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Abstract— Unmanned aerial vehicles are increasingly being
used and showing their advantages in many domains. However,
their application to railway systems is very little studied. In
this paper, we focus on controlling an AR.Drone UAV in order
to follow the railway track. The method developed relies on
vision-based detection and tracking of the vanishing point of
the railway tracks, overhead lines, and other related lines in the
image, coupled with a controller that adjusts the yaw so as to
keep the vanishing point in the center of the image. Simulation
results illustrate the method is effective, and are complemented
by vanishing-point tracking results on real images.

Index Terms— Unmanned aerial vehicle, vanishing point,
flight control, railway system.

I. INTRODUCTION

The usage of unmanned aerial vehicles (UAV) in civil-
ian applications is increasingly being investigated. Famous
recent examples include online giant Amazon’s research
into using UAVs for package delivery [1], and Deutsche
Bahn’s exploration of UAVs to curb graffiti spraying [2],
but more classical applications have long been considered,
such as search and rescue [5], [23]. In this wider context,
our end-goal is developing automated UAV-based procedures
for railway surveillance and maintenance, and is therefore
related to [2]. UAV-based inspection aims to be a low-cost
alternative that does not require stopping the rail traffic, and
can work in areas not easily accessible to human operators.

As a first step, in this paper we present a technique to
control a UAV so that it automatically follows the rail track.
We focus on the AR.Drone, a low-cost, lightweight UAV
widely used in robotic research [14], [22], [6]. Our method
relies on two main components. First, image processing is
used to detect the vanishing point (VP) in the image, and
Kalman filtering is applied to track the VP over subsequent
frames in the presence of noise. The second component is
the controller, which uses a PD regulator measuring the VP
displacement to adjusts the yaw of the drone and keep the VP
in the center of the image. Together with a constant forward
velocity, this leads to the rail track being followed.

Vanishing point detection is based on edge detection with
Laplacian filtering [20] and line detection is performed with
the probabilistic Hough Transformation [13]. We additionally
apply a selection procedure to eliminate unneeded lines, due
to the building edges. Then, the densest area of crossing
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E. Páll, L. Buşoniu, and T. Levente was supported by a grant of the
Romanian National Authority for Scientific Research, CNCS-UEFISCDI,
project number PNII-RU-TE-2012-3-0040.

points between the detected lines has a high probability to
be the VP of the rail tracks, and is therefore used as the
observation input in the Kalman filter.

We present simulation results investigating the perfor-
mance of the VP tracking as well as that of the overall
controller, using Gazebo, a 3D simulation environment,
integrated in the Robotic Operating System (ROS). The dy-
namical model of the AR.Drone [9] is already implemented
and simulated in this environment, in which we additionally
created a simulation of the railway and altered the start-up
position and velocity to fit our scenario. We also present VP
detection and tracking results on real images captured with
the drone cameras. The real-time control of the drone is the
first step of our future work.

The fields of control [12] and vision-based state estimation
[21] for UAVs are very well developed, as well as robotic
navigation [8], [7], [16]. For instance, close to our work are
the lane marker detection method in [3], the VP-based road
following method of [15], and vision-based object detection
on railway tracks in [19]. Some early ideas were presented
by [18] for the related problem of power line inspection.
However, our work is one of the first to consider UAV in
railways, and is novel especially in its focus on control. New
features and challenges arise in this context and must be
taken into account, such as the possibility to always rely on
the presence of the track and overhead lines, or the problem
of discriminating sleepers from the track.

Next, Section II briefly introduces the AR.Drone, its
simulation environment, and the existing methods for line
detection and filtering that we use. In Section III, we describe
the technique developed, including VP detection, filtering-
based tracking, and control. The experimental results are
given in Section IV, and Section V concludes the paper.

II. BACKGROUND

A. Hardware and Software

We are using the AR.Drone presented in Figure 1, a
four-rotor, fixed-pitch aircraft. It has built-in orientation and
altitude sensors, one camera facing to the bottom, one to
the front, a micro controller, and a WiFi module. It is a
commonly used quadrotor in research projects, the dynamic
model of the drone is known [17]. The model has a twelve-
dimensional state space, which consists of the linear and
angular velocities and accelerations in the three dimensional
space.

We are processing the images from the front camera,
which has a wide angle lens, specifically 92o. The resolution
is 1280×720 pixels for recording, 640×480 pixels for WiFi



Fig. 1: Parrot AR.Drone

streaming and this frames are sent at a speed of 30fps. In
spite of the high frame rate, the speed can drop in case the
drone is destabilized, because the stabilization procedure has
higher priority than the video broadcasting.

