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Abstract

We consider discrete-time, infinite-horizon optimal control problems with discounted rewards. The value function must be
Lipschitz continuous over action (input) sequences, the actions are in a scalar interval, while the dynamics and rewards can
be nonlinear/nonquadratic. Exploiting ideas from artificial intelligence, we propose two optimistic planning methods that
perform an adaptive-horizon search over the infinite-dimensional space of action sequences. The first method optimistically
refines regions with the largest upper bound on the optimal value, using the Lipschitz constant to find the bounds. The second
method simultaneously refines all potentially optimistic regions, without explicitly using the bounds. Our analysis proves
convergence rates to the global infinite-horizon optimum for both algorithms, as a function of computation invested and of a
measure of problem complexity. It turns out that the second, simultaneous algorithm works nearly as well as the first, despite
not needing to know the (usually difficult to find) Lipschitz constant. We provide simulations showing the algorithms are
useful in practice, compare them with value iteration and model predictive control, and give a real-time example.

Key words: Optimal control; planning; nonlinear systems; near-optimality analysis.

1 Introduction

We consider optimal control problems that require max-
imizing a discounted sum of rewards (the value), along
an infinitely long discrete-time trajectory of the sys-
tem. Such problems are encountered in automatic con-
trol [12] as well as in many other fields, including artifi-
cial intelligence (AI) [20], operations research, medicine,
economics, etc. When the system and reward function
have a general form, the problem must be solved ap-
proximately with numerical algorithms. A popular class
of techniques is approximate dynamic programming [1],
which computes offline a near-optimal value function
and a state feedback control. Because it searches for a
global solution, the complexity of dynamic programming
usually grows fast with the state dimensionality [1].

We focus instead on receding-horizon algorithms that
remove the direct dependence on the state space size,
at the cost of solving a new problem at each step, lo-
cally for the current state of the system. A sequence
of actions (inputs) is obtained, the initial action of this
sequence is applied, and the procedure is repeated on-
line for subsequent states. In automatic control, this is
called receding-horizon model predictive control (MPC)
[7], while in AI it is called online planning [14]. Note that
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computation still grows with the action space size and
with the search horizon.

We search over the space of infinitely long sequences,
using the optimistic planning (OP) class of algorithms
[18]. OP methods originate in AI and perform a branch-
and-bound search over the sequences, refining the region
with the best upper bound on the value – hence the “op-
timistic” label. The main strengths of OP are the gener-
ality of the dynamics and rewards addressed, and a tight
relation between computation and near-optimality, ob-
tained using ideas from bandit theory and reinforcement
learning. Many OP variants have been proposed for dis-
crete actions, e.g. [13,10,16]. Our major aim in this pa-
per is to address instead continuous actions, since they
are essential in control.

Specifically, we propose two optimistic planning algo-
rithms with continuous actions (OPC) that work in sys-
tems with general nonlinear dynamics and scalar, com-
pact actions. The methods iteratively split the infinite-
dimensional hyperrectangle of continuous-action se-
quences into smaller hyperrectangles (boxes), leading
to an adaptive search horizon. They rely on a central
Lipschitz property of the value function over action se-
quences, which is satisfied e.g. when the dynamics and
rewards are Lipschitz, with a small enough constant for
the dynamics. Using this property, an upper bound on
the optimal value is derived using the rewards and size
of the box. This leads to the first algorithm, which op-
timistically selects for splitting the box with the largest
upper bound, and so it is called simply OPC. An essen-
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tial insight is that each dimension k contributes to the
bound with weight γk, where γ is the discount factor,
and this is used to select which box dimension to split.
We characterize the rate at which the box size shrinks
with the number of splits, and define a measure of prob-
lem complexity, in the form of the branching factor of an
associated tree [10]. Using these concepts, we derive an
overall convergence rate of the algorithm to the global
infinite-horizon optimum as a function of computation,
measured by the number of transitions simulated.

A limitation of this first OPC method is that it requires
the Lipschitz constant. In practice the constant is dif-
ficult to find so it must be treated as a tuning param-
eter, which is easy to overestimate (making the algo-
rithm conservative) or underestimate (invalidating the
guarantees). So we also propose a second algorithm that
expands all potentially optimistic boxes, using only the
knowledge that boxes that have been split more times
have smaller diameters. This algorithm is called simul-
taneous OPC (SOPC). We analyze SOPC and show that
it has nearly the same convergence rate as OPC, even
though it does not need to know the value function
smoothness. SOPC relies on a different tuning parame-
ter than the Lipschitz constant, which can however be
tuned much more robustly. Simulation results show that
SOPC outperforms OPC, and is also better than com-
peting continuous-action planners and baseline dynamic
programming and MPC solutions. We provide real-time
control results with SOPC.

In contrast to much of the work in nonlinear MPC [7],
which uses a fixed finite horizon, OPC and SOPC di-
rectly explore the space of infinite-horizon solutions, and
therefore our near-optimality bounds and convergence
rates are with respect to the global, infinite-horizon opti-
mum. E.g. the closest work to ours is the optimistic MPC
method of [21], which only works for small fixed con-
trol horizons (and max-plus systems). OPC and SOPC
instead adaptively increase the horizon as much as the
computation allows. Furthermore, typical MPC meth-
ods are derivative-based, while our methods only rely
on Lipschitz values, so at the cost of more computation,
they can handle dynamics and rewards that are nondif-
ferentiable at some discrete points (on a set of measure
zero).

