. Parts (i), (ii) show that OP returns a long, near-
optimal sequence with known performance bounds, and
part (ii) quantifies the length and bounds via branching
factor κ.

Theorem 3 When OP is called with budget n: 1

(i) The optimal value v∗, as well as the value v(σ∗
d)

of the sequence returned, are in the interval [l∗, b∗].

Further, the gap ε := b∗− l∗ satisfies ε ≤ γd∗

1−γ where

d∗ is the largest depth of any node expanded.
(ii) The length d of sequence σ

∗
d is at least d∗.

(iii) If κ > 1, OP will reach a depth of d∗ = Ω(log n
log κ),

and ε = O(n−
log 1/γ
log κ). If κ = 1, d∗ = Ω(n) and ε =

O(γcn), where c is a problem-dependent constant.

Note that d∗ is the depth of the developed tree minus
1. The smaller κ, the better OP does. The best case is
κ = 1, obtained e.g. when a single sequence is optimal
and it always obtains rewards of 1, while all the other
rewards on the tree are 0. In this case the algorithm only
develops this sequence, and the gap decreases exponen-
tially. In the worst case, κ = M , obtained e.g. when all
the sequences have the same value, and the algorithm
must explore the complete tree in a uniform fashion, ex-
panding nodes in order of their depth.

1 Let g, h : (0,∞) → R. Statement g(t) = O(h(t)) (or
g(t) = Ω(h(t))) for large t means that ∃t0, c > 0 so that
g(t) ≤ ch(t) (or g(t) ≥ ch(t)) ∀t ≥ t0. When the statement
is made for small t, it means that ∃t0, c > 0 so that the
same inequalities hold for ∀t ≤ t0. Later on, we will also use
notation f(t) = Õ(g(t)) for small (or large) t, which means
that ∃a > 0, b ≥ 0, t0 > 0 so that f(t) ≤ a(log g(t))bg(t)
∀t ≤ t0 (or ∀t ≥ t0).

4 Solving the deterministic optimal-control and
worst-case problems

In our first set of major results, we explain how PO
and PW can be solved. We first explain how the OP
algorithm can be applied off-the-shelf when there are
no dwell time constraints. After that, a minimum dwell-
time is considered, for which an extended algorithm
with nontrivial analysis is necessary. These results
were largely proven in our preliminary paper [7]; we
include the proofs here too, so as to keep the paper
self-contained. Then, we move on to fully novel con-
tributions: consistency guarantees that show the OP
solution is better than e.g. fixed-mode trajectories, and
performance bounds in receding-horizon closed loop.

4.1 Applying OP to switched systems

OP can be applied to the system in Section 2 by inter-
preting the mode switches as discrete actions. To solve
the optimal control problem PO and the worst-case
problem PW, the reward function is taken, respectively,
as:

ρ(x, σ) := 1−
g(x, σ)

G
, ρ(x, σ) =

g(x, σ)

G
(6)

so that maximizing ρ is equivalent to minimizing costs
g, and maximizing ρ to maximizing costs g. We use un-
derline to denote quantities under PO and overline for
PW, e.g. κ and κ are the complexity measures (branch-
ing factors) in the two problems. Then OP is simply ap-
plied with either of these two reward functions, and it
will produce certification bounds and design a switching
sequence that achieves them, as described next.

Corollary 4 (i) When applied to PO, OP returns
bounds l, b so that the optimal value J is in the inter-
val [G(1

1−γ − b), G(1
1−γ − l)], as well as a sequence σ

that achieves these bounds. The gap (interval size) is

Gε = O(n
−

log 1/γ
log κ) when κ > 1, or O(γcn) when κ = 1.

(ii) When applied to PW, OP returns bounds l, b so that
the worst-case value J is in the interval [Gl,Gb], as well
as a sequence σ that achieves these bounds. The gap is

Gε = O(n
−

log 1/γ

log κ) when κ > 1, or O(γcn) when κ = 1.

Proof: For any infinitely long sequence σ∞, it is easily
seen that the value under ρ is v(σ∞) = 1

1−γ −
1
GJ(σ∞),

and so v∗ = 1
1−γ −

1
GJ . Using this fact and Theorem 3,

Part (i) is derived immediately. We similarly observe
v(σ∞) = 1

GJ(σ∞) and derive Part (ii). �

Here, ε and ε are the gaps attained by OP in Theorem 3,
when applied with the costs rescaled to [0, 1]. So, the
final gaps are G times larger, which is made explicit in
the formulas.

5

4.2 Enforcing a dwell-time constraint

It is often important to ensure that after switching, the
system remains in the same mode for a certain number of
steps – the dwell time. This is because for some systems
fundamental properties (stability, performance, etc.) can
be guaranteed only under dwell time constraints, see e.g.
Example 1 and [18]. Another reason is that in practice,
it may be unsuitable or impossible to switch arbitrarily
fast, so the designer must guarantee by construction a
minimum dwell time. The dwell time may appear as a
constraint fixed in advance or as a design parameter to
be chosen.

Therefore, we introduce and analyze an algorithm that
enforces a dwell time of at least δ along any switch-
ing sequence. Our starting point is OP, and most of the
algorithm remains the same, including the lower and
upper bounds, and the optimistic and greedy sequence
selection rules. One important change is introduced in
the node expansion procedure. Define a function ∆(σ),
which takes as input any finite-length sequence σ and
provides the last dwell time at the end of the sequence.
Then, the dwell-time condition is checked for every node
to be expanded. If the dwell time is at least δ, a switch
can occur, and so children are created for all the actions
(modes). Otherwise, a switch is not allowed, so only the
child that keeps the mode constant is created. We call
the algorithm OP with a dwell-time constraint (OPδ)
and summarize it in Algorithm 2. By convention, it is as-
sumed that the dwell time condition is satisfied at d = 1,
see also the discussion in Section 4.4.

Algorithm 2 OP with a dwell-time constraint.

1: initialize tree T ← {σ0}, the empty sequence
2: for t = 1, . . . , n do
3: find optimistic leaf: σ

† ← arg maxσ∈L(T) b(σ)

4: if ∆(σ†) ≥ δ then
5: create all children of σ

†

6: else
7: create one child, for the last action σ on σ

†

8: end if
9: end for

10: return σ
∗
d = arg maxσ∈L(T) l(σ), l∗ = l(σ∗

d), b∗ =

maxσ∈L(T) b(σ)

aa

a b c

acab ca cccb

cca cccccb

ba bcbb

aaa aacaab abb acc baa bcc caa cbbbba bbcbbb

Fig. 2. Illustration of a constrained, OPδ tree for δ = 2. Gray
nodes have smaller dwell time than 2 – namely, 1.

