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Abstract—Humans are very fast learners. Yet, we rarely learn
a task completely from scratch. Instead, we usually start with
a rough approximation of the desired behavior and take the
learning from there. In this paper, we use imitation to quickly
generate a rough solution to a robotic task from demonstrations,
supplied as a collection of state-space trajectories. Appropriate
control actions needed to steer the system along the trajectories
are then automatically learned in the form of a (nonlinear) state-
feedback control law. The learning scheme has two components: a
dynamic reference model and an adaptive inverse process model,
both based on a data-driven, non-parametric method called local
linear regression. The reference model infers the desired behavior
from the demonstration trajectories, while the inverse process
model provides the control actions to achieve this behavior and
is improved online using learning. Experimental results with a
pendulum swing-up problem and a robotic arm demonstrate
the practical usefulness of this approach. The resulting learned
dynamics are not limited to single trajectories, but capture
instead the overall dynamics of the motion, making the proposed
approach a promising step towards versatile learning machines
such as future household robots, or robots for autonomous
missions.

I. I NTRODUCTION

Most robots deployed to date are preprogrammed with con-
trollers designed on the basis of accurate models and detailed
task descriptions (e.g., industrial robots). This approach works
well in the case that a prede�ned set of tasks have to be
accomplished by the robot in a structured environment. Robots
designed to operate in unstructured environments or under
varying conditions typically rely on remote control by humans
(e.g., space exploration robots). Surprisingly little progress has
been achieved in the practical use of learning techniques. One
of the reasons may be the fact that most learning control
approaches attempt to learn entire control laws from scratch,
assuming fairly general settings, such as in reinforcement
learning [1]. Such algorithms typically require careful tuning
of several parameters and need a long time to converge.

In this paper we take a different approach. Our premise is
that a large class of robotic tasks can be demonstrated, either
by a human, e.g., household tasks for future domestic robots,
or by other `teacher' robots that are more skilled than the
learner — consider a group of robots reinforcing one another's
skills in a soccer game. Thus we aim for robots that learn by
imitating a teacher [2].

The importance of learning by imitation has been recog-
nized in biology for quite some time now. Researchers such as
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Ramachandran [3] actually argue that imitation learning may
have acted as the driving force behind the evolutionary leapof
humans. Such strong statements together with the large body
of work found in biology clearly motivate the use of imitation
learning for programming robots.

In this paper we employ a technique termedmodel-based
imitation (MBI), whose original idea stems from the work of
Schaal [4], [5], [2]. However, while that work used reinforce-
ment learning to �nd a policy that makes the system follow a
demonstrated trajectory, in our work MBI yields areference
model. Given that model, the process is then controlled by
an adaptiveinverse modellearned on-line from data. Local
linear regression (LLR) [6] is used as a function approximation
technique for both the reference and inverse models. Alter-
native ways to approximate the reference behavior include
e.g. hidden Markov models and Gaussian mixture models
[7], [8]; the behavior can also be represented using so-called
motor primitives [9]. To follow the learned behavior, these
works largely rely on classical control with ana priori model,
whereas in our work the control uses the adaptive inverse
model, learned at the same time as the reference model.

The learned dynamics obtained by coupling the reference
and inverse models are not limited to single trajectories, but
capture instead the overall dynamics of the motion. This makes
our method fundamentally different from traditional trajectory
tracking. For instance, if a robot following a prescribed
trajectory collides with an unexpected obstacle, the trajectory-
tracking control system, which has no notion of the obstacle,
will attempt to push the robot through. Our controller, in
contrast, will allow the robot to interrupt the motion and
subsequently follow an alternative path from the collisionstate.
This has been demonstrated in one of our experiments with
a robotic arm. Another feature of our method should also be
pointed out: once an inverse model has been learned while
performing some demonstrated behavior, this inverse modelis
reusable for new behaviors, which are changed by replacing
just the reference model.

In order to effectively use LLR in online learning for real
systems, some nontrivial modi�cations to the basic algorithm
are developed: a memory management mechanism that re-
moves samples unneeded for an accurate representation of the
function of interest, and a way to deal with noisy data.

After �rst introducing LLR in Section II, the online learning
modi�cations to it are presented in Section III. Then, Section
IV describes in more detail the control structure and overall
algorithm for imitation learning. In Section V we illustrate
imitation learning in two different real systems: an inverted
pendulum and a robotic arm. Finally, Section VI concludes
the paper.



II. L OCAL L INEAR REGRESSION

The goal of regression is to approximate an unknown
function from input-output samples. Typically, givenn input-
output pairs of the form(x i ; yi ), an approximation̂f must be
found that minimizes the loss:

1
n

nX

i =1

kyi � f̂ (x i )k2
2

where k � k2 denotes the Euclidean norm. In this paper we
focus on a speci�c kind of sample-based representation of
f̂ denotedlocal linear regression1. This method is memory-
based, also called “lazy” in the literature [10], [11] (in the
sense that all computation is postponed until the functionf̂
must be evaluated), case-based, instance-based or experience-
based.

