
Optimistic Planning with Long Sequences of Identical Actions

for Near-Optimal Nonlinear Control
Koppány Máthé, Lucian Buşoniu, Liviu Miclea

Department of Automation, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania

{koppany.mathe, lucian.busoniu, liviu.miclea}@aut.utcluj.ro

Abstract—Optimistic planning for deterministic systems (OPD)
is an algorithm able to find near-optimal control for very general,
nonlinear systems. OPD iteratively builds near-optimal sequences
of actions by always refining the most promising sequence; this
is done by adding all possible one-step actions. However, OPD
has large computational costs, which might be undesirable in
real life applications. This paper proposes an adaptation of OPD
for a specific subclass of control problems where control actions
do not change often (e.g. bang-bang, time-optimal control). The
new algorithm is called Optimistic Planning with K identical
actions (OKP), and it refines sequences by adding, in addition to
one-step actions, also repetitions of each action up to K times.
Our analysis proves that the a posteriori performance guarantees
are similar to those of OPD, improving with the length of the
explored sequences, though the asymptotic behaviour of OKP
cannot be formally predicted a priori. Simulations illustrate that
for properly chosen parameter K, in a control problem from the
class considered, OKP outperforms OPD.

I. INTRODUCTION

Optimal control methods focus on finding the best control

for a given problem by minimizing certain costs (e.g. process

time reduction, minimization of energy consumption, etc.).

Optimistic planning for deterministic systems (OPD) [1] is one

such algorithm, designed for deterministic control problems

with control input sets consisting of finitely many discrete

values. OPD works on the principle of constructing a search

tree of actions that form action sequences starting from the

root node. The algorithm iteratively builds these sequences by

always adding single actions to the most promising sequence.

At the end of the search, OPD chooses the first action from the

best-performing action sequence and applies it to the current

state of the system. Hence, it is a type of model-predictive

control [2].

OPD is able to deal with highly nonlinear systems, ensuring

computational and near-optimality guarantees. It is also opti-

mal, roughly meaning that for any algorithm, a problem can be

found where this algorithm will do at most as well as OPD.

This extreme generality comes however at the cost of slow

performance growth with the computation invested. Further,

optimality in the sense above does not mean one cannot do

better in specific classes of problems – an essential feature

in practical applications. Such an improvement is our goal in

the present paper. Specifically, we propose a specialization of

optimistic planning targeting problems where longer ranges

of constant control actions are preferred, so actions change

only rarely. Numerous applications requiring time-optimal

The work of K. Máthé and L. Buşoniu was supported by a grant of
the Romanian National Authority for Scientific Research, CNCS-UEFISCDI,
project number PNII-RU-TE-2012-3-0040.

978-1-4799-3732-5/14/$31.00 c© 2014 IEEE

control (e.g. in vehicle path planning, aerospace) and bang-

bang solutions fit this subclass [3]. Note that several other

types of optimistic planning algorithms have been proposed,

such as for stochastic problems [4], [5] and continuous action

spaces [6], [7]. These all focus on generalizing OPD, while to

our knowledge no work has been done to improve performance

in specific types of problems.
The new algorithm we propose is called Optimistic Planning

with K identical actions (OKP). Whereas in OPD the search

refinement consists of adding all possible one-step actions to

a chosen sequence, in OKP we are also adding the actions

multiple times, up to K repetitions. This exploits the prior

knowledge about the type of solution preferred. From the

analysis, the near-optimality bound of OKP is similar to the

one of OPD, resulting from the depth of the search tree.

However, due to the variable depth in expansions introduced

by K, one cannot usefully predict the performance of the

algorithm a priori, as it could be done in case of OPD. In our

simulations, this property of OKP leads to shallower search

trees than those of OPD. Still, despite the shallower trees,

in practice OKP outperforms OPD for the chosen control

problem, and we expect that, for properly tuned parameter

K, these results are valid for a general class of problems.
Related work includes piecewise-constant control [8] and

specifically piecewise-constant model-predictive control [9],

[10], as well as applications of related ideas to e.g. sampled-

data systems [2]. Closer to our method, due to their focus on

improving performance and reducing computation, are refer-

ences [11]–[13]. In contrast to these works, where the analysis

largely deals with stability, our theoretical discussion explicitly

focuses on the relation between computation and performance

of the algorithm. Also, unlike [13], our algorithm does not

constrain where the action should be changed (although it

works better when switches happen after around K steps).
The paper continues by introducing in Section II the

concepts and brief analysis of optimistic optimization and

planning, which form the basis of OKP. Section III presents

the newly developed algorithm and its analysis, while Sec-

tion IV shows the simulation results comparing OKP to OPD.