As an example, Fig. 2 illustrates a complete tree down to
depth 3, for M = 3 actions (a, b, c) and δ = 2. The gray
nodes have dwell time 1, as seen by a direct examination
of their sequences; so they are allowed only one child,
the one keeping the action unchanged. The children of
the gray nodes have dwell time 2, so they are eligible for
full expansion. Note that if δ were 3 instead, then these
children would not satisfy the constraint either. Note
that while the figure shows a uniform tree, the algorithm
will usually only create some of the nodes on this tree,
see the analysis.

We analyze in the sequel the bounds and gap provided
by OPδ, in the general case of a reward function ρ. Then,
by choosing the rewards as in (6), we will solve either
PO or PW under the dwell-time constraint. Denote by
Sδ the set of sequences satisfying the constraint, and the
constrained values:

v∗
δ = sup

σ∞∈Sδ

v(σ∞)

vδ(σd) = sup
σ∞s.t. [σd,σ∞]∈Sδ

v([σd,σ∞])

Of course, the constrained optimum is generally worse
than the unconstrained one, v∗

δ ≤ v∗, so enforcing the
constraint comes at a price. Note that whenever the dis-
tinction between unconstrained and constrained values
is not clear, we explicitly add the subscript δ to the quan-
tity in the constrained problem.

As for OP, define the near-optimal constrained subtree:

T ∗
δ = {σd | d ≥ 0,σd ∈ Sδ, v

∗
δ − vδ(σd) ≤

γd

1− γ
} (7)

where σd ∈ Sδ means that there exists an infinite con-
strained sequence starting with σd. Then, the following
properties similar to OP also hold in the constrained
case.

Lemma 5 OPδ only expands nodes in T ∗
δ , and the op-

timal constrained value v∗
δ , as well as the value vδ(σ

∗
d) of

the sequence returned, are in the interval [l∗, b∗]. Further,

the gap [l∗, b∗] satisfies ε ≤ γd∗

1−γ where d∗ is the largest

depth of any node expanded by OPδ.

Proof: By definition of the algorithm all sequences ex-
panded satisfy the first condition σd ∈ Sδ. Furthermore,
for any finite tree there exists some leaf sequence σ

′ so
that b(σ′) ≥ v∗

δ , and since σ
† maximizes the b-value,

b(σ†) ≥ v∗
δ , or equivalently l(σ†) + γd

1−γ ≥ v∗
δ . This im-

plies vδ(σ
†) + γd

1−γ ≥ v∗
δ , the same as the second condi-

tion in (7). So finally σ
† ∈ T ∗

δ .

Clearly, l∗ ≤ vδ(σ
∗
d) ≤ v∗

δ by definition. Consider now a
leaf sequence σ

′ on the final tree, that is an initial sub-
sequence of a constrained optimal sequence. Since b∗ is

6

the largest upper bound, b∗ ≥ b(σ′) ≥ v∗
δ , so combined

with the first inequality we get v∗
δ , vδ(σ

∗
d) ∈ [l∗, b∗]. Fur-

ther, by expanding nodes the largest b-value on the tree
can only decrease. Hence, for any node σ

† previously ex-
panded, found at some depth d, we have b∗ ≤ b(σ†) and

also l∗ ≥ l(σ†), so ε = b∗− l∗ ≤ b(σ†)− l(σ†) = γd

1−γ . At

least one such node is at d∗, so ε ≤ γd∗

1−γ . Note that this

proof is largely the same as for original OP, see e.g. [7],
except that the dwell-time constrained values are sub-
stituted for the unconstrained ones. �

So far the analysis simply established that OPδ pre-
serves some interesting properties of OP. The main nov-
elty of the constrained algorithm follows: the behavior
of the new gap ε obtained. To this end, the cardinality
of the near-optimal tree must be characterized using a
new complexity measure, which is defined as follows.

Definition 6 The complexity measure is the smallest
value of K for which there exists a constant C > 0 so

that
∣

∣

∣
T ∗

d,δ

∣

∣

∣
≤ C ·Kd/δ, ∀d ≥ 0.

Here T ∗
d,δ denotes the nodes of T ∗

δ at depth d. Note that
due to the special cases analyzed below, a K always ex-
ists and belongs to the interval [1,Mδ] (it may be non-
integer). Constant K plays a similar role to the branch-
ing factor κ in the unconstrained problem, and in some
cases a relationship between the two quantities can be
found, as we show below. Our results hold for any pair
C,K, but we take the smallest K. Using K, the gap ε is
characterized as follows.

Theorem 7 Given a computational budget n, the OPδ

algorithm produces a gap ε = O(n−δ
log 1/γ
log K) if K > 1, and

ε = O(γ
n
C) when K = 1, where C is the constant from

the definition of K.

Proof: Define dn to be the smallest depth so that n ≤
∑dn

i=0

∣

∣

∣
T ∗

i,δ

∣

∣

∣
; this means OPδ has expanded nodes at dn

(perhaps not yet at dn + 1), so d∗ ≥ dn and ε ≤ γdn

1−γ .

If K > 1, then 2 n ≤
∑dn

i=0 CKi/δ = C (K1/δ)dn+1−1
K1/δ−1

≤

c1K
dn/δ, from which dn ≥ δ (log n−log c1)

log K ≥ δ log n/ log K−

c2. Thus, after some manipulations ε ≤ c3n
−δ

log 1/γ
log K .

If K = 1, then n ≤
∑dn

i=0 C ≤ C(dn + 1), and dn ≥
n−1
C

leading to ε ≤ γ
n−1

C . The theorem is proven. �

While we measure complexity by the number n of nodes
expanded, the number of children of a node may be either

2 We denote by ci positive constants whose value is unim-
portant to the asymptotic analysis.

1 or M , so the computational cost of expansion varies.
Nevertheless, this only amounts to a constant factor in
the relationships, and so it does not affect the asymptotic
analysis. Next, we find the complexity measure K and
illustrate its relation to κ in two interesting cases.

Case 1: All sequences optimal Consider a problem
where all the rewards are identical, say equal to 1 or to
0. While any sequence is optimal in this problem, it is
nevertheless an interesting case that highlights the (cor-
rect) behavior of the algorithm in general. In this case
the algorithm must explore the entire tree uniformly, in
the order of depth, so to find K we must count all the
nodes at a given depth. Define the vector Nd of length
δ, so that Nd,i for i < δ counts the nodes σd with dwell
time ∆(σd) = i. The last element is different, it counts
all the nodes with dwell time at least δ, since they all
behave exactly the same in the algorithm. Looking e.g.
at Fig. 2, N3 = [6, 9] since the 6 gray nodes have dwell
time one, and 9 have dwell time at least two (3 of these
have dwell time three).