In planning, several other optimistic methods have been
proposed for continuous actions, but without an analy-
sis; to our knowledge OPC and SOPC are the first to
guarantee a convergence rate. Lipschitz planning (LP)
[9] uses a similar upper bound but lacks the insight on
the impact γk, so it uses a heuristic rule to choose which
dimension to split. Our earlier method called simultane-
ous optimistic optimization for planning (SOOP) [3] is
similar to SOPC in that it expands many boxes at once,
but uses a heuristic for selecting these sets, which turns
out to be worse in our simulations. Other continuous-
action planners only optimize over finite horizons, e.g.
HOOT [15] or sequential planning [9].

Our new planners apply the principle of optimistic opti-
mization (OO) [17] to control, while the analysis of OO
does not work because its assumptions are not satisfied
for infinite-horizon continuous-input problems. Thus, we
must provide novel analysis adapted to this setting. The
present paper is an extended and revised version of [5],
and the material on OPC largely originates in that pa-
per. The major novelty compared to [5] is the SOPC
method, with almost as good analytical guarantees and
much better practical performance than OPC. Even for
OPC, we provide here extra insight that due to space
limits was not available in [5]. The simulations are ex-
tended and the real-time results are new.

Next, Sec. 2 formalizes the problem and Sec. 3 describes
OPC and SOPC. Sec. 4 analyzes the two algorithms,
while Sec. 5 provides numerical results. Sec. 6 concludes
the paper. Supplementary material is available at http:
//busoniu.net/files/papers/sopc_suppl.pdf.

2 Problem statement

We consider an optimal control problem for a discrete-
time nonlinear system xk+1 = f(xk, uk), where x ∈ X ⊆
R

p, u ∈ U , and U will be described in our main assump-
tion below. A function ρ : X × U → R assigns a nu-
merical reward rk = ρ(xk, uk) to each state-action pair.
Under a fixed initial state x0, define an infinitely-long
sequence of actions u∞ = (u0, u1, . . . ) and its infinite-
horizon discounted value:

v(u∞) =

∞
∑

k=0

γkρ(xk, uk) (1)

where γ ∈ (0, 1) is the discount factor, and xk+1 =
f(xk, uk) ∀k ≥ 0. The objective is to find (a near-optimal
approximation of) the optimal value v∗ := sup

u∞
v(u∞)

and an action sequence that achieves this (near-optimal)
value. Very general conditions that ensure the existence
of optimal sequences are provided e.g. by [2].

We impose some assumptions that allow us to derive
efficient algorithms.

Assumption 1 The following conditions hold.

(i) The rewards are bounded in [0, 1].
(ii) The action is a real scalar, bounded in the unit in-

terval, so that U = [0, 1].

The main role of reward boundedness 1(i), together with
discounting, is to ensure that for any sequence the values
in (1) are bounded to [0, 1

1−γ ]. Our planning algorithms

and analysis rely on this property. Note that many other
works in control use discounting, e.g. [6,11]. Bounded
costs are typical in AI methods for optimal control, such
as the planning class in our focus [14] and reinforcement
learning [20]. One way to achieve boundedness is by sat-
urating a possibly unbounded original reward function,
which changes the optimal solution but is often sufficient
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in practice. Another example is when physical limita-
tions in the system are modeled by saturating the states
and actions, from which a reward bound follows.

The scalar action from Assumption 1(ii) could in prin-
ciple be generalized to multiple dimensions; however,
computation would grow very fast with action dimen-
sionality, so in practice this will not work for more than
a few dimensions. (In the supplementary material, we
briefly explain and empirically test such an extension for
two dimensions.) The compact nature of U is fundamen-
tal, since our algorithm numerically refines this action
space. In both Assumptions 1(i) and 1(ii), the unit in-
terval is taken only for convenience, and can be achieved
by rescaling any bounded interval.

A crucial requirement is a Lipschitz property of v with
respect to its argument u∞, “one-sided” around optimal
sequences.

Assumption 2 There exists Lv > 0 so that for any
optimal sequence u

∗
∞ and any other sequence u∞ ∈ U∞:

v(u∗
∞) − v(u∞) ≤ Lv

∞
∑

k=0

γk |u∗
k − uk| (2)

Intuitively, this means that the discounted nature of
the values should be reflected also in the importance
of the control actions along time: later actions should
impact the value less than earlier ones. At the cost of
some restrictiveness (for instance, constraints imposed
via penalty functions in the rewards may not lead to
Lipschitz values), Assumptions 1 and 2 will allow us to
derive a numerical method with global near-optimality
and convergence rate guarantees, which is still very gen-
eral in that e.g. it does not impose any specific mathe-
matical form for v.

Our development only relies on the general property (2).
It will however be instructive to examine some sufficient
conditions for this property in a particular case. (Proofs
of all results are given in the supplementary material.)

Lemma 3 (Lemma 2 of [5]) Assumption 2 is ensured

with Lv =
Lρ

1−γLf
by the following two conditions:

(i) The dynamics and rewards are Lipschitz, i.e.
∃Lf , Lρ so that ∀x, x′ ∈ X,u, u′ ∈ U :

‖f(x, u) − f(x′, u′)‖ ≤ Lf (‖x − x′‖ + |u − u′|)
|ρ(x, u) − ρ(x′, u′)| ≤ Lρ(‖x − x′‖ + |u − u′|)

where ‖·‖ is an appropriately chosen norm.
(ii) The dynamics satisfy γLf < 1.