Section V concludes the paper.

II. THEORETICAL BACKGROUND

OKP is an extension of OPD, whereas OPD is based on

the concepts of Optimistic Optimization for Deterministic

Functions (OOD). Therefore, we first introduce the main

concepts of the OOD method.

A. Optimistic Optimization for Deterministic Functions

OOD [1] is an optimization method that searches for the

maximum of a function v : H → R, whose form is not known

but which can be sampled in some points v(h). The search

is performed by iteratively splitting the set H into subsets

Hd. This splitting or partitioning procedure can be represented

using a search tree having as nodes the sets Hd where d marks

the depth of a node in the tree, as shown in Fig. 1. Note that

Hd generally marks any node from depth d.

The assumptions we make regarding the form of the func-

tion and the search rules are:

• A1. There exists a semi-metric l, i.e. a function l : H ×
H → R

+, with the properties l(h, h) = 0 iff h = h and

l(h, h) = l(h, h), for any h, h ∈ H.

• A2. There exists at least a global maximizer h∗ ∈ H for

which function v is locally one-sided Lipschitz around

h∗, i.e. v(h∗) − v(h) ≤ l(h∗, h), for any h ∈ H.

• A3. There exists a decreasing sequence δ(d) > 0 such

that for any depth d in the search tree and for any set

Hd, diam(Hd) ≤ δ(d), where diam(Hd) = sup
h,h∈Hd

l(h, h)

defines the diameter of a set Hd ∈ H.

• A4. There exists a value ν > 0 such that for any depth d,

any set Hd contains an l-ball1 of radius νδ(d) centered

in the sampling point hs ∈ Hd.

In other words, assumptions A1 and A2 require a certain

level of smoothness of function v, but otherwise v can be

highly nonlinear. Assumptions A3 and A4 are related to the

partitioning rule of the search algorithm, ensuring that the

diameters of the search sets Hd decrease with the depth, but

the algorithm will not end up partitioning a set into infinitely

thin but large length subsets.

Based on assumption A2, for any set Hd ⊂ H containing

the global maximizer h∗, given a sample hs from the set, an

upper bound on the values of points h ∈ Hd can be defined:

b(Hd) = v(hs) + diam(Hd) (1)

with the property:

b(Hd) ≥ v(h),∀hs, h ∈ Hd (2)

H1 ,2 H1 ,3

b=1.2 b=1.3

H1 ,1

H2,4 H2,5 H2,6

b=1.1 b=1.3 b=0.9

Fig. 1. Search tree after two expansions. First, root node H was expanded
by splitting it into three subsets. Next, node H1,2 was expanded. Now, upper
bounds are calculated for the leaf nodes. Double circles mark the candidates
for the next expansion. The method will choose arbitrarily one of these. Note
that, in this example, each expansion means splitting a set into three subsets
Hd,i. Index d marks the depth of the node in the tree while i tells the order
of node insertions.

Having all these defined, the OOD method searches for the

maximum of v by iteratively splitting the search set H into

subsets Hd, taking a sample v(hs) for each subset, calculating

the corresponding upper bounds and splitting further the set

with the maximum upper bound. If there are several sets

having the maximum upper bound, the method will choose

arbitrarily one of them for further expansion.

1An l-ball is a set of points B(h, ǫ) = {h′ | l(h, h′) ≤ ǫ}.

Note that the upper bound b(Hd) makes sense for all the

expanded nodes of the tree: having b(Hd) ≥ v∗ for any node

containing h∗ implies that nodes having b(Hd) < v∗ are not

expanded (since the expansion criterion will always choose

from nodes with the highest upper bound and there is always

at least a node containing h∗, which has b(Hd) ≥ v∗). So, all

the expanded nodes are likely to contain the optimum.