Each node with dwell time at least δ produces 1 child
like itself, and M − 1 children of dwell time 1; and each
node of dwell time i < δ produces 1 child of dwell time
i+1. Writing this explicitly, we have Nd+1 = [Nd,δ(M−
1), Nd,1, ..., Nd,δ−2, Nd,δ−1 + Nd,δ]. Using this, we will
prove by induction that:

Nd ≤ [δj−1M j(M − 1), δj−1M j(M − 1), . . . ,

δj−1M j(M − 1), δj−1M j]
(8)

where j = ⌈d/δ⌉ and (here and in the sequel) vector
inequalities hold elementwise. By directly computing all
counters for d ≤ δ, we see that relation (8) holds for
j = 0, 1. E.g., in particular, Nδ = [M(M − 1),M(M −
1), . . . ,M(M−1),M]. Then, assuming the relation holds
at d = jδ, we have:

Njδ+1 ≤ [δj−1M j(M − 1), δj−1M j(M − 1), . . . ,

δj−1M j(M − 1), δj−1M j+1]

Njδ+2 ≤ [δj−1M j+1(M − 1), δj−1M j(M − 1), . . . ,

δj−1M j(M − 1), 2δj−1M j+1 − δj−1M j]

Njδ+3 ≤ [2δj−1M j+1(M − 1), δj−1M j+1(M − 1), . . . ,

δj−1M j(M − 1), 3δj−1M j+1 − 2δj−1M j]

. . .

Njδ+δ ≤ [(δ − 1)δj−1M j+1(M − 1),

(δ − 2)δj−1M j+1(M − 1), . . . ,

δj−1M j+1(M − 1),

δδj−1M j+1 − (δ − 1)δj−1M j]

Clearly, all these vectors are smaller than [δjM j+1(M −
1), δjM j+1(M−1), . . . , δjM j+1(M−1), δjM j+1] so the

7

induction is finished. Then, finally:

∣

∣T ∗
d,δ

∣

∣ ≤

δ
∑

i=1

Nd,i ≤ δjM j+1 ≤M(δM)⌈
d
δ ⌉ ≤M2δ(δM)

d
δ

so K = Mδ. Since in this problem T ∗
d,δ has the largest

possible size, Mδ is also the upper limit of the possible
values of K.

Comparing to OP, K equals δ times the branching factor
M that OP would have in a uniform tree without the
constraint. The two algorithms explore trees that grow
exponentially with the depth, but have different size.

Consider the resulting rates: ε = O(n−
log 1/γ
log M) for OP,

and ε = O(n−δ
log 1/γ
log Mδ) for OPδ. Since δ log 1/γ

log Mδ ≥
log 1/γ
log M

for all M, δ ≥ 2, OPδ converges faster in this worst-case
sense. This does not mean that OPδ is faster for any
given particular problem, and in fact the relationship
varies, see also Case 2 next. �

Case 2: One optimal sequence In this case, a sin-
gle sequence has maximal rewards (equal to 1), and all
other transitions have a reward of 0. Here, two situa-
tions are possible. If the optimal sequence is within the
constrained set, OPδ always expands this sequence fur-

ther, we have
∣

∣

∣
T ∗

d,δ

∣

∣

∣
= 1 and K = 1, the easiest type of

problem. This also leads to the lower limit of 1 for K. In
this situation, the original OP explores the same path
so κ = 1. Thus the best-case convergence rate of the two
algorithms is similar – exponential.

Otherwise, the optimal sequence leaves the constrained
set at a node σ0 at some finite depth, and then the al-
gorithm must explore uniformly the subtree having σ0

at the root (perhaps in addition to some other nodes).
Then, since the analysis is asymptotic, for large depths,
K has the maximal value of Mδ again. Since OP is still
allowed to refine the optimal sequence, κ = 1 and here
introducing the constraint has made the problem signif-
icantly more difficult. �

Having completed the analysis of generic OPδ, its prop-
erties in the context of PO and PW for switched sys-
tems are summarized in the following direct adaptation
of Corollary 4. The differences are that the values be-
come constrained, and the convergence rates change to
those of OPδ.

Corollary 8 (i) When applied to PO, OPδ re-
turns bounds l, b so that the optimal value Jδ :=
infσ∞∈Sδ

J(σ∞) is in the interval [G(1
1−γ − b), G(1

1−γ −

l)], as well as a sequence σ that achieves these bounds.

The gap is Gε = O(n
−δ

log 1/γ
log K) when K > 1, or O(γn/C)

when K = 1.

(ii) In PW, OPδ returns bounds l, b so that the worst-case
value Jδ := supσ∞∈Sδ

J(σ∞) is in the interval [Gl,Gb],
as well as a sequence σ that achieves these bounds. The

gap is Gε = O(n
−δ

log 1/γ

log K) when K > 1, or O(γn/C) when
K = 1.

So far we have covered the results in [7], providing addi-
tional technical insight. The next contributions are fully
novel, and deal with the consistency and closed-loop per-
formance of switching sequences returned by OP and
OPδ. While answering these questions is likely more use-
ful in PO, we give the analysis in a general form that is
also applicable to PW, where a “better” solution means
one that is closer to the worst-case performance.

4.3 Consistency guarantees

An important question in switched systems is whether
the sequence found guarantees an improvement over
some particular type of suboptimal solutions. Often,
the trivial sequences that keep the mode constant are
considered. This property is called consistency [19],
and next we guarantee two versions of it, where we
compare the (still suboptimal) solution found by OP
with alternative suboptimal solutions. The first ver-
sion shows improvement over finitely long sequences of
(nearly) the same length as that returned by OP, while
the second property proves that for any infinitely long
sequence that is strictly suboptimal, the algorithm will
find a better sequence given a sufficiently large budget
n. Importantly, these guarantees require no particular
structure on the sequences, so they hold not only for
constant-mode suboptimal sequences, but also periodic
ones, etc.

Theorem 9 Let σ
∗
d be the sequence returned by OP.

Note that by Theorem 3, d ∈ {d∗, d∗ + 1}. Then:

(i) For any sequence σ
′
d−1 of depth d − 1, we have

l(σ∗
d) ≥ l(σ′

d−1).
(ii) Take an εct > 0 and consider any sequence σ∞

that is strictly suboptimal with a suboptimality of
at least εct, i.e. v∗ − v(σ∞) ≥ εct. Then, for suf-
ficiently large budget n the sequence returned will
satisfy v(σ∗

d) ≥ v(σ∞).

Proof: For part (i), take an arbitrary sequence σ
′
d−1.