The Lipschitz conditions 3(i) must hold over the entire
domains of f and ρ. Some dynamics and reward func-
tions would not be globally Lipschitz for unbounded
states, in which case a bounded X is needed. In practice
this corresponds again to state saturation limits, as ex-

emplified in our discussion of Assumption 1 above. Note
that unlike in typical derivative-based MPC techniques
[7], condition (i) allows f or ρ to be nondifferentiable, but
only on a set of measure zero (to preserve Lipschitz con-
tinuity). Condition 3(ii) means that the dynamics need
not be strictly contractive on their own, but should be-
come so when combined with a shrink rate equal to the
discount factor γ.

Example 4 Linear dynamics and quadratic cost. Con-
sider the familiar optimal control problem with linear
dynamics xk+1 = Axk + Bwk, scalar inputs w, and dis-
counted quadratic costs

∑∞
k=0 γk(x⊤

k Qxk + Rw2
k) [1].

Due to physical limits it is known that −x̄ ≤ x ≤ x̄ and
−w̄ ≤ w ≤ w̄, where vector inequalities hold element-
wise. To place the problem in our framework, w will be
represented by unit actions u ∈ [0, 1] via w = 2w̄(u −
0.5). The system is then modelled by the saturated dy-
namics: f(x, u) = sat(Ax + 2Bw̄(u − 0.5),−x̄, x̄). Min-
imizing the quadratic costs is equivalent to maximizing
the rewards: ρ(x, u) = 1− (x⊤Qx + 4Rw̄2(u− 0.5)2)/r̄,
where r̄ = x̄⊤Qx̄ + Rw̄2 is a bound on the cost. So,
ρ(x, u) ∈ [0, 1] and Assumption 1 is satisfied.

Further, using the Euclidean norm it is not difficult to
prove that f is Lipschitz with Lf = max {‖A‖ , 2w̄ ‖B‖},
and ρ is locally Lipschitz over the bounded domains of
x and u with Lρ = 1

r̄ max
{

2
∥

∥x̄⊤Q
∥

∥ , 8Rw̄2
}

, so As-
sumption 3(i) is satisfied. To check Assumption 3(ii),
numerical values are needed, so take a standard DC
motor model with states: angle α and velocity α̇, volt-
age input w, inertia J = 10−4 Nm2, torque constant
K = 0.02 Nm/A, resistance R = 10 Ω, L = 0.01 H,
b = 3 · 10−6 Nms/rad, and sampling time 0.005 s. With
w̄ = 5 V, we get Lf ≈ 1.25 so any value γ smaller than
0.8 works, thereby guaranteeing Assumption 2. �

3 Planning algorithms for continuous actions

We apply the principles of OO [17] to maximize the ob-
jective function v over the space U∞ of infinitely long se-
quences. The idea is to iteratively split the search space
into smaller subsets, where at each iteration the set to
split further is chosen optimistically, so that it (poten-
tially) maximizes an upper bound on the optimal value.

To derive the splitting procedure, U∞ is represented by
an infinite dimensional hyperrectangle, in which each di-
mension k is the action at step k. This hyperrectangle
is iteratively split into smaller hyperrectangles, like in
[9,3], each of which gets a unique index i. In the sequel
we will prefer the term “dimension” for k, which empha-
sizes the geometric structure of the search space, and the
short form “box” for hyperrectangle. A box is denoted
Ui ⊆ U∞ and is the cartesian product of a sequence
of intervals (µi,0, . . . , µi,Ki−1, U, U, . . . ) where µi,k ⊆ U
and Ki − 1 is the largest discretized dimension; for all
further dimensions µi,k = U . A box is refined by split-
ting into M > 1 pieces the interval of some dimension
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Fig. 1. Left: Example refinement of U∞ after 3 splits, for
M = 3. Dimensions 4 and higher are left out of the figure.
Boxes that have already been split (U3,U6) are shown in
shades of gray. Right: Corresponding tree.

k ≤ Ki, which corresponds to discretizing uk more finely.
Define di,k to be the length of the interval µi,k in box
Ui, and ui,k a sample action taken somewhere in this in-
terval (e.g., at the center). For each box, the sequence of
rewards ri,k obtained by applying the (finite) sequence
ui,k from x0 is computed by simulating the system.

To exemplify, see Fig. 1 and consider e.g. the dark
gray box U6, which consists of the sequence of intervals
(µ6,0, µ6,1, U, U, . . . ) = ([2/3, 1], [2/3, 1], [0, 1], [0, 1], . . . )
and has a number of discretized dimensions K6 = 2.
Box U6 is split into 3 children boxes along dimension
k = 2, among which we consider U8. This child, as well
as all its siblings, inherits the intervals for k = 0 and 1,
so that µ8,0 = µ6,0 = [2/3, 1] and µ8,1 = µ6,1 = [2/3, 1].
Since U8 is the middle child, its interval for k = 2 is
µ8,2 = [1/3, 2/3]. Now K8 is 3, larger by 1 than K6, be-
cause we have split the first undiscretized dimension of
U6. Note that the order of dimensions to split was chosen
arbitrarily in this example; e.g we might have split again
k = 0 instead of k = 2. We will make this order definite
later. When sampling is done at the interval centers,
the sample action sequence of box 8 is (5/6, 5/6, 1/2).