Using this approach, the optimization problem can be

solved. The method is called optimistic due to the way it

searches for the solution: it expands its search for new samples

always in the direction of the most promising node (having the

highest upper bound).

Note that since the search tree is theoretically infinite, the

method has to limit the search. The computational budget

n is a number telling the algorithm after how many node

expansions it should stop the search. The quality of the result

is improved with increasing n.

By limiting the search, the method may not reach the

optimal point h∗. The near-optimality of the method is a

measure of how close the result is to the optimal solution,

expressed using the so called simple regret:

rn = v(h∗) − v(hs(n)) (3)

where hs(n) marks the greedy sample, i.e. the point for which

v has the highest value from the set of available samples after

n expansions. Note that n need not be specified in advance,

and by interrupting the algorithm at any time, the available

solution makes sense: the simple regret is small enough, and

it decreases with n.

The following theorem describes the performance of OOD.

Theorem 1. Under assumptions A1-A3, the near-optimality

of the method can be bounded a posteriori as rn ≤ δ(dmax),
where dmax marks the depth of the deepest expanded node.

Under assumptions A1-A4, an a priori2 near-optimality bound

is rn ≤ O(n−
1
β), where β is the near-optimality dimension of

the function v.

Proof (sketch). Regarding the a posteriori bound, using the

expression of the simple regret from (3), assumption A3 and

the fact that v(hmax) ≤ v(hs(n)) (that is the value of the

function v for the deepest sampling point hmax is less than or

equal to the value for the greedy sample), one can write:

rn = v(h∗) − v(hs(n)) ≤ v(h∗) − v(hmax) ≤ δ(dmax) (4)

The a priori bound is discussed in more details in [1]. The

intuition is that due to the exponential growth of the search

tree, the near-optimality of the algorithm, derived from the

depth reached in the search tree, will be improved polynomi-

ally with respect to the number of expansions n. The order

of the polynomial is related to the so-called near-optimality

dimension, β > 0, which characterizes the complexity of the

problem: the smaller β, the simpler the problem and the faster

the regret shrinks with n.

2The a priori bound means information available before applying the
method, based on knowing the available computational budget n, while the a
posteriori bound requires running the search.

B. Markov Decision Processes

OOD is a general method that may consider any type of

function, search space, metric and partitioning rule under the

described assumptions. OPD is an algorithm that applies the

OOD principle to optimal control problems: for example,

considering a car driving from a city to another, OPD would

deal with finding the optimal direction to drive in at each

intersection in order to minimize the travel time.
We model the control problem as a Markov Decision

Process, which in the deterministic case consists of states

x, actions u, a transition function f(x, u) and an associated

reward function ρ(x, u). The space of possible states is de-

noted X , while the action space is denoted U . An action u
makes it possible to move from a state to another. Function

f : X ×U → X, f(x, u) = x′ describes this transition from a

state x to x′ by applying an action u (i.e. the dynamics of the

system). Each transition is evaluated by the reward function

ρ : X × U → R, ρ(x, u) = r, a measure of the quality of the

transition.
Further notions used in the sequel are policy and return. A

rule associating an action to each state, and thus describing

the controller behaviour, is called a policy π : X → U . The

return is defined as:

V π(x0) =
∞
∑

k=0

γkρ(xk, π(xk)) (5)

which is the discounted sum of the rewards obtained while

applying actions π(xk) as indicated by the policy, starting from

state x0 (note that xk+1 = f(xk, π(xk))). Note that γ ∈ (0, 1)
is the discount factor and optimistic planning is adapted to

such discounted optimal control problems.