If σ
′
d−1 corresponds to a node that was created by the

algorithm, then the relation holds by definition, since the
sequence returned has the largest lower bound on the
created tree (including inner nodes, by the definition of
l). Otherwise, there exists some ascendent sequence σ

′
d′

of σ
′
d−1, for d′ < d− 1, over which the parent sequence

σ
∗
d−1 of σ

∗
d was preferred for expansion, see Fig. 3. This

means:
b(σ∗

d−1) ≥ b(σ′
d′) ≥ b(σ′

d−1)

8

σ
*

d

σ
*

d-1

σd’

’

σd-1

’

Fig. 3. Sequences from the proof of Theorem (i). Here, σ
′

d−1

is not on the tree, and σ
′

d′ may not be a leaf on the final tree.

because b-values decrease monotonically along every
path. Equivalently:

l(σ∗
d−1) +

γd−1

1− γ
≥ l(σ′

d−1) +
γd−1

1− γ

so finally l(σ∗
d) ≥ l(σ∗

d−1) ≥ l(σ′
d−1), and part (i) is

proven.

For part (ii), simply take a budget n that ensures a suf-

ficiently large d∗ so that γd∗

1−γ < εct. Then, v∗ − v(σ∗
d) <

εct, see Theorem 3(i), which combined with the defini-
tion of εct implies the desired result. �

A similar guarantee holds for OPδ, restricted to the set
of sequences that satisfy the dwell-time constraint. The
proof will be skipped, since it consists simply in substi-
tuting the constrained values and sequences in the proof
of Theorem 9.

Proposition 10 For the sequence σ
∗
d returned by OPδ:

(i) Given any constrained sequence σ
′
d−1 ∈ Sδ of depth

d− 1, we have l(σ∗
d) ≥ l(σ′

d−1).
(ii) Take an εct > 0 and consider any feasible sequence

σ∞ ∈ Sδ that is strictly suboptimal with a sub-
optimality of at least εct with respect to v∗

δ , i.e.
v∗

δ −v(σ∞) ≥ εct. Then for sufficiently large budget
n, vδ(σ

∗
d) ≥ v(σ∞).

4.4 Closed-loop, receding-horizon application

The results above are for a single sequence starting at x0.
In practice (and in our examples below), the algorithms
are used in receding horizon, by only applying the first
action σ0 of the sequence, then recomputing a new se-
quence from x1 and applying its first action σ1, etc. Of
course, the complexity measure κ or K may be differ-
ent at each encountered state. Importantly, for OPδ, if
a switch occurs at step k, then to guarantee the dwell-
time constraint the mode must be kept constant, keep-
ing the loop open, until k + δ − 1, and OPδ only needs
to be called again at step k + δ.

When OPδ is applied in this way at k ≥ 1, some of the
nodes at d = 1 have dwell-time 1 so they become con-

strained. This is unlike the case in Fig. 2 where they are
unconstrained. This restriction is easy to take into ac-
count in the implementation. Regarding the convergence
rate analysis, the restriction will change which nodes are
expanded at steps k ≥ 1, so the complexity measure
K computed without constraining the nodes at depth 1
may be different from the true value. However, the full
range of values of K is still possible even for this con-
strained tree, e.g. because the subtree of the single un-
constrained node at depth 1 can have any structure from
those described in the special cases. So, adapting the
analysis for steps k ≥ 1 would not be very informative.

The following result shows that applying OP or OPδ in
receding horizon can never lead to worse performance
than that of the first sequence they return at x0.

Proposition 11 For either OP or OPδ, consider the
first sequence σd0,0 returned by the algorithm at k = 0,
and the closed-loop sequence σ∞,cl that it applies when
used in receding horizon. Then, v(σ∞,cl) ≥ l(σ∗

d0,0).

Proof: Consider first OPδ at two steps k, j where it is
consecutively applied. Define the sequence σdk,k com-
puted at k, and σdj ,j at j. In-between, the initial subse-
quence σj−k,k of length j−k is applied; this length may
be 1 or δ depending on whether a switch has occurred.
Consider also the trees Tk, Tj developed, see Fig. 4. It is
essential to note that by the definition of the algorithm,
it expands nodes in the same order in Tj as it did in the
subtree Tk(σj−k,k) of Tk with its root at σj−k,k. This is
because, firstly, the constraint is enforced in closed loop
so no new nodes become eligible for expansion at j with
respect to k. Secondly, the b-values in Tj are an affine
transformation of those in Tk, so the nodes maximizing
the b-value are the same.

Tk

Tj

σ’j

σj-k,k

σd jj,

Tk()σj-k,k

Fig. 4. Sequences and trees from the proof of Proposition 11.

Since OPδ has the same budget n when called at
j, clearly Tk(σj−k,k) ⊂ Tj , which means lj(σ

′
j) ≤

lj(σdj ,j), ∀σ
′
j ∈ Tk(σj−k,k). Subscripts were introduced

in the lower bounds since they may differ at different
steps even if they are computed for the same sequence,
due to the fact that the root state is different and so
the same actions can lead to different rewards. Since
σdk,k = [σj−k,k,σ′

j] for some σ
′
j , we have:

lk(σdk,k) = lk(σj−k,k) + γj−klj(σ
′
j)

≤ lk(σj−k,k) + γj−klj(σdj ,j) = lk([σj−k,k,σdj ,j])

9

Thus, closing the loop after some number of actions and
reapplying OPδ leads to an overall better value than just
applying the first sequence. This is true at any step, so
by applying it recursively, first for σd0,0 and σd1,1, then
for the next pair of sequences, etc. we obtain the desired
result.

In OP, the only changes are that j = k + 1 at any step,
and there are no constraints on the sequences. With
these changes, the proof becomes a special case of the
argument above, so we are done. Note that this argu-
ment for OP (but not for OPδ) already appeared in the
proof of Theorem 3 of [10]. �

5 Solving the stochastic-switches problem

Finally, we consider PS and propose a tree search algo-
rithm to approximate the expected discounted cost. We
introduce an appropriate complexity measure for this
problem, and provide a bound on the approximation ac-
curacy of the algorithm, which depends on the compu-
tation budget and on the complexity measure.

A similar tree structure to Fig. 1 will be used. In contrast
to the deterministic case, the arcs are now also labeled
by probabilities: the arc from the root to node i at depth
1 is labeled by p0(i), while an arc between modes i and
j at greater depths is labeled by p(i, j). A node at depth
d will be associated as before to its sequence σd, but
now also to the probability of this sequence, equal to the
product of probabilities along the path to the node:

P(σd) = p0(σ0)

d−2
∏

k=0

p(σk, σk+1) (9)

ba bb

d = 1

d = 2

d = 3

b

d 0=

r , p= 0 = 0.5 r p= 0, = 0.5

0, 0.25 0, 0.75 0.1, 0.6 0, 0.4

0, 0.40.8, 0.6

0.225,

0.0562

0.125,

0.0625
0.3,

0.15
0.2,

0.1

P=0.15,
e=0.0375

aa ab

a

aba abb

Fig. 5. Illustration of a stochastic tree. Transition probabil-
ities are shown on arcs in blue, after the rewards. Near each
leaf node, probabilities P are shown in red boldface, and
contributions e in red italic. The discount factor is γ = 0.5.
(Figure best viewed in color.)