The collection of boxes will be organized into a tree T
with the root consisting of the entire space, and where
each node has M children, one for each of the M boxes
resulting from its splitting, see Fig. 1, right. Each node
is labeled by the index i of the box, as well as by the box
itself, and we will use these notations interchangeably.
The depth h of a box i in this tree is therefore equal to
the number of splits needed to obtain the box:

h =

∞
∑

k=0

si(k) (3)

where si : {0, 1, . . . } → {0, 1, . . . } is a function that
gives the number of splits along dimension k, so si(k) =
0 when k ≥ Ki. Note that the root has depth 0, and
that di,k = M−si(k). Also, a given box may be obtained
along multiple paths along the tree, but for simplicity
the algorithm does not make use of this information, and
keeps all the copies. In a practical implementation it is of
course advisable to merge them. Denote the leaves of T
by L; at any iteration, at least one leaf with the largest

upper bound on the optimal value must be refined.

Our next goal is to compute this upper bound. Recall
that the information available for a box i includes the
sample sequence of actions ui,0, . . . , ui,Ki−1 and the cor-
responding rewards ri,0, . . . , ri,Ki−1. Define the sample
value of box i as follows:

v(i) =

Ki−1
∑

k=0

γkri,k

Consider now only those boxes i that contain an optimal
sequence u

∗
∞, and define the infinite sequence obtained

by appending optimal actions to the sample sequence:
ui,∞ = (ui,0, . . . , ui,Ki−1, u

∗
Ki

, u∗
Ki+1, . . . ). (This se-

quence will not be constructed by the algorithms, it is
only used as an intermediate step in the derivation.)
Using Assumption 2, we have:

v∗ ≤ v(ui,∞) + Lv

Ki−1
∑

k=0

γk |u∗
k − ui,k|

≤ v(i) +

∞
∑

k=Ki

γk · 1 + Lv

Ki−1
∑

k=0

γkdi,k

≤ v(i) + max {Lv, 1}
∞
∑

k=0

γkdi,k

where the first step exploits the equality of the tails of
the two sequences; the second step uses the box lengths
along dimensions k < Ki and the fact that the rewards
of sequence ui,∞ at steps k ≥ Ki are at most 1; and the
third step puts the summation together knowing that
di,k = 1 for the unexpanded dimensions k ≥ Ki. In this
way, we have eliminated the need to separately handle
discretized and undiscretized dimensions, at the expense
of some conservativeness due to the maximum in the
Lipschitz constant.

Denote L̄v = max {Lv, 1} and the diameter of box i:

δ(i) = L̄v

∞
∑

k=0

γkdi,k = L̄v

∞
∑

k=0

γkM−si(k) (4)

This is is indeed a true diameter under the metric from
the r.h.s. of (2), but with L̄v instead of Lv. So, finally,
we have obtained an upper bound on the optimal value:

v∗ ≤ v(i) + δ(i) =: b(i) (5)

for any box that contains an optimal solution, while
the diameter represents an uncertainty on this optimal
value. We call b(i) the b-value of box i. Note that our
approach uses b-values for all the boxes, despite the fact
that they are only meaningful for boxes containing op-
timal values; this is however safe and the algorithms re-
main correct, as the analysis will show.
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So far, the dimension to split for a given box i was not
specified. Given (4), the choice is intuitively clear – split
a dimension that has maximal contribution to the diam-
eter, so as to minimize the resulting uncertainty:

arg maxk L̄vγkdi,k = arg maxk γkdi,k (6)

This procedure is directly related to the Lipschitz prop-
erty (2), since it weighs each dimension by its discounted
impact on the value function. Because the contribution
of first undiscretized dimension Ki is γKi , larger than
the contributions γk of all later dimensions k > Ki, the
maximization will produce at most Ki. So, the method
either refines further an already discretized dimension,
or starts splitting the first undiscretized dimension. E.g.,
at the beginning of the algorithm, dimensions will be
split in order, then at some point that depends on the
discount factor the algorithm will begin returning to
earlier dimensions in a rather complicated way, but al-
ways keeping the number of splits larger for earlier di-
mensions. An adaptive discretization procedure results,
leading to discrete-time action sequences of increasing
length and precision. In particular, the procedure can
asymptotically reach arbitrarily close to any continuous-
valued sequence of finite length, see also Theorem 6; al-
though it may never exactly reach it. In particular, the
interval ends will not be exactly reached, which may be
kept in mind for bang-bang solutions.

The derivations above hold for any action sample choice
and any value of M . In the sequel, we impose some re-
quirements on these choices.

Assumption 5 The following conditions hold.

(i) Splitting any box i produces at least one child box j
with a greater or equal value, v(j) ≥ v(i).

(ii) M > 1/γ.

A simple strategy satisfying Assumption 5(i) is to take
M odd and the action samples ui,k at the centers of the
intervals µi,k. Then, if the split dimension is less than Ki,
the middle child j has the same sequence as i so its value
is also the same (and the center rewards of the parent
box can be directly reused for this child). When the split
dimension is Ki, new positive rewards are added to the
end of the summation in v(i), so the inequality holds
for any child. Assumption 5(ii) is trivial, being already
satisfied by M ≥ 3 when γ > 1/3; most problems of
practical interest require larger discount factors.

Our first algorithm requires knowledge of the Lipschitz
constant L̄v, so it can explicitly compute b-values (5) and
select at each iteration a box that is surely optimistic,
i.e. that maximizes these b-values. The procedure starts
with the full box U∞, at the root i = 0 of the tree, and
proceeds by splitting at each iteration such an optimistic
box. The resulting method is called Optimistic Planning
with Continuous actions, OPC, see Alg. 1. At the end,
it returns a sample sequence with the largest value v,
û = (ui∗,0, . . . , ui∗,Ki∗−1

).