C. Optimistic Planning for Deterministic Systems

Optimistic Planning for Deterministic Systems (OPD) is a

planning algorithm for Markov Decision Processes that applies

the OOD method to find the optimal control action for a given

state of a system.
State space X may have any structure. Regarding the

action space U , it is assumed to be finite and discrete,

U =
{

u1, ..., uM
}

. Also, the system dynamics f is assumed

to be known, while the reward function ρ(xk, uk) must be

bounded and scaled (if needed) to the interval [0, 1].
OPD optimizes the return over the space of infinite action

sequences h = [u0, u1, ...], h ∈ H. Thus, the function being

optimized is:

v(h) = V h(x0) =
∞
∑

k=0

γkρ(xk, uk) (6)

Note that in this way the optimal action sequence h∗ is sought

rather than the optimal policy function π∗. Though this extra

generality is not necessary, it is more convenient to associate

such sequences to the search tree of the algorithm.
The search set H thus is the set of infinitely long action

sequences:

H = {h = [u0, u1, ..., uk, ...], uk ∈ U} (7)

The root node of the search tree has this set assigned to it. A

node at depth d of the tree is assigned a subset Hd containing

action sequences known only up to depth d. Expanding a node

means fixing another action in the sequences in Hd. Thus, a

subset Hd has the form:

Hd = {[u0, u1, ..., ud−1, •, •, ...]} (8)

where ud−1 marks an action that leads to depth d of the tree

and the sign • indicates any action can be taken from the space

U .

b=1.1 b=1.3 b=0.9

b=1.2 b=1.3

u
3

u
1

u
1

u
2

u
3

u
2

-d=0

d=1

d=2

Fig. 2. OPD search tree with action space U =
˘

u1, u2, u3
¯

. Actions
leading to nodes are put in the nodes. The nodes of the tree are:
H,

˘

[u1, •, •, ...]
¯

,
˘

[u2, •, •, ...]
¯

,
˘

[u3, •, •, ...]
¯

,
˘

[u2, u1, •, •, ...]
¯

,
˘

[u2, u2, •, •, ...]
¯

,
˘

[u2, u3, •, •, ...]
¯

.

The partitioning rule (node expansion) of OPD divides a

set into M subsets, one set for each possible action. Node

expansion is performed using upper bounds similar to those

presented with OOD. Thus, define the metric in OPD as:

l(h, h) =
γδ(h,h)

1 − γ
(9)

with γ the discount factor and δ(h, h) the smallest index for

which the two action sequences differ. Note that for any pair

h, h from a set Hd, min
h,h∈Hd

δ(h, h) = d, from where, using the

definition of the diameter, diam(Hd) = γd

1−γ
. Also, this metric

defines the largest possible difference in the return of two

action sequences from a set Hd, as the sequences are identical

up to index d − 1 from where on the maximum difference

between the returns is at most 1 for each action taken.
OPD cannot use v(hs), as in reality any sequence hs ∈

Hd is infinitely long and known only up to length d. Instead

it makes the use of a lower bound on the value function of

sequences in Hd:

ℓ(Hd) =

d−1
∑

k=0

γkρ(xk, uk) (10)

using which, the upper bound of OPD is defined as:

b(Hd) = ℓ(Hd) +
γd

1 − γ
(11)

Note that this is a valid upper bound in OPD, since, for any

h ∈ Hd, having all the rewards in the range [0, 1]:

v(h) = ℓ(Hd) +

∞
∑

k=d

γkρ(xk, uk) ≤ ℓ(Hd) +

∞
∑

k=d

γk = b(Hd)

(12)
Having all these defined, after constructing the search tree

in the same way as in OOD, OPD will choose as the solution

the first action from the set Hd for which ℓ(Hd) is the highest.
Since OPD applies the OOD method, the analysis of the

latter can be inherited if the assumptions of OOD hold for

OPD as well.
Checking OPD against assumption A1 of OOD, the metric

defined in (9) is a valid semi-metric as l(h, h) ≥ 0, l(h, h) =

l(h, h) for any h, h ∈ H and γδ(h,h)

1−γ
= 0 iff h = h (i.e. only

when δ(h, h) → ∞).

Looking at assumption A2, function v defined in (6) is

locally Lipschitz, as by definition, the metric used in OPD

equals the largest possible difference between the returns of h
and h∗. Thus, for any h ∈ H, v(h∗) − v(h) ≤ l(h∗, h).

Assumption A3 holds as well, as having diam(Hd) = γd

1−γ

and γ ∈ (0, 1), δ(d) = γd

1−γ
> 0 is a decreasing sequence

and diam(Hd) = δ(d), for any depth d and for any set Hd.

Regarding the condition from assumption A4, it can be written

as diam(Hd) ≥ νδ(d), and it holds with ν = 1.