LLR stores the input-output samples in a memoryM =
f (x i ; yi ) j i = 1 ; : : : ; ng. When an approximationf̂ must
be computed at some query pointxq, the k samples in the
memory closest to this point are found, in terms of some metric
k � k on the input space. Then, a hyper-plane is �tted through
the samples, and the predicted outputf̂ (xq) is the value taken
by this hyperplane atxq. Thus, the method approximates
nonlinear functions by piecewise af�ne functions.

Formally, the set of nearest-neighbor indicesNk (xq) is
de�ned by requiring it to satisfy the properties:

jN k (xq)j = k

kxq � x i k � k xq � x j k 8i 2 N k (xq); 8j 62 Nk (xq)

(and, of course, to contain no duplicate indices). Relabel for
convenience the memory samples so that the nearest neighbors
are actually1; : : : ; k, and de�ne also�x = [ xT ; 1]T , where the
extra 1 will account for an af�ne term in the approximation.
Then, two matricesX and Y are formed by putting together
the inputs and outputs of the nearest neighbors:

X =
�

�x1 � � � �xk
�

; Y =
�

y1 � � � yk
�

The local hyperplane is described by a vector� that satis�es
� T X = Y, which is typically an overdetermined system of
equations becausek is larger than the dimension ofx. This
system is solved, preferably with a numerically robust method
such as Gaussian elimination, and with the resulting value of
� we are ready to compute the function approximation for
xq: f̂ (xq; Nk (xq)) = � T �xq. The nearest neighbors have been
made explicit as an argument of̂f as this will help later in
the paper.

LLR is summarized below (Algorithm 1) as a procedure
that will be called as a component of the overall algorithm.

A crucial choice in the algorithm is the distance metric
for the input space. In our studies a weightedL 1 (Man-
hattan) norm offered a good compromise between accuracy
and computational cost:kxk =

P
d wd jxd j, whered indexes

the dimensions ofx and the weightswd are used to scale

1Note that the namelocal linear regressionis typically used loosely in the
literature to refer tolocal af�ne regression, which is the proper name for the
method utilized in this paper.

Algorithm 1 LLR
Input: memoryM , parameterk, query pointxq

1: �nd k nearest neighborsNk (xq)
2: constructX , Y , and solve linear system� T X = Y
3: compute output̂yq  � T �xq

Output: ŷq

the inputs, bringing them into similar ranges. Therefore, this
metric is used throughout our experiments.

The main drawback of LLR is the computational load of
�nding the k-nearest neighbors during the evaluation off̂ . This
can pose a real problem, since the number of samples required
to accurately represent a function can at worst grow exponen-
tially with the dimension of the input space. However, we have
found that given today's available computational power, this
method can be used ef�ciently in relatively high dimensional
spaces, such as the robot manipulator arm example presented
in Section V-B.

III. O NLINE LEARNING IN LLR

Online learning is necessary to adapt the inverse model
in MBI. In its most basic form, learning in LLR would be
performed by simply adding new samples to the database.
However, storing all observations throughout the system's
operational life would require an inde�nitely large memory.
Moreover, the model function being approximated can be time-
varying, making old observations obsolete. This motivates
removing judiciously chosen samples to keep the database
relevant and within a reasonable size. Furthermore, in real
systems observations are corrupted by noise, and its effects
must be controlled. In this section we introduce heuristicsto
deal with both of these issues.

A. Memory management

In LLR, only the nonlinear parts of the function need to be
densely populated with samples, while the method naturally
interpolates the linear parts with only a few samples (on the
order ofk). Thus we propose to adapt the database (memory)
in order to span the nonlinear parts with more samples,
providing a variable sample distribution and a variable size
of the local neighborhood. This approach is similar to the so-
called condensed nearest neighbor classi�cation [12], which
tries to �nd and retain only those samples that lie on the
decision boundaries between classi�cation categories [13].
This results in a piecewise constant approximation of the
function with values between the decision boundaries being
interpolated as constant. Here we adapt this idea to the context
of regression.