The drone is supplied with its own software, which is
not designed to be modified, but different drivers are imple-
mented in ROS to communicate with the drone via WiFi.

We used a 3D simulation tool integrated in ROS, called
Gazebo. The state space model of the AR.Drone is imple-
mented in tum-ardrone ROS package [11] and the 3D model
is created in Gazebo. The same driver can be used to control
and communicate with the drone, as with the real device.
The Gazebo is easy to use for building 3D scenarios such as
a railway track. Moreover, all the states ground truth values
are known and we can add disturbances, for example wind.

B. Methodology

In this section, we review the methods from the literature
that we employ and build our approach on.

1) Line detection: Line detection generally needs low-
level pre-processing of the image such as: smoothing, sharp-
ening, erosion, dilation, and edge detection. In this field many
algorithms are used for edge detection like Canny, Sobel, and
Laplace algorithms [20].

The Laplacian method is part of the gradient filters of edge
detection, which also includes the Sobel method. It is based
on the fact, when the first derivative of a function is at a
maximum then the second order derivative is zero. An edge
on a 2D image can bee seen as a jump of intensity between
the two surfaces. Therefore, the Laplacian edge detector
searches for zero crossings in the second order derivative
of the image. The filter is applied on a gray-scale image
and for the two dimensional function f(x, y) representing
the intensity, it can be written as:

O2f =
∂2f

∂x2
+
∂2f

∂y2
(1)

An approximation of this derivative is obtained by imple-
menting a discrete convolution with a mask, given below: 0 −1 0

−1 4 −1
0 −1 0


The Sobel method performs a 2D spatial gradient on the im-
age, hence the high spatial frequency regions are highlighted.
The Sobel algorithm uses two masks, one for the horizontal
lines and one for the vertical lines. The two convolution
masks calculate the approximations of the derivative along

the horizontal and vertical directions on the image. The
masks are shown below: 1 2 1

0 0 0
−1 −2 −1

 ,

1 0 −1
2 0 −2
1 0 −1

 (2)

The Canny algorithm is a multi-step method. First, it
smooths the image with a Gaussian filter, and then finds the
intensity gradient of the image by using the same masks as
the Sobel algorithm. Finally, edge thinning and thresholding
is applied.

Sharp and long edges can be seen as lines. The Prob-
abilistic Hough Transformation (PHT) [13] is one of the
most commonly used algorithms in perspective vision. The
algorithm is based on the parametric representation of a line:

ρ = x cos θ + y sin θ

where ρ is the perpendicular distance from the origin to the
line and θ is the angle between the horizontal axis and the
this perpendicular.

The family of lines going through a given point (x0, y0)
can be written as a set of pairs of (ρθ, θ). This set of lines
can be represented as a sinusoidal, if ρ > 0 and θ ∈ (0, 2π).
The algorithm searches intersections of sinusoidal curves.
If the number of curves in the intersection is more than a
threshold, then the pair of (ρθ, θ) is considered to be a line
on the image. The algorithm takes a random subset of points
for line detection, thus optimizing the procedure.

2) Estimation: The Kalman filter (KF) [10] is frequently
applied in the mobile robotic field for position estimation
and tracking. It is an optimal estimator when the dynamics
are linear and the model and measurement noises are uncor-
related and have Gaussian distributions. In general the KF
estimates the state x ∈ Rn of a linear discrete-time system:

xk = Fxk−1 + Buk−1 + wk−1

yk = Hxk + µk
(3)

where F, B, H are the system matrices, y is the measurement,
w and µ are the process and measurement noises. These
noises are assumed to be independent and Gaussian dis-
tributed, wk ∼ N (0,Q) and µk ∼ N (0,R). The algorithm
estimates the state xk recursively and it has two phases:
prediction and update. First, an initial state, x0 and initial
covariance of the state, P0 is chosen.

In the prediction phase, KF calculates the prior state
estimate, x−

k and the prior error covariance, P−
k :

x−
k = Fx+

k−1 +Buk
P−
k = FP+

k−1 +Q
(4)

The update phase estimates the current state based on
the prior estimate and the observed measurement, with a
weighted average:

x+
k = x−

k +Kk(zk −Hkx
−
k )

P+
k = (I−KkHk)P

−
k

Kk = P−
kH

T
k (HkP

−
kH

T
k +R)−1

(5)



where x+
k is the posterior state estimate, P+

k is the posterior
error covariance, and Kk is the Kalman gain calculated at
each step, so it minimizes the trace of the error covariance
matrix. See [10] for further details, for example how to
compute Kk.