With all the assumptions of OOD satisfied for OPD as well,

Theorem 1 is valid for OPD too. Hence, the near-optimality

rn of the OPD algorithm can be bounded a posteriori as

rn ≤ δ(dmax) =
γdmax

1 − γ
(13)

with dmax the depth of the deepest expanded node.

Also, an a priori regret bound of the form in Theorem 1

can be defined as a function of the computational budget n.

III. OPTIMISTIC PLANNING WITH K IDENTICAL ACTIONS

Focusing on the subclass of control problems with ranges of

identical control actions, optimistic planning with K identical

actions (OKP) considers the OPD algorithm with the following

change: at each expansion, create M · K children, K nodes

corresponding to each M distinct action, one for repetition of

each action from 1 to K times. OKP will select then the next

candidate node for expansion in the same way as OPD did.

Note that choosing K = 1, the algorithm reduces to OPD.

The novelty of OKP rests in looking with each search step

at the repeated sequence of each distinct action. If a control

problem prefers ranges of identical actions, intuitively, this

algorithm should find faster a near-optimal action sequence

and explore deeper on the optimal path than OPD.

-

u
2,1

u
2,2

u
3,1

u
3,2

u
3,2

u
3,1

u
2,2

u
1,1

u
1,2

u
2,1

u
1,2

u
1,1

u
1

u
1

u
2

u
2

u
1

u
2

u
3

u
2

u
2

u
1

u
1

-

u
3

u
3

u
3

u
3

u
3

u
1

u
2

Fig. 3. OKP search tree with action space U =
˘

u1, u2, u3
¯

and maximum
repetitions K = 2. On the left, the new tree is represented with actions of
the form um,k where m tells which action it is from the action space U ,
m = 1, ..., M , while index k tells its repetition, k = 1, ..., K. The figure on
the right shows the same tree unwrapped, i.e. in the OPD representation.

The representation in the left graph will be used

in the sequel: a node of the tree is e.g. H̃2 =
{

h̃ = [u2,1, u3,2, •, •, ...]
}

, with the action sequence in the

unwrapped form h = [u2, u3, u3, ...].
The new structure introduces redundancy in the tree in

the sense of duplicate action sequences: for instance, looking

at Fig. 3, nodes
{

[u2,2, •, •, ...]
}

and
{

[u2,1, u2,1, •, •, ...]
}

contain the same set of action sequences. Duplicates should

not be created since these are unwanted. Details follow in the

sequel. Next, similarly to the analysis from OPD, we check

OKP against the assumptions of OOD.

Due to the different form of the action sequences, the metric

of OKP is defined as:

l̃(h̃, h̃) =
γδ(h̃,

˜
h)

1 − γ
(14)

Note that l̃(h̃, h̃) = l(h, h) where h, h are the unwrapped

representation of h̃, h̃. In OKP δ(h̃, h̃) = D =
d

∑

i=1

ki where

D denotes the cumulative depth, with ki the repetition of an

action from depth i (e.g. if H3 contains action sequences of the

form h̃ = [u2,4, u1,1, u3,2, ...], it will have D = 4+1+2 = 7).

It is important to note that duplicate action sequences (i.e.

different sequences h̃, h̃ with the same unwrapped represen-

tation), would result in l̃(h̃, h̃) = 0 and l̃(h̃, h̃) would no

longer be a semi-metric. Thus, it is required to eliminate

duplicates in order to keep assumption A1 valid. The way

this is performed is a detail of implementation that does not

influence the analysis.

As OKP uses the same value function as OPD, the metrics

from the two algorithms are equal and the unwrapped action

sequences of OKP fully cover the set H, there exists a global

maximizer h̃∗ ∈ H̃ in OKP as well, for which for any h̃ ∈ H̃,

v(h̃∗) − v(h̃) ≤ l(h̃∗, h̃).

Also, as for OKP diam(H̃d) = γD

1−γ
and the cumulative

depth D increases with the depth in the wrapped tree, assump-

tion A3 of OOD is valid as well. The decreasing sequence can

be defined as δ(d) = γd

1−γ
, since the highest value of γD can

appear for D = d, when actions are taken only once, as in

OPD.