Fig. 5 exemplifies using the same tree as in Section 3, but
this time with stochastic mode transitions. In particu-
lar, p0(a) = p0(b) = 0.5, and p(a, a) = 0.25, p(a,b) =
0.75, p(b, a) = 0.6, p(b,b) = 0.4. Thus, the dashed node
has probability P((b, a)) = p0(b)p(b, a) = 0.5 ·0.6 = 0.3.

To find the expected cost, take the reward func-

tion ρ(x, σ) = g(x,σ)
G . Define the expected value

ṽ = Eσ∞
{v(σ∞)}, and recall the definition (4) of the

sequence bounds l and b. Using these, for any tree T , the
following quantities define lower and upper bounds on ṽ:

L(T) :=
∑

σ∈L(T)

P(σ) l(σ)

B(T) :=
∑

σ∈L(T)

P(σ) b(σ)

= L(T) +
∑

σ∈L(T)

P(σ)
γd(σ)

1− γ
=: L(T) + ε(T)

(10)

The depth of leaf sequence σ was denoted d(σ) to high-
light the fact that it varies among the leaves. Notation
ε(T) is the gap between the two bounds. The contribu-

tion of a leaf to this gap is defined as e(σ) := P(σ) γd(σ)

1−γ .

At this point it becomes clear that a good algorithm
should expand nodes in decreasing order of their contri-
bution, so as to maximally reduce the uncertainty on the
expected value. For example, in Fig. 5 the contribution

of the dashed node (b, a) is 0.3 · γ2

1−γ = 0.15, the largest

among the leaves, so this node should be expanded next.
Furthermore, by using the individual sequence bounds
already computed in Fig. 1, we find L(T) = 0.0788,
B(T) = 0.4850.

Algorithm 3 summarizes the procedure. The algorithm
returns lower and upper bounds L∗, B∗ but does not
design a sequence, since this does not make sense in PS –
many sequences may in fact occur. Note that because of
reward scaling, the true expected cost J̃ is in the larger
interval [GL∗, GB∗].

Algorithm 3 Evaluation of stochastic switches.

1: initialize tree T ← {σ0}, the empty sequence
2: for t = 1, . . . , n do
3: max-contrib. leaf: σ

† ← arg maxσ∈L(T) e(σ)

4: create all children of σ
†, labeled by 1, . . . ,M

5: end for
6: return bounds L∗ = L(T), B∗ = B(T)

This algorithm is a special case of optimistic planning for
Markov decision processes, from [8], where discrete con-
trolled decisions were allowed in addition to the stochas-
tic transitions. The simpler case of PS, without con-
trolled decisions, allows us to derive in the sequel a more
direct analysis than in [8]. Denoting ε∗ = B∗ − L∗, we
are interested in the evolution of ε∗ with the budget n.
We start by introducing a measure of the problem com-
plexity. Let T∞ denote the infinitely deep tree obtained
by continuing with all possible sequences indefinitely.

Definition 12 Define the subtree of sequences with con-
tributions larger than λ: Tλ = {σ ∈ T∞ | e(σ) ≥ λ}.

10

Then, the complexity measure is the smallest value of
β for which there exist constants a > 0, b ≥ 0 so that
|Tλ| ≤ a[log(1/λ)]bλ−β , ∀λ > 0.

The set Tλ is always a subtree at the top of T∞, because
the contributions monotonically decrease with increas-
ing depth. Recalling footnote 1, we say |Tλ| = Õ(λ−β).

Theorem 13 Given a budget of n expansions, when β >

0 the gap satisfies ε∗ = Õ(n−
1−β

β). When β = 0, then

ε∗ = Õ(γc′n1/b

) for a problem-dependent constant c′ > 0.

Proof: Denote n(λ) = a[log(1/λ)]bλ−β . When inter-
preted as a function of λ, |Tλ| is piecewise constant:
it remains unchanged as long as λ does not equal the
contribution of any node on the tree, and then jumps
to a larger value when λ becomes equal to the contri-
bution of some node(s). Consider now two consecutive
values λ1 > λ2 at such discontinuities, taken so that
n(λ1) ≤ n < n(λ2). Since nodes are expanded in order
of their contribution and |Tλ1

| ≤ n(λ1), all nodes in Tλ1

have been expanded. Further, the decrease in contribu-
tion from a parent to its largest-contribution child is at
most by a factor γ

M , when the probabilities are uniform
(otherwise, a larger-contribution child can be found).
This implies that the sequence of λ values at the dis-
continuities decreases at most with the same rate γ

M , so

λ2 ≥
γ
M λ1, or equivalently λ1 ≤

M
γ λ2.

Next, the two cases for β are handled separately. When
β > 0, solving n < n(λ2) we get λ2 ≤ a2[log n]b2n−1/δ

for positive constants a2, b2. Hence:

ε∗ ≤ |Tλ1
|λ1 ≤ n

M

γ
λ2 ≤ a2

M

γ
[log n]b2n1− 1

β = Õ(n−
1−β

β)

The inequalities hold because the gap is at most the sum
of the contributions of all the leaves of Tλ1

(since they
were all expanded), and there are at most n such leaves,
since there are at most n nodes on this subtree. We also
used the inequalities for λ1 and λ2 derived above.

When β = 0, solving again n < n(λ2), we get λ2 ≤
exp[−(n/a)1/b], so as before:

ε∗ ≤ n
M

γ
exp[−(n/a)1/b] ≤ n

M

γ
γcn1/b

= Õ(γcn1/b

)

for some constant c′. The exponential was rewritten in
terms of γ to highlight that the increasing depth in the
tree, and hence the decreasing discounting, is the main
reason for the decrease in the gap. �

When β is smaller, the problem is simpler and the bound
on the gap decreases faster. In particular, the simplest
case is when β = 0 and the size of the tree increases
only logarithmically (it is important to note that in this

case, b must be strictly positive because the size of Tλ

cannot remain constant; this fact was used in the proof
above). More insight is provided next, in two interesting,
complementary special cases that are analogous to those
in Section 4.2.

Case 1: Uniform probabilities Here the probabili-
ties are “flat”, unstructured so the problem is difficult:
p0(i) = p(i, j) = 1/M, ∀i, j. The contribution of any

node at depth d is e(σd) = (γ/M)d

1−γ , and so the tree Tλ

increases uniformly, one depth at a time. Given λ, define

d(λ) =
⌈

log λ(1−γ)
log γ/M

⌉

as an upper bound on the depth of

Tλ. The amount of nodes down to d(λ) is O(Md(λ)) =

O(M
log λ(1−γ)
log γ/M) = O(λ−

log M
log M/γ), leading to β = log M

log M/γ .

By applying Theorem 13, we get ε∗ = Õ(n−
log 1/γ
log M).