Algorithm 1 OPC

1: input: state x0, model f , ρ, split factor M , budget
n, Lipschitz constant L̄v

2: initialize T with root 0 labeled by U∞

3: while computation n not exhausted do
4: select box i† = arg maxi∈L b(i)
5: select k† = arg maxk γkdi†,k

6: expand i† along k†: create its M children on T
7: output sequence û of box i∗ = arg maxi∈L v(i)

Algorithm 2 SOPC

1: input: state x0, model f , ρ, split factor M , budget
n, function hmax

2: initialize T with root 0 labeled by U∞

3: loop
4: h = smallest depth with unexpanded nodes
5: if h > hmax(n), stop (go to line 13)
6: while h ≤ hmax(n) do
7: select box i† = arg maxi∈Lh

v(i)

8: select k† = arg maxk γkdi†,k

9: expand i† along k†, updating T
10: update ns

11: if ns ≥ n, stop (go to line 13)
12: h = h + 1
13: output sequence û of box i∗ = arg maxi∈L v(i)

The following remarks apply both to OPC and the next
algorithm. Computation is measured by the number n
of evaluations of the model, i.e. of the pair f, ρ, since for
a nonlinear system simulating f is often expensive. At
worst, the cost of expanding one box is MKi† evalua-
tions. More specifically, with the center sampling strat-
egy explained above and by reusing samples, the cost is
M model calls when k† = Ki† , and (M − 1)(Ki† − k†)
otherwise. On reaching the budget limit the algorithm
may either be allowed to expand its last box, or imme-
diately stopped while rolling back the changes made at
the interrupted step.

The second algorithm does not use b-values, so it does
not require knowledge of L̄v. The price paid is expanding
several nodes per iteration, but as the analysis and ex-
periments will show, this does not greatly impact either
the bounds or the empirical performance. Specifically,
at each iteration, one node maximizing v is expanded at
each depth h (recall that depths are given by (3)). This
is the best guess at an optimistic node without knowing
the diameters. To avoid the expansions continuing indef-
initely, a maximum depth hmax : {0, 1, . . . } → [0,∞) is
enforced, which takes as argument the budget n. Func-
tion hmax is a parameter of the algorithm. If it grows
quickly with n then it allows deep searches, and if it
grows slowly, it favors exploring broad trees. Since it ex-
pands several nodes at one iteration, the algorithm is
called Simultaneous OPC or SOPC, see Alg. 2. The early
stopping condition in line 5 should never be activated in
normal use; if it does, hmax should be increased. We dis-
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cuss more on choosing hmax (and L̄v, M) once we have
the benefit of the analysis, at the end of Sec. 4.

While OPC has greater limitations than SOPC, it is im-
portant as a stepping stone to understand SOPC and the
analysis line. SOPC extends the idea behind simultane-
ous OO (SOO) [17] to planning. Note that in SOO a cer-
tain depth may be skipped during the expansion loop, if
the leaves at that depth have smaller values than those at
higher depths, which means they cannot be optimistic.
In SOPC, as soon as a depth with unexpanded nodes
is found, the structure imposed by Assumption 5(i) en-
sures that each subsequent depth will have at least as
large a maximum value, so a contiguous range of depths
is always expanded.

While both OPC and SOPC apply the main ideas behind
OO, the guarantees of OO cannot be directly applied,
since the boxes obtained do not satisfy certain geometric
properties required by these guarantees [17]. Thus, we
need to provide novel analysis, adapted to the setting of
optimal control, which we proceed to do next.

4 Analysis

The main objective is to characterize the near-optimality
of OPC and SOPC as a function of the computational
budget n invested. We start in Sec. 4.1 with prelimi-
nary results required for both algorithms. Since near-
optimality is driven by box diameters at certain depths,
we first characterize these diameters in Theorem 6. This
is a major, nontrivial step due to the infinite dimension-
ality of each box. Then, we define a measure of problem
complexity, in the form of an effective branching factor of
a subtree containing near-optimal nodes (Definition 7).

We will focus on OPC in Sec. 4.2, where we initially
provide an a posteriori guarantee, standard for opti-
mistic algorithms, which shows that the sub-optimality
is at most the smallest diameter among expanded boxes
(Lemma 8). Using the preliminary results, we then put
the computational budget in relation to this diameter,
leading to an a priori near-optimality in Theorem 9.

Sec. 4.3 moves to SOPC. Here, the depth of the node
whose diameter dictates near-optimality is more in-
volved to characterize than in OPC, and is analyzed in
Lemma 10 using the branching factor. Finally, like for
OPC, an a priori bound is obtained in Theorem 11.

4.1 Preliminaries

Theorem 6 (Proposition 4 of [5]) For some c > 0 and

each box i at any depth h, δ(i) ≤ c
√

2h(τ − 1)γ

√

2h τ−1

τ2 =:

δh, where τ =
⌈

log M
log 1/γ

⌉

.

Since γ < 1, the term γ

√

2h τ−1

τ2 asymptotically dom-
inates

√

2h(τ − 1), and makes the diameter converge

to zero; in asymptotic notation 1 , δh = Õ
(

γ

√

2h τ−1

τ2

)

.

Convergence is exponential not directly in the depth h,
but in its square root modulated by 2(τ − 1)/τ2.