While it does not follow directly from Theorem 1 (which

would only be able to ensure δ(dmax) = γdmax

1−γ
near-

optimality), under assumptions A1-A3 the following stronger

result is shown in a very similar way:

Proposition 2. The near-optimality of the OKP algorithm

can be bounded a posteriori as:

rn ≤ v∗ − v(hDmax
) ≤

γDmax

1 − γ
(15)

where Dmax is the largest cumulative depth of the expanded

nodes at depth dmax.

Regarding the asymptotic behaviour of OKP, since OKP

adds with each depth nodes with 1 up to K actions, one cannot

ensure that the diameter of the sets decreases in a good way.

Stating this more formally, since δ(d) = γd

1−γ
, but on the other

hand diam(H̃d) = γK·d

1−γ
in the worst case of a sequence having

actions with repetition ki = K at each depth i, there exists no

value ν > 0 which would satisfy assumption A4 (diam(H̃d) ≥
νδ(d)). Note that choosing K = 1 (original OPD) results in

ν = 1 which, as expected, validates assumption A4.

Without assumption A4, the number of possibly expanded

nodes cannot be usefully bounded a priori and the near-

optimality of the algorithm cannot be expressed as a tight

function of the computational budget, like in the case of OOD

and OPD. A worst-case a priori bound can be defined by

considering uniform expansion of the tree, but this bound is

not very useful as there is no dependence on the problem

complexity (e.g. the near-optimality dimension β).

The a posteriori bound obtained for OKP might seem to be

better than the one of OPD, as D ≥ d in the OKP trees. Still,

this relation does not imply that for the same control problem

OKP will reach deeper nodes in its search tree than OPD will.

Thus, it might happen that DOKP < dOPD, i.e. that OKP

will be able to ensure weaker performance than OPD will.

Nevertheless, DOKP ≥ dOPD is expected for some classes of

control problems where longer repeated actions are preferred.

Note that, like OPD, OKP returns an action sequence that

could be applied in open loop. However, due to uncertainty,

in practice it is better to only apply the first action of the

sequence and then repeat the algorithm in receding horizon.

IV. EXPERIMENTAL RESULTS

The performance of the algorithms is compared using the

problem of swinging up an inverted pendulum. The aim is

to bring up and stabilize an underactuated pendulum to the

pointing up state. Since, from certain states, the control power

is not sufficient to bring up the pendulum using a single

rotation, one or several swings may be required to bring the

pendulum to the desired state. This requires a long planning

horizon, ideal for the discussed algorithms. The bang-bang-

like solutions (swings, that require switching between the two

opposite maximum amplitude actions) should emphasize the

benefits of OKP over OPD.

motor

m

α

Fig. 4. Inverted Pendulum

The state vector consists of the angle of the pendulum and

the angular velocity: x = [x1 x2]
T with x1 = α ∈ [−π, π) rad,

x2 = α̇ ∈ [−15π, 15π] rad/s. The angles wrap around in

[−π, π) and the angular velocity bounds are ensured by

saturating it explicitly in the dynamics simulation. The action

space consists of three discrete actions, U = {−2, 0, 2}V

that represent the motor voltage. The unnormalized reward

function has a quadratic form: ρ(x, u) = −xT Qx − uT Ru,

with Q =

[

1 0
0 0

]

and R = 0.1. Using the known state bounds,

the reward function is normalized to the interval [0, 1]. The

discount factor is set to γ = 0.98.

Instead of directly using n, the computation budget telling

the number of expansions, in our experiments we will use

nsim, representing the number of nodes added to the search

tree (number of simulations of transition). In case of OPD

nsim = M ·n, whereas for OKP nsim = K ·M ·n. Note that

nsim dominates computation rather than n.

We should further remark that since duplicates are elimi-

nated from the OKP search tree, the algorithm may actually

add fever nodes to the tree than K ·M ·n. To this end, an “OKP

equal treesize” variant of the algorithm will be considered as

well, that will add further nodes to the tree until reaching the

same number of nodes nsim as OPD.

The first set of experiments consists of offline simulations,

that is, calculating a single control action for each starting

state from a given set, here taken
{

−π,− 5π
6 , ..., π

}

rad ×
{−15π,−14π, ..., 15π} rad/s. With these tests the results of

the algorithms can be directly compared by looking at the

average of the real regret3 obtained for these states.