The interpretation is that since the algorithm must ex-
pand the tree uniformly, it requires large computational
effort to increase the depth and decrease the bound.
Hence, this bound shrinks slowly (the exponent of n−1

is small). In particular, to get to depth d and obtain a

gap γd

1−γ , the algorithm must expand n = O(Md) nodes,

which is a more direct way to derive the same rate. Note
also that the logarithmic term does not appear, so in
this case using Õ instead of O is just an artifact of the
general proof of Theorem 13. �

Case 2: Structured probabilities For the second
case, we take highly structured probabilities, close to a
deterministic problem. Here, the algorithm focuses on
high-probability paths and decreases the bound quickly.
In particular, take M = 2 and p0, p(i, ·) ∀i equal to a
Bernoulli distribution with probabilities (q, 1 − q) and
q close to 1. The analysis of |Tδ| is quite involved and
was performed in the supplementary material of [8].

We give directly the result, β =
log(e

η)
η

log 1/(qγ) where η =
log 1/(qγ)

log 1/(γ(1−q)) . This value becomes smaller when q ap-

proaches 1 so the problem gets closer to deterministic.
In particular, the limit of β as q → 1 is 0. This recovers
a fully deterministic problem, where the algorithm only
needs to expand n = d nodes to get to depth d, so the
gap is ε∗ = O(γn). Note that this is a special case of the
expression in Theorem 13, for c′ = b = 1. �

6 Simulation Results

We start by evaluating the approach on several linear
switched examples: the first for optimal control PO, the
second for worst-case disturbance PW, and the third for
stochastic, Markov switching PS. Linear modes are cho-
sen because most of the literature focuses on them, so we

11

can highlight relationships to existing techniques, and at
the same time confirm that our approach solves well this
baseline linear case. Afterwards, we test the approach
on a nonlinear switched system, for PO. In all the ex-
periments, cost bounds G were computed by setting sat-
uration limits on the state variables, and applying the
cost function g to these limits. The limits were taken
large enough to not be reached along the controlled tra-
jectories. The limit values are given separately for each
example.

6.1 Optimal control of the switching rule for linear
modes and quadratic cost

We solve PO for two linear switched systems: one in
which stability can be guaranteed using [18], and an-
other in which it cannot. The first system is Example 3
of [22], discretized with Ts = 0.01 s. The saturation lim-
its confined both state variables to stay at most 1.5 in
absolute value. Over a 5 s long trajectory, OP stabilizes
the system with an (undiscounted) cost of 25.69 in re-
ceding horizon, whereas the design method in [18] gives
the larger cost of 32.38. Continuous-time solutions from
[22] gave costs that, after rescaling by the sampling time
to make them comparable to our discrete-time cost, have
value 24.35 and 24.94. So OP gives results close to the
state of the art in linear switched design.

The second system is from [16]:

A1 =

[

0 −1.01

1 −1

]

, A2 =

[

0 −1.01

1 −0.5

]

(11)

Fig. 6 shows successful results when our approach is ap-
plied to control the switching rule in receding horizon. In

this figure, the initial state of the system is x0 = [−3, 3]
⊤

with a quadratic cost and Q = I and state limit 10. We
selected γ = 0.98, a budget n = 100, and an experiment
length of 80 steps.

0 10 20 30 40 50 60 70 80
−5

0

5

k

S
ta

te
s

0 10 20 30 40 50 60 70 80

1

1.2

1.4

1.6

1.8

2

k

M
o

d
e

Fig. 6. Optimal control for linear unstable modes.

6.2 Worst-case disturbance with dwell-time constraint

Next, we illustrate a problem of type PW: worst-case
disturbance. We borrow the example of [18], having two
linear modes A1 = eB1Ts and A2 = eB2Ts with:

B1 =

[

0 1

−10 −1

]

, B2 =

[

0 1

−0.1 −0.5

]

The sampling time is Ts = 0.5, the cost is quadratic with

Q = I and the initial state is x0 = [1, 1]
⊤

. In [18] stability
is guaranteed under a minimum dwell-time of δ = 6,
and we take advantage of this guarantee by applying the
constrained algorithm OPδ with δ = 6, and keeping the
very first mode constant for 6 steps. We also investigate
the simpler solution of just transforming the system into
a 6-step one, and then running OP without constraints
on the multi-step variant. In both cases, we select γ =
0.98, a budget n = 500 per call of the algorithm, an
experiment length of 300 s, and state limit 30.

0 50 100 150 200 250 300

1

1.2

1.4

1.6

1.8

2

M
o
d
e

0 50 100 150 200 250 300
−6

−4

−2

0

2

4

t [s]

S
ta

te
s

x
1
(t)

x
2
(t)

0 50 100 150 200 250 300

1

1.2

1.4

1.6

1.8

2

M
o
d
e

0 50 100 150 200 250 300
−1

0

1

2

3

t [s]

S
ta

te
s

x
1
(t)

x
2
(t)

Fig. 7. Controlled trajectories for worst-case disturbance.
Top: OPδ, bottom: OP using the multi-step system.

The results for the two approaches are shown in Fig. 7.
The undiscounted cost obtained by running OPδ in re-
ceding horizon is 142.10, close to the upper bound 152.17
obtained by [18]. Note that we reached our value by de-
signing a switching rule, whereas [18] do not. With the
multi-step system, we get a cost of 69.94, clearly show-
ing that the extra freedom provided by OPδ pays off.

12

6.3 Estimating expected cost with a stochastic switching
rule

To exemplify PS and the results in Section 5, consider
the second example of [21], with M = 4 second-order lin-
ear modes. The goal there was robust control with sys-
tem uncertainty, not optimal control, so the results will
not be comparable, but the system has the appropriate
structure. We consider the closed-loop dynamics of each
mode when controlled with the feedbacks designed in
[21], and set the four unknown transition probabilities
so that the overall transition matrix is:

p =















0.3 0.2 0.1 0.4

0.1 0.4 0.3 0.2

0.1 0.1 0.5 0.3

0.2 0.3 0.4 0.1















The initial mode probabilities are taken uniform, p0(i) =

0.25 ∀i. The initial state is x0 = [1, 1]
⊤

, the cost function
is quadratic with Q = I2, and the state limit is 50.

Algorithm 3 is run with a budget up to n = 10000,
and the evolution of the lower and upper bounds, to-
gether with the gap ε∗, is shown in Fig. 8. The bounds
are clearly improving as the budget increases, although
of course the improvement slows down due to the expo-
nential costs of the algorithm; Theorem 13 characterizes
the asymptotic decrease rate of ε∗. The final bounds for
n = 10000 are L∗ = 0.2641, B∗ = 1.1131.

10
0

10
1

10
2

10
3

10
4

0

1

2

3

4

5

6

Budget n

C
o

s
t

b
o

u
n

d
s

B
*

L
*

ε
*

Fig. 8. Results for expected cost evaluation. The values are
normalized, under ρ. Note the logarithmic horizontal axis.