Both planning algorithms may explore at h the following
set of near-optimal nodes:

T ∗
h = {i at h | v(i) + δh ≥ v∗}

Define also T ∗ =
⋃

h≥0 T ∗
h , which will generally be

smaller than the full tree. Rewriting the condition as
v∗ − v(i) ≤ δh, we see that for each node in T ∗

h , given
the available value information v(i) and the uncertainty
δh, the algorithm is still unsure whether the node con-
tains an optimal solution, so it may need to refine this
node further. Next, we characterize of the size of T ∗.

Definition 7 The asymptotic branching factor is the
smallest m so that ∃C ≥ 1 for which |T ∗

h | ≤ Cmh,∀h,
where |·| denotes set cardinality.

This branching factor is a measure of the complexity
of the planning problem. It is similar to the asymptotic
branching factor in OPD [10] and plays a related role to
other measures of problem complexity used to character-
ize optimistic methods, see e.g. [18]. However, its mean-
ing is different in our continuous-action optimal control
problem. Note that m may be noninteger but lies in the
interval [1,M ] – since there is at least one node in T ∗

h ,
the one containing the optimal solution; and at most
Md, the entire set of nodes. A smaller value of m corre-
sponds to a simpler problem, with the easiest problems
having m = 1, e.g. when a constant number of optimal
paths must be explored.

4.2 OPC performance

We start with a basic property of OPC, and with a simple
bound that can be directly computed by the algorithm,
and therefore provides an a posteriori guarantee.

Lemma 8 (Proposition 3 of [5]) OPC only expands
boxes i ∈ T ∗. The sub-optimality v∗ − v(û) of the re-
turned sequence is at most δmin, the smallest diameter
among all expanded boxes.

These properties are standard for optimistic algorithms.
Next, we are interested in a stronger, a priori guarantee,
which requires novel derivations adapted to OPC. We
exploit the diameter bound of Theorem 6 together with
the branching factor of Definition 7 to obtain a bound
directly in terms of the budget n.

1 Let g, h : (0,∞) → R. Statement f(t) = Õ(g(t)) means
that ∃a > 0, b ≥ 0 so that f(t) ≤ a(log g(t))bg(t), ∀t > 0.
When the statement is made for large t, the inequality must
hold for ∀t ≥ t0 where t0 > 0.
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Theorem 9 (Theorem 6 of [5]) For large budgets n:

• When m > 1, we have: v∗−v(û) = Õ

(

γ

√

2(τ−1) log n

τ2 log m

)

.

• When m = 1, v∗ − v(û) = Õ
(

γn1/4a
)

where a =
√

2(τ−1)

τ2
√

MC
and C is the constant from Definition 7.

Thus, the convergence rate of OPC is modulated by the
problem complexity as expressed by branching factor m.
The smaller m, the easier the problem and the faster
the bound reduces with increasing n. In particular, when
m = 0 the bound is exponential in n1/4 – faster than in
the general case, where it is exponential in

√
log n.

4.3 SOPC performance

Similarly to Lemma 8 for OPC, we first establish a lower
bound for the depth reached by SOPC after spending a
certain computation budget n.

Lemma 10 Define h(n) as the smallest value h for
which the following inequality holds:

CMh2
max(n)

h
∑

h′=0

mh′ ≥ n (7)

Then, SOPC expands a node containing the optimal solu-
tion at depth h = min {h(n), hmax(n)}, and the sequence
returned is δh-optimal.

Lemma 10 adapts the SOO depth bound from [18], in
order to take into account the varying number of model
calls to create a child box, while in SOO a child only
needs one call to the objective function.

Next, we combine the depth bound with the diame-
ter from Theorem 6 to establish the final guarantee for
SOPC, directly linking performance to computation.

Theorem 11 Consider the sequence û returned by
SOPC. For large n:

• When m > 1, take hmax(n) = nε with ε ∈ (0, 0.5).

Then, v∗ − v(û) = Õ

(

γ

√

2(τ−1)(1−2ε) log n

τ2 log m

)

.

• When m = 1, take hmax(n) = n1/3. Then, v∗−v(û) =

Õ(γn1/6b′) where b′ =
√

2(τ−1)
τ2 min

{

1
CM , 1

}

and C is

the constant from Definition 7.

Thus, by transplanting the strengths of SOO from op-
timization to control, we get an algorithm which has
nearly the same convergence rate as OPC when m > 1,
since the extra term 1− 2ε can be made small by taking
small ε. This is because the extra polynomial cost of ex-
panding complete paths in the tree is small compared to
the overall exponential number of boxes. When m = 1,
convergence is exponential in n1/6 instead of n1/3 – still
fast, although slower than OPC.

Regarding the tuning of hmax(n), due to Theorem 11 it
should be taken nε with ε ∈ (0, 0.5). A first idea is to
take it n1/3, in the hope that the problem is simple and
accepting a possible slower convergence rate if it turns
out to be more complicated. Comparing to OPC, where
another parameter must be tuned – the Lipschitz con-
stant L̄v – hmax(n) is much more robust. Indeed, choos-
ing a bad value for ε only reducess the convergence rate
of SOPC, while the algorithm remains valid. On the
other hand, if L̄v is underestimated, the explicit b-values
used by OPC become invalid. Beyond this, the value of
L̄v is problem-dependent, where the danger of under-
estimation must be balanced with the effects of overes-
timation: uninformative b-values slowing down the al-
gorithm. Furthermore, since the SOPC analysis holds
without knowing L̄v, we can replace its most favorable
value while keeping the analysis valid. So the algorithm
can be thought as automatically adapting to the unknown
smoothness of the dynamics and reward function, thus
becoming (nearly) as good as OPC with an optimally
tuned Lipschitz constant. See the upcoming experiments
for an empirical study of the effect of these parameters.