After performing several tests, results indicate that OKP

performs best for K = 16 for the problem considered. Using

this value of the recurrence for OKP, Fig. 5 presents the

regret for a set of nsim between 600 and 7500. The main

observation is that OKP in both its variants (the basic variant

that will contain less nodes than K · M · n due to duplicate

elimination, and the “equal treesize” variant that considers

expanding further nodes until reaching the same number of

nodes as OPD) has better regrets than OPD. Besides this,

there exists no clear difference between the results of the two

variants. Note also that the performance of the algorithms may

be nonmonotonic with the depth (and hence the budget), seen

even with OPD.

0 1000 2000 3000 4000 5000 6000 7000 8000
0.02

0.04

0.06

0.08

0.1

0.12

computational budget n
sim

a
v
e

ra
g

e
 r

e
a

l
re

g
re

t
r n

OPD

OKP

OKP equal treesize

Fig. 5. Regret obtained with K = 16.

The next two figures show the average search tree depth.

In the current context, the tree depth represents the depth of

the deepest expanded node in case of OPD, while for OKP it

refers to the cumulative depth D of the expanded node with

the largest D. Note that this depth is used in the a posteriori

regret bound, presented in (13) for OPD and (15) for OKP.

0 1000 2000 3000 4000 5000 6000 7000 8000
2

4

6

8

10

12

14

16

computational budget n
sim

a
v
e

ra
g

e
 s

e
a

rc
h

 t
re

e
 d

e
p

th

OPD

OKP

OKP equal treesize

Fig. 6. Tree depth with K = 16.

Looking at Fig. 6, the increasing depths reflect the flow

of the algorithms: more expansions lead to deeper trees. As

OKP “equal treesize” expands more nodes than the other

variant, this difference can be observed as larger depths for

OKP “equal treesize”. An important remark is that, unlike our

3The real regret is calculated using the optimum v∗, available from another
algorithm at much higher computational costs

expectations, OPD manages to construct much deeper search

trees than OKP is able to, i.e. dOPD > DOKP , as it was

highlighted at the end of Section III. Our intuition was that

OKP will find faster the optimal sequence and thus expand it

deeper. However, this results invalidates the initial intuition, at

least in our problem: from (13) and (15), the relation between

the regret bounds is rOKP = γD

1−γ
> γd

1−γ
= rOPD for d > D

(i.e. OPD has a better bound). However, in reality, as Fig. 5

shows, OKP obtains better real results than OPD. Generalizing

this, for suitable control problems the practical performance

of OKP may be better.

0 5 10 15 20 25 30

4

5

6

7

8

9

10

number of repetitions K

a
v
e

ra
g

e
 s

e
a

rc
h

 t
re

e
 d

e
p

th

OPD

OKP

OKP equal treesize

Fig. 7. Tree depth for variable K, nsim = 1920.

Fig. 7 tells that increasing the maximum number of recur-

rence K of an action results in search trees with smaller depth,

i.e. weaker performance guarantees. Thus, one should find a

balance in the choice of K. Note that choosing K = 1 all the

algorithms reach the same depth, as expected.

Another set of experiments tests the algorithms online.

Given the starting state x0 = [−π 0]T (i.e. pendulum pointing

down, with zero angular velocity), a control action is calcu-

lated for it and applied to the pendulum, reaching a new state.

In the new state, the algorithm is repeated and so on. The

simulation lasts T = 4s with a sampling time of Ts = 0.025s

(i.e. 160 simulation steps and corresponding search trees),

a time interval sufficient to stabilize the pendulum starting

from any state. Online tests compare the returns (cumulative

rewards) obtained by the algorithms.

0 1000 2000 3000 4000 5000 6000 7000 8000
25

26

27

28

29

30

31

32

computational budget n
sim

re
tu

rn

OPD

OKP

OKP equal treesize

Fig. 8. Returns obtained for K = 16.

Looking at Fig. 8, a near-optimal return is obtained by OPD

for nsim = 1500, while the OKP variants reach the same

value already for nsim = 600. The low return obtained by

OPD for nsim = 600 indicates a suboptimal solution, with

one more swing than in case of the near-optimal solutions.