6.4 Optimal control for nonlinear modes: Double tank

For the final example, we consider PO for the double-
tank system with nonlinear modes from [40]. The two
states of the system correspond to the fluid levels in
an upper and a lower tank. The output of the upper
tank flows into the lower tank, the output of the lower
tank exits the system, and the flow into the upper tank
is restricted to be either 1 or 2. The two modes have

continuous-time dynamics:

ẋ(t) =

[

1−
√

x1(t)
√

x1(t)−
√

x2(t)

]

, ẋ(t) =

[

2−
√

x1(t)
√

x1(t)−
√

x2(t)

]

Different from [40], we numerically integrate the dynam-
ics over sampling intervals of Ts = 0.1 to obtain the
discrete-time modes f1 and f2, see again (1). The cost

is defined as (x− x∗)
⊤

Q(x− x∗) with x∗ = [0, 3]
⊤

, and
Q = diag(0, 2), so the first state is not optimized and
the second must reach value 3.

We examine the effect of the computational budget n
on performance, which is measured by the undiscounted
cost along the trajectory in order to be consistent with
usual formulations of optimal control of switched sys-
tems. OP is run for a range of budgets from 10 to 200

in increments of 2, using the initial state x0 = [2, 2]
⊤

,
γ = 0.98, a trajectory length of 20 s, and state limit 5.
Fig. 9, top reports the results, showing that the cost de-
creases with larger budgets as expected, although the
differences are small, showing that the problem is sim-
ple enough to be solved well with small budgets. Note
that the cost no longer decreases for significantly larger
budgets, which indicates the solution is likely already
optimal (for discounted costs). Fig. 9, bottom shows the
trajectory for n = 200, which stabilizes the level to 3 in
around 6 s, like the approach in [40]. Since time is dis-
crete and the input flow can take only two discrete val-
ues, the level must oscillate slightly around the desired
value.

0 50 100 150 200
48.31

48.315

48.32

48.325

48.33

48.335

Budget

C
o
s
t

0 5 10 15 20
2

2.5

3

3.5

4

t [s]

S
ta

te
s

0 5 10 15 20

1

1.2

1.4

1.6

1.8

2

t [s]

M
o

d
e

x
1
(t)

x
2
(t)

Fig. 9. Top: Influence of computational budget for the non-
linear tanks. Bottom: Control and state trajectories in the
same problem.

13

7 Conclusions and future work

We introduced an approach to optimize or evaluate dis-
counted costs in discrete-time switched systems with
nonlinear modes. When the switches are controlled, a
switching sequence is sought that minimizes the cost.
When the switches are a disturbance, the approach es-
timates the maximal, worst-case costs (if the switching
rule is unknown) or the expected cost (if switching prob-
abilities are known). In the optimal control and worst-
case settings, the approach is able to optionally include
a minimum dwell-time constraint. It provides upper and
lower bounds on the optimal, worst-case, or expected
cost depending on the behavior of the switches, and de-
signs a sequence that achieves the bounds in the deter-
ministic cases. The convergence rate of the gap between
bounds is characterized as a function of computation.

An important future direction is an explicit treatment
of stability guarantees, either by connecting with exist-
ing conditions in the switched systems literature, or with
our approach for systems without switches in [34]. Start-
ing from other planing algorithms [8,9], approaches can
be developed for so-called dual switching systems [4],
where some of the switches are controlled and some are
a disturbance, evolving either stochastically or with un-
known rules. OPδ may also be modified to handle differ-
ent constraints such as maximum dwell time, periodicity
etc. which will require novel complexity analysis.

References

[1] D. Antunes, W. Heemels, and P. Tabuada, “Dynamic
programming formulation of periodic event-triggered control:
Performance guarantees and co-design,” in IEEE Conference
on Decision and Control, Hawai: U.S.A., 2012, pp. 7212–
7217.

[2] S. C. Bengea and R. A. DeCarlo, “Optimal control of
switching systems,” Automatica, vol. 41, pp. 11–27, 2005.

[3] D. P. Bertsekas and S. E. Shreve, Stochastic Optimal Control:
The Discrete Time Case. Academic Press, 1978.

[4] P. Bolzern, P. Colaneri, and G. D. Nicolao, “Design
of stabilizing strategies for dual switching stochastic-
deterministic linear systems,” in Proceedings 19th IFAC
World Congress, Cape Town, South Africa, 24–29 August
2014, pp. 4080–4084.

[5] E. Boukas, Stochastic Switching Systems: Analysis and
design. Springer, 2006.

[6] M. S. Branicky, “Multiple Lyapunov functions and other
analysis tools for switched and hybrid systems,” IEEE
Transactions on Automatic Control, vol. 43, pp. 475–582,
1998.

[7] L. Buşoniu, M.-C. Bragagnolo, J. Daafouz, and C. Morarescu,
“Planning methods for the optimal control and performance
certification of general nonlinear switched systems,” in
Proceedings 54th IEEE Conference on Decision and Control,
Osaka, Japan, 2015.

[8] L. Buşoniu and R. Munos, “Optimistic planning for
Markov decision processes,” in Proceedings 15th International

Conference on Artificial Intelligence and Statistics
(AISTATS-12), ser. JMLR Workshop and Conference
Proceedings, vol. 22, La Palma, Canary Islands, Spain, 21–23
April 2012, pp. 182–189.

[9] L. Buşoniu, E. Páll, and R. Munos, “An analysis of optimstic,
best-first search for minimax sequential decision making,” in
2014 IEEE International Symposium on Adaptive Dynamic
Programming and Reinforcement Learning (ADPRL-14),
Orlando, 10–12 December 2014.

[10] L. Buşoniu, R. Postoyan, and J. Daafouz, “Near-optimal
strategies for nonlinear and uncertain networked control
systems,” IEEE Transactions on Automatic Control, vol. 61,
no. 8, pp. 2124–2139, 2016.

[11] N. Cardoso De Castro, C. Canudas De Wit, and F. Garin,
“Energy-aware wireless networked control using radio-
mode management,” in Proceedings 2012 American Control
Conference (ACC-2012), Montréal, Canada, 27–29 June
2012, pp. 2836–2841.

[12] M. Claeys, J. Daafouz, and D. Henrion, “Modal occupation
measures and LMI relaxations for nonlinear switched systems
control,” Automatica, vol. 64, no. 2, pp. 143–154, 2016.

[13] O. Costa, M. Fragoso, and R. Marques, Discrete-Time
Markov Jump Linear Systems. Springer, 2005.

[14] J. Daafouz, P. Riedinger, and C. Iung, “Stability analysis and
control synthesis for switched systems: A switched Lyapunov
function approach,” IEEE Transactions on Automatic
Control, vol. 47, pp. 1883–1887, 2002.