The last parameter to be chosen is the number of splits
M . A larger M reduces the term τ−1

τ2 in the bounds, im-
proving them, but it may also lead to a larger branch-
ing factor m, with the opposite effect. Overall we esti-
mate the latter danger is more significant, so we suggest
M = 3, the smallest value satisfying Assumption 5(i).

5 Experiments with the rotational pendulum

Our example is the Quanser rotational pendulum, see
Fig. 2(left), which consists of a heavy rod sitting on
an unactuated rotational joint at the end of an in-
termediate, horizontal link actuated through a motor.

The problem has four state variables, x = [θ, θ̇, α, α̇]
⊤

,
θ ∈ [−π, π) rad is the angle of the horizontal link
(zero pointing forward), where α ∈ [−π, π) rad is
the angle of the pendulum (zero pointing up), and

θ̇, α̇ ∈ [−100, 100] rad/s are the angular velocities, with
these limits enforced by saturation. The input voltage
u lies in [−9, 9] V, see [5] for details about the dynam-
ics. The goal is to reach the zero equilibrium, but the
system is underactuated so the pendulum must first
be swung back and forth to accumulate energy, which
means that long trajectories must be found. The prob-
lem is therefore challenging for planning methods. The
unnormalized reward function is the usual quadratic
one: ρ̃(x, u) = −x⊤diag[1, 0.005, 1, 0.005]x − 0.05u2, see
Example 4, where the weights are chosen to prioritize
angle stabilization, followed by the angular velocity and
the control effort (keeping in mind the velocity range is
large). The sampling time is chosen 0.05 s, and γ = 0.85.

We begin by pitting SOPC and OPC against two heuris-
tic planners with continuous actions. We use OPC with
a tighter b-value that exploits the formulas in the proof
of Lemma 3, together with the knowledge that rewards
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are at most 1 and that action samples are always at the
centers of the intervals:

Ki−1
∑

k=0

γk min{1, ri,k + Lρ

k
∑

j=0

Lk−j
f

di,j

2
} +

γKi

1 − γ
(8)

This form would have been unwieldy to use in the anal-
ysis, but in practice the algorithm behaves better (and
conservatively satisfies the analysis). The first compet-
ing algorithm is Lipschitz planning (LP) [9] in a vari-
ant that uses bound (8) but selects dimensions using its
own rule, different from OPC and SOPC. The second
is simultaneous optimistic optimization for plannning
(SOOP) [3], which like SOPC expands multiple sets at
each iteration, selecting them with a heuristic that does
not ensure performance guarantees; while dimension se-
lection uses a criterion similar to (6), but with a tuning
parameter α replacing γ.

For each simulation experiment, each algorithm is run in
receding horizon for 50 steps from initial state α = −π,
α̇ = θ = θ̇ = 0, the resulting sequence of rewards rk+1 is

found, and the return
∑49

k=0 γkrk+1 is reported. In a first
experiment, we study the effects of each planner’s tuning
parameters, leaving the comparison between different
planners for a second experiment. We take a large budget
of n = 2000 so that the planners can find a near-optimal
solution. In SOPC, we tune the power ε in the maximum-
depth function hmax = nε, which the analysis indicates is
a good form, taking ε ∈ {1/4, 1/3, 0.4, 0.45}. In OPC and
LP, we tune equal Lipschitz constants Lρ = Lf =: L,
varying L in the set {0.3, 0.5, 0.7, 0.9, 1, 1.1, 1.3, 1.5, 2}.
For SOOP, α is varied in {0.5, 0.7, 0.8, 0.85, 0.9, 0.95}.
Fig. 2(right) shows the results.

For SOPC, ε = 0.45 works best, for which hmax grows
relatively fast with n, indicating that deep trees are pre-
ferred in this problem. Note that the analysis predicts
good values of ε are less than 1/3, likely because it fo-
cuses on the behavior for large n. The larger ε is not
surprising in practice, since it promotes exploring longer
trajectories for smaller budgets, and long trajectories
are needed to perform the swingup. In both OPC and
LP, Lipschitz constants around 1 perform well (with the
optimum being 1.1 for OPC and 1 for LP), while for
SOOP α = 0.8 (close to γ = 0.85) is best. Concerning
sensitivity with respect to parameter variations, SOPC
and SOOP have similar and slowly varying performance
for all values of their tuning parameters; while OPC and
LP are quite sensitive to the Lipschitz constants. Over-
all, it seems Lipschitz constants are difficult to tune and
algorithms that do not use them are more reliable.

We run the planners again with the best-performing pa-
rameters above, while gradually increasing the budget
n = 100, 200, 500, 1000, 1500, 2000, 3000, 5000, 10000.
Fig. 3 shows the results (VI means value iteration, dis-
cussed later). LP works poorly and unpredictably in
this problem, confirming earlier results on a range of
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Fig. 2. Left: Rotational pendulum. Right: Planner perfor-
mance as a function of the tuning parameters; note that for
SOPC the graph directly places hmax(n) = nε on the hori-
zontal axis.
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Fig. 3. Algorithm performance for varying budgets.

problems in [3]. Other algorithms generally increase
their performance reliably with n. OPC is the next
best method, possibly because its dimension selection
criterion (6) is better founded than in LP. Next comes
SOOP and finally SOPC, the best algorithm in the ex-
periment, showing the benefit of replacing the heuristics
in SOOP with good box selection rules. SOPC obtains a
significant improvement over tuned OPC, although the
analysis ‘only’ predicts it will be as good as OPC with
an optimally tuned Lipschitz constant. This is because
the tuning was done for the overall trajectory, while the
best Lipschitz constant may be different at each step,
and SOPC is able to adapt to these changes.