Hence, for certain control problems, OKP is able to obtain

the near-optimal solution with smaller budget due to the use of

repeated actions and the better performance is maintained for

larger values of nsim as well. This confirms that the problem

prefers longer action sequences of the same value, for which

OKP is able to find better solutions than OPD is able to.

V. CONCLUSIONS

This paper presented a newly developed control algorithm

called OKP that aims to improve the performance of OPD for a

subclass of control problems preferring long ranges of constant

control actions. With each refinement step of the search for

action sequences, OKP looks for repeated constant actions as

well. By doing so, if the parameter of recurrence K is properly

chosen, OKP can perform better than OPD.

While an asymptotic analysis was not forthcoming, an a

posteriori guarantee has been obtained, bounding the regret

based on the cumulative depth of the tree, expecting this depth

to be better than the one of OPD. However, experiments have

shown that this cumulative depth of the OKP search tree is

in most cases smaller than the depth of the OPD tree, and

therefore OKP ensures a weaker regret bound than OPD. So

in this sense, our paper presents a negative theoretical result.

Nevertheless, from a practical standpoint, OKP outperforms

OPD in our experiments and it is expected that this conclusion

can be drawn generally for a given class of problems. Future

work may focus on characterizing this class, exploiting other

variants of the algorithm and continuing the analysis.

REFERENCES

[1] R. Munos, “Optimistic optimization of a deterministic function without
the knowledge of its smoothness,” in Advances in Neural Information

Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. C. N. Pereira, and K. Q. Weinberger, Eds., 2011, pp. 783–791.

[2] Y.-Y. Cao, L. Hu, and P. Frank, “Model predictive control via piecewise
constant output feedback for multirate sampled-data systems,” in Deci-

sion and Control, 2000. Proceedings of the 39th IEEE Conference on,
vol. 1. IEEE, 2000, pp. 650–655.

[3] R. Vinter, Optimal control. Springer Science+ Business Media, 2010.
[4] S. Bubeck and R. Munos, “Open loop optimistic planning,” in Proceed-

ings 23rd Annual Conference on Learning Theory (COLT-10), Haifa,
Israel, 27–29 June 2010, pp. 477–489.

[5] L. Busoniu, R. Munos et al., “Optimistic planning for markov decision
processes,” in Proceedings of the 15th International Conference on

Artificial Intelligence and Statistics, AISTATS-12, vol. 22.
[6] L. Buşoniu, A. Daniels, R. Munos, and R. Babuška, “Optimistic planning

for continuous–action deterministic systems,” in 2013 IEEE Interna-

tional Symposium on Adaptive Dynamic Programming and Reinforce-

ment Learning (ADPRL-13), Singapore, 16–19 April 2013.
[7] A. Weinstein and M. L. Littman, “Bandit-based planning and learning

in continuous-action markov decision processes,” in Proceedings of the

22nd International Conference on Automated Planning and Scheduling

(ICAPS), 2012.
[8] M. Quincampoix and N. Seube, “Stabilization of uncertain control

systems through piecewise constant feedback,” Journal of mathematical

analysis and applications, vol. 218, no. 1, pp. 240–255, 1998.
[9] L. Magni and R. Scattolini, “Model predictive control of continuous-time

nonlinear systems with piecewise constant control,” Automatic Control,

IEEE Transactions on, vol. 49, no. 6, pp. 900–906, 2004.
[10] ——, “Tracking of non-square nonlinear continuous time systems with

piecewise constant model predictive control,” Journal of Process Con-

trol, vol. 17, no. 8, pp. 631–640, 2007.
[11] R. Findeisen and F. Allgöwer, “Computational delay in nonlinear model

predictive control,” in Proceedings International Symposium on the

Advadnced Control of Chemical Processes, 2004, pp. 427–432.
[12] X. Yang and L. T. Biegler, “Advanced-multi-step nonlinear model

predictive control,” Journal of Process Control, vol. 23, 2013.
[13] C. Liu, W.-H. Chen, and J. Andrews, “Piecewise constant model pre-

dictive control for autonomous helicopters,” Robotics and Autonomous

Systems, vol. 59, no. 7, pp. 571–579, 2011.