3) Control: The most commonly used industrial control
method is the proportional-integral-derivative (PID) con-
troller. The discrete time equation of this controller is:

uk = ek ·Kp +
ek−ek−1

δk
·Kd + eik ·Ki

eik = eik−1 + ek · δk
(6)

where ek is the current error, δk is the sampling time, ei is
the integrated error, and Kp, Ki, and Kd are respectively the
proportional, integral, and derivative gains.

The tuning parameters are the three gains. In case the
model of the system is unknown or poorly approximated,
but a simulator or the real system is available for online
tests, then the Ziegler-Nichols or the Åström-Hägglund [4]
methods can be used to tune the regulator.

III. APPROACH

A. Image Processing

We are processing the images of the drone’s front camera.
The frames are analyzed based on perspective clues. In
our case, the rail tracks viewed in perspective appear to
converge to a point, called vanishing point. Recall from the
introduction the idea of using line detection in the images in
order to find the VP. In the detection phase of the project,
we faced difficulties to eliminate the noises on the images
taken in an outdoor environment, close to urban areas. We
experienced higher noise on outdoor images than on indoor.

In order to reduce this noise and to prepare the image for
further processing we blur the image and convert from color
to gray-scale.

Next, we use an edge detection method, see Section II-
B.1 on the pre-processed image. The result is sharpened by
thresholding the image to enhance the intensity of the strong
edges.

Afterwards, we search for lines with the Probabilistic
Hough Transform method. The outdoor urban scenes have
horizontal and vertical edges e.g. because of the surrounding
buildings, and these lines are detected. Since these lines do
not converge to the VP and are not useful in detecting it, they
are filtered in order to have a more accurate VP detection. In
order to make the detection robust, we separate out the lines
based on their orientation angle: we neglect the lines which
are approximately horizontal and vertical. The majority of the
remaining lines are from the rail tracks, so the most dense
area of crossing points of these lines will be the vanishing
point of the tracks. The neglected lines’ orientation angles,
see Figure 2, are tuning parameters that can be changed if
needed. We tuned these parameters from real case tests and
these are: θ = 10◦ and λ = 10◦.

B. VP Tracking

The vanishing point is tracked with the Kalman estimator,
see Section II-B.2. In our case, ideally, a twelve dimensional

Fig. 2: The recognized lines with orientation angles between
±θ and ±λ are neglected in the VP detection procedure.

state-space model and a mapping would be necessary be-
tween the 3D world model and the 2D plane of the image.
This is impractical to use, so we chose a simplified model
to describe the behavior of the vanishing point. This is the
constant velocity model, presented below:{

xk = xk−1 + vk−1 · δk + wxk−1

vk = vk−1 + wvk−1
(7)

where xk is the current position of the vanishing point on
the X axis measured in pixels,1 vk is the velocity of xk, wk
is the process noise, and δk is the current sampling interval,
more exactly it is the duration between video frame k−1 and
k. Recall the observation of the variable frame rate, which
can be caused by destabilization of the drone. Hence, the
model covariance matrix (8), model transition matrix (7),
and the PID controller (6) are influenced by the varying δk
and must be recalculated for each k. The model presented
above is a random walk model for the velocity, meaning we
do not assume a dynamics for the velocity and just rely on
measurements.

The KF can estimate past, present, and future states, hence
it can be used when the vanishing point is not detected. If
no observation can be done, the KF is used in open loop,
which means that the prediction is used as estimation and
the update phase is omitted.

The tuning parameters are obtained from different real
scene flight tests. The chosen model and measurement co-
variance matrices are shown below:

Q =

[
δ4k/3 δ3k/2
δ3k/2 δk

]
· σ2

w; R = σ2
v (8)

where σw =
√
70 and σv = 10 are the standard deviation of

the process and the measurement. We obtained these tuning
parameters from video feeds of real railway tracks.

C. Control
We want to maintain at zero the horizontal distance

between the vanishing point and the center of the image.
We implemented a PID control in order to achieve this. The
controlled output is the VP position x, and the reference
signal xr is equal to half of the image width, 320 pixels. The
control input is the yaw angular velocity while the drone is
flying forward with a constant linear velocity, as shown in
Figure 3.

1Note that xk is just the first component of the two-dimensional state xk

in (4).



Fig. 3: Drone controlled with the yaw angle velocity, in
function of the distance between the vanishing point (VP)
and the center of the image (CI). By turning toward the VP
and flying forward with a constant velocity, we navigate back
to the rail track and remain there.