Note that the differences in return values from Fig. 3
correspond to real differences in control performance; for
example, the level reached by OPC and SOOP means
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Fig. 4. Rotational pendulum trajectory with SOPC.

that after swinging up the pendulum, it is not accurately
stabilized, but “dropped” and rotated again. In contrast,
the higher level reached by SOPC means the pendulum
is stabilized well. This good behavior is illustrated for
n = 5000 in Fig. 4. Because the budget is finite, the adap-
tive discretization of the actions produces an approxi-
mation of the continuous-valued optimal controls, with
a limited resolution (e.g. keeping the system near the
unstable equilibrium still requires adjustments). Never-
theless, the figure shows that SOPC uses many different
discrete levels in its effort to optimize the rewards.

Regarding the execution time of the planners, it is di-
rectly dictated by (and so roughly linear in) the budget
n of simulations allowed, see also the detailed results in
the supplementary material.

Next, we compare to a classical offline solution: value it-
eration with an interpolation grid over the state space
and a discretized action grid [4]. For fairness, we choose
a number of points on each state and action axis equal
to the smallest N so that 50n ≤ N5, so value iteration
is allowed at least as many samples as the planners use
across all 50 steps. These points are placed equidistantly
along the domains of the variables. The returns obtained
by controlling the system with the resulting state feed-
back policy are shown alongside the planners in Fig. 3
(aligned with the values of n for clarity, even though
value iteration may in fact use more samples). They are
worse than all planners except LP, which is because the
algorithm suffers from the curse of dimensionality: since
it takes N5 points to cover the state-action space, the
resulting values of N (at most 14) are too small to rep-
resent a good solution.

Further, we illustrate the resilience of SOPC to non-
differentiable, but still Lipschitz dynamics and rewards.
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Fig. 5. Deadzone (top) and returns obtained by SOPC (bot-
tom). The deadzone is over u ∈ [−1, 1], and the slopes are 1
and 1.2 to its left and right, respectively.
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Fig. 6. Comparison with ACADO.

Typical actuator nonlinearities include deadzones and
different gains when changing the input sign, and we
modify the pendulum dynamics to include both, see
Fig. 5, top. We replace in the rewards the input penalty
u2 by |u|. Fig. 5, bottom shows the returns of SOPC;
all budgets starting from 3000 solve the problem with
one swing. Note the returns are not directly comparable
with the other experiments.

Since our unoptimized Matlab implementation would
not work in real time (e.g. for n ≥ 200 the execution
time already exceeds Ts = 0.05 s), we also implement
SOPC in C++. We run a final comparison with nonlinear
MPC, using the C++ ACADO toolkit [8]. At each step,
a finite-horizon optimal control problem is constructed
using the negative of the reward function above, with-
out discounting and with the control bounds included
as constraints. Receding-horizon MPC is run for hori-
zons 0.25, 0.5, . . . , 2 s, with the default settings for the
optimizer. For each horizon, the average execution time
of ACADO is measured, and then the C++ variant of
SOPC is run allowing it the same computation time.
Looking at the discounted returns in Fig. 6, SOPC is bet-
ter in all experiments; although it should be noted that
when evaluated by the undiscounted return, ACADO
becomes better for large horizons. This is a reflection
of the different optimal control problems solved by the
two algorithms, each of them being better for the type
of cost it targets.
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We close the evaluation with a real-time control experi-
ment. Here, while the current action uk is being applied
to the system on an I/O thread, SOPC is already run
on another thread from the predicted state at k + 1, so
that a new action is ready by that time. The computer
uses an Intel Xeon E5-1620 CPU at 3.6GHz (quad-core
but we use two threads as explained above), with 16GB
RAM. The C++ implementation is used and the bud-
get is set to 5000, large enough so that most of the sam-
pling period is exploited to plan, but still ensuring the
algorithm terminates within 0.05 s. The voltage limit is
increased to 14V. A video illustrating the results is at
http://rocon.utcluj.ro/files/rotpend_sopc.avi.

6 Conclusions and future work

We introduced two optimal control algorithms for non-
linear systems with scalar inputs: optimistic planning
for continuous actions (OPC), and simultaneous OPC.
Given a Lipschitz-continuous value function, OPC and
SOPC are the first algorithms for action sequence search
that provide convergence rates to the global infinite-
horizon optimum for general, nondifferentiable dynam-
ics and rewards. This is achieved by a branch-and-bound
search that adaptively increases the horizon as more
computation is allowed. SOPC obtains nearly the same
rate as optimally-tuned OPC, despite not needing to
know the Lipschitz constant. This feature turned out to
have significant practical advantages, leading to good re-
sults in simulations. SOPC was also illustrated for the
real-time control of a physical system.

OPC and SOPC are zero-order algorithms, i.e. they rely
only on value function samples, without derivative in-
formation. While one cannot do better when the value
function is indeed nondifferentiable, an important next
step is extending the methods to exploit higher-order in-
formation whenever it exists. Building on the analytical
understanding developed here, this extension must pre-
serve the global near-optimality of (S)OPC, but when-
ever possible should also use derivative information to
search more efficiently and reduce computations. An-
other, longer-term goal is to exploit the near-optimality
guarantees in order to show that the solution obtained
is also stable in closed loop, by extending the discounted
stability framework of [19].
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