[15] D. Du, B. Jiang, and P. Shi, Fault Tolerant Control for
Switched Linear Systems. Springer, 2015.

[16] M. Fiacchini and M. Jungers, “Necessary and suficient
condition for stabilizability of discrete-time linear switched
systems: a set-theory approach.” Automatica, 2014.

[17] J. Filar, V. Gaitsgory, and A. Haurie, “Control of singularly
perturbed hybrid stochastic systems,” IEEE Transactions on
Automatic Control, vol. 46, no. 2, pp. 179–190, 2001.

[18] J. C. Geromel and P. Colaneri, “Stability and stabilization
of discrete-time switched systems.” International Journal of
Control, vol. 79, no. 7, pp. 719–728, 2006.

[19] J. C. Geromel, G. Deaecto, and J. Daafouz, “Suboptimal
switching control consistency analysis for switched linear
systems,” IEEE Transactions on Automatic Control, vol. 58,
pp. 1857–1861, 2013.

[20] J. C. Geromel and R. H. Korogui, “H2 robust filter design
with performance certificate via convex programming,”
Automatica, vol. 44, pp. 937–948, 2008.

[21] A. P. Gonçalves, A. R. Fioravanti, M. A. Al-Radhawi, and
J. C. Geromel, “H∞ state feedback control of discrete-
time Markov jump linear systems through linear matrix
inequalities,” in Proceedings of the 18th IFAC World
Congress, Milano, Italy, 28 August – 2 September 2011, pp.
12 620–12 625.

[22] D. Henrion, J. Daafouz, and M. Claeys, “Optimal switching
control design for polynomial systems: An LMI approach,” in
Proceedings of the IEEE Conference on Decision and Control
(CDC-13), 2013.

[23] J.-F. Hren and R. Munos, “Optimistic planning of
deterministic systems,” in Proceedings of the 8th
European Workshop on Reinforcement Learning (EWRL-08),
Villeneuve d’Ascq, France, 30 June – 3 July 2008, pp. 151–
164.

[24] M. Jungers and J. Daafouz, “Guaranteed cost certification
for discrete-time linear switched systems with a dwell time,”
IEEE Transactions on Automatic Control, vol. 58, no. 3, pp.
768–772, 2013.

14

[25] K. Katsikopoulos and S. Engelbrecht, “Markov decision
processes with delays and asynchronous cost collection,”
IEEE Transactions on Automatic Control, vol. 48, no. 4, pp.
568–574, 2003.

[26] B. Kiumarsi, F. Lewis, H. Modares, A. Karimpour, and M.-
B. Naghibi-Sistani, “Reinforcement q-learning for optimal
tracking control of linear discrete-time systems with unknown
dynamics,” Automatica, vol. 50, no. 4, pp. 1167–1175, 2014.

[27] S. M. La Valle, Planning Algorithms. Cambridge University
Press, 2006.

[28] J. W. Lee and G. E. Dullerud, “Uniformly stabilizing sets
of switching sequences for switched linear systems,” IEEE
Transactions on Automatic Control, vol. 52, pp. 868–874,
2007.

[29] H. Li, Y. Gao, P. Shi, and H. K. Lam, “Observer-based fault
detection for nonlinear systems with sensor fault and limited
communication capacity,” IEEE Transactions on Automatic
Control, vol. 61, no. 9, pp. 2745–2751, 2016.

[30] D. Liberzon, Switching in Systems and Control., ser. Systems
and Control: Foundations and Applications. Birkhauser,
2003.

[31] H. Lin and P. J. Antsaklis, “Stability and stabilizability of
switched linear systems: A survey of recent results,” IEEE
Transactions on Automatic Control, vol. 54, no. 2, pp. 308–
322, 2009.

[32] R. Munos, “The optimistic principle applied to games,
optimization and planning: Towards foundations of Monte-
Carlo tree search,” Foundations and Trends in Machine
Learning, vol. 7, no. 1, pp. 1–130, 2014.

[33] S. Pettersson and B. Lennartson, “LMI for stability
and robustness for hybrid systems,” in Proceedings 1997
American Control Conference (ACC-97), 1997, pp. 1714–
1718.

[34] R. Postoyan, L. Buşoniu, D. Nešić, and J. Daafouz, “Stability
analysis of discrete-time infinite-horizon optimal control with
discounted cost,” IEEE Transactions on Automatic Control,
2016, in press.

[35] P. Riedinger, C. Iung, and F. Kratz., “An optimal control
approach for hybrid systems,” European Journal of Control,
vol. 9, pp. 449–458, 2003.

[36] C. Seatzu, D. Corona, A. Giua, and A. Bemporad., “Optimal
control of continuous-time switched affine systems,” IEEE
Transactions on Automatic Control, vol. 51, pp. 726–741,
2006.

[37] M. S. Shaikh and P. Caines, “On the hybrid optimal control
problem: Theory and algorithms,” IEEE Transactions on
Automatic Control, vol. 52, pp. 1587–1603, 2007.

[38] R. Shorten, F. Wirth, O. Mason, K. Wulff, and C. King,
“Stability criteria for switched and hybrid systems,”
Automatica, vol. 49, no. 7, pp. 545–592, 2007.

[39] A. N. Vargas, E. F. Costa, and J. B. R. do Val, “Bounds
for the finite horizon cost of Markov jump linear systems
with additive noise and convergence for the long run average
cost,” in Proceedings 45th IEEE Conference on Decision and
Control (CDC-06), San Diego, US, 13–15 Dec 2006, pp. 5543–
5548.

[40] R. Vasudevan, H. Gonzalez, R. Bajcsy, and S. S. Sastry,
“Consistent approximations for the optimal control of
constrained switched systems,” SIAM Journal on Control
and Optimization, 2012.

[41] J. H. W. Zhang and A. Abate, “Infinite-horizon switched
LQR problems in discrete time: A suboptimal algorithm with
performance analysis,” IEEE Transactions on Automatic
Control, vol. 57, pp. 1815–1821, 2012.

[42] M. Wiering and M. van Otterlo, Eds., Reinforcement
Learning: State of the Art. Springer, 2012, vol. 12.

[43] X. Xu and P. J. Antsaklis, “Results and perspectives on
computational methods for optimal control of switched
systems,” in Hybrid Systems: Computation and Control,
2003.

[44] X. Zhong, H. He, H. Zhang, and Z. Wang, “Optimal control
for unknown discrete-time nonlinear Markov jump systems
using adaptive dynamic programming,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 25, no. 12,
pp. 2141–2155, 2014.

[45] F. Zhu and P. J. Antsaklis, “Optimal control of switched
hybrid systems: A brief survey,” Discrete Event Dynamic
Systems, vol. 25, no. 3, pp. 345–364, 2015.

15