P PD PID
Kp 0.004275 0.00684 0.00513
Ki 0.00128
Kd 0.00684 0.00513

TABLE I: PID controller gains tuned with Ziegler-Nichols
closed loop method.

We tested the Ziegler-Nichols closed loop PID tuning
method in the simulation and we found the ultimate gain,
Ku ≈ 8.55 · 10−3[px] and the ultimate period Tu ≈ 8[sec].
The controller gains are calculated with the Ziegler-Nichols
calculation formulas, see Table I.

Because of the poor experimental results with the above
mentioned controller parameters, we implemented a grid-
based PD tuning. The chosen set of parameters are Kp ∈
[2 ·10−3, 9 ·10−3] and Kd ∈ [1 ·10−3, 9 ·10−3]. We measured
the geometric mean of ek for a 30 second flight and for each
combination of (Kp,Kd). After repeating the test multiple
times, we chose the pair with the lowest geometric mean,
namely Kp = 2× 10−3 and Kd = 4× 10−3.

The reason we do not use the integrator of the PID
controller is that the model already contains an integrator,
from the yaw velocity to the yaw angle and from this
geometrically to the horizontal VP position on the image.

IV. EXPERIMENTAL RESULTS

In this section we are going to present the experimental
results of the detection and tracking methods based on
real data sets. Moreover, we show the outcome of the PD
controller in the 3D simulation environment.

A. Detection

We tested the edge detection methods mentioned in Sec-
tion II-B.1. The results show that the Laplacian filter per-
forms the best noise filtering and edge detection compared
to the Sobel and the Canny methods, see Figure 4.

(a) Original image. (b) Canny edge detection.

(c) Sobel edge detection. (d) Laplacian filtering.

Fig. 4: Comparison of edge detection methods.

Fig. 5: Detection and KF estimation analysis on frequently
used tracks. The dashed (blue) line is the measurement, the
dotted (black) line is the ground truth labeled by hand frame
by frame, the continuous (red) line is the estimation and the
shaded (red) surface is the 95% confidence interval on the
estimation.

Fig. 6: Detection and KF estimation analysis on rarely used
tracks.

B. Tracking on real images

The implemented tracking algorithm was tested on the
field and in the simulation environment. The Kalman es-
timator filters the high peaks but it has a delay of one
measurement, presented in Figures 5 and 6, showing real
data processing. A weaker precision in observation and
estimation is observed on the rarely used tracks, due to the
characteristics of the unused steel, which is rustier. Figure 7
shows the detection results in simulation, where errors are of
course smaller. Note also that different from the real-image



results, here the VP position is controlled to 0.

Fig. 7: Detection and KF estimation analysis in 3D simulated
environment.

C. Control in simulation

Figure 8 presents a screenshot of the simulation environ-
ment we used to validate the controller. Our observation,
regarding the Ziegler-Nichols tuning parameters, is that only
the proportional controller keeps the system stable, while the
PD and PID made the system unstable.

Fig. 8: AR.Drone in the simulation environment.

Fig. 9: PID tuning results based on the grid, on the Y axis is
the error, on the X axis the values for Kd, and the different
colored lines correspond to different values of Kp.

The result of the grid-based tuning method are presented
on Figure 9. Based on this, we chose the Kp and the Kd

as in Section III-C, and ran flight test in the simulation
environment, for straight tracks and with turns. In both cases,
the trajectory of the UAV remains between the railway tracks,

see Figures 10 and 11, so our vision-based controller is
successful.

Fig. 10: Trajectory of the drone in the simulation following
a straight rail track, where the black line is the trajectory,
the blue line is the middle of the track and the blue shade is
the width of the track.

Fig. 11: Trajectory of the drone in the simulation, following
a rail track with turns.

V. CONCLUSIONS

We developed a method to control a quadrotor UAV along
a railway track, using images from its front camera. This
can be used e.g. as a core component in a future UAV-based
approach for railway monitoring or maintenance. Our method
employs line detection to find the vanishing point (VP) of
railway tracks and other lines in the image, and Kalman
filtering to track this vanishing poing over subsequent frames.
An optimized PD controller is then used to stabilize the VP
to the center of the image, thereby ensuring the railway is fol-
lowed. The overall methodology was successfully validated
in a simulation environment, and we additionally validated
the vision component on real frame sequences acquired with
the UAV.

The validation of the controller in field tests is the first
step of our future work. Additionally, a better model for the
VP dynamics will be derived and combined with nonlinear
filters, in order to improve the tracking performance and
thereby the control.
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