Speci�cally, after a maximum size of the memory is
reached, every new sample replaces an older sample that
best �tted the local linear models for past query points.
To implement this, we attach to every sample(x i ; yi ) an
additional scalar value� i representing relevance, de�ned as
the running average of the distance between the outputsyi

and the local modelŝf (x i ; Nk (xq)) . So the memoryM is



now composed of samples having the form(x i ; yi ; � i ). Every
time a samplei is used in estimating a model for the inputxq

(i.e. wheni 2 N k (xq)), its relevance value is incrementally
updated with the new difference from the local model:

� i  
� i + (1 � 
 )kyi � f̂ (x i ; Nk (xq))k2
2

where
 is a parameter in(0; 1]. Note that the running average
� i is only updated at those instants when the sample is used
in regression. When� i has a low value, it means that the
function is (almost) linear in the sample's neighborhood, so the
samples are dense enough in that neighborhood. Conversely,
when � i has a large value the neighborhood is nonlinear.
Thus, replacing samples with the lowest relevance� i removes
samples at linear parts and preserves samples in nonlinear
parts, �nally resulting in an approximation of the functionwith
a variable sample distribution but a uniform approximation
error.

The process of replacing samples on the basis of relevance
is referred to asmemory managementin the sequel. Memory
management allows us to continually insert new information
and discard redundant information.

B. Noisy observations

Noise is intrinsic to any real system, and a strategy to
deal with it should be devised. A distinction between noisy
observations and informational observations should be made,
however this is a very dif�cult or even impossible task in
general [14]. Here, we adopt a pragmatic solution based on
the observation that the local least squares solution is the
best average of the �rst order relation present in the nearest
neighbors. Thus, by adjusting the outputs of these neighbors
to �t the model one can effectively reduce noise. Formally, for
every query pointxq, we set:

yi  f̂ (x i ; Nk (xq)) ; 8i 2 N k (xq)

Note the neighbors ofxq are used and not those ofx i .

C. Learning LLR algorithm and illustration

Algorithm 2 programmatically describes the online learning
component of LLR, with memory management and sample
adjustment.

Algorithm 2 LLR Learn
Input: M , k; 
 , nmax , new sample(xq; yq)

1: �nd Nk (xq), constructX , Y , and solve� T X = Y
2: initialize sample relevance:�  k yq � f̂ (xq; Nk (xq))k2

2
3: add new sample:M  M [ (xq; yq; � )
4: for all i 2 N k (xq) do
5: update relevance:

� i  
� i + (1 � 
 )kyi � f̂ (x i ; Nk (xq))k2
2

6: adjust output to local model:yi  f̂ (x i ; Nk (xq))
7: end for
8: if jMj > n max , remove least relevant sample:

M  M n f (x j ; yj ; � j )g; j = arg min i (� i )
Output: M
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a) Deterministic: basic LLR

b) Deterministic: memory management

c) Noisy: memory management

d) Noisy: memory management & sample adjustment

Fig. 1. Illustration of local linear regression for deterministic and noisy
samples. Dashed lines represent the real functionf , solid lines represent the
approximated function̂f by LLR, and circles represent the samples.

Figure 1 illustrates the effect of memory management and,
separately, sample adjustment. Speci�cally, Figure 1(a) and
(b) shows results with deterministic observations, respectively
with and without memory management (sample adjustment
is not used). Memory management has a positive effect on
the overall approximation of the nonlinear function, as the
LLR �ts the true function nearly perfectly after observing
and deleting 1000 samples. Figure 1(c) and (d) shows results
with noisy observations, with and without sample adjustment
(memory management is used). Sample adjustment improves
prediction accuracy, but since one keeps integrating noisy
samples in a memory of a limited size, a perfect approximation
can never be reached.

IV. I MITATION LEARNING

Imitation learning controls the system with an adaptive,
nonlinear state feedback obtained as the composition of two
elements: the reference model and the inverse model, as



shown in Figure 2 (in this �gure,t denotes the discrete
time step). The reference model infers the desired behavior
from demonstrations, while the inverse model is used as a
controller to follow the reference trajectories. Denotingthe
reference model byR : S ! S whereS is the state space,
it produces for any states a desired next statês0 = R(s).
For robotic systems, the state typically contains positions and
velocities. The inverse model, denoted byP̂ � 1 : S � S ! U,
maps a desired transition(s; ŝ0) into a control input that will
(approximately) realize this transition,û = P̂ � 1(s; ŝ0).

R(s)
ŝt +1

P̂ � 1(s; ŝ)
ut

P(s; u)

st

z
� 1

Fig. 2. Model-based imitation scheme.

The reference modelR is approximated by applying LLR on
demonstrated state trajectories, collected together in a database
of input-output samples of the form(x = st ; y = st +1 ).
The inverse process model̂P � 1 is learned with the online
variant of LLR, from observations of the process state and
control action, stored as input-output samples of the form
(x = [ sT

t ; sT
t +1 ]T ; y = ut ). The entire procedure is summa-

rized as Algorithm 3, where subscriptsR and P are used to
differentiate entities associated with the reference and process
model, respectively.

Algorithm 3 Imitation learning
Input: M R ; kR ; kP ; 
 P

1: M P  ; (or existing model, if available)
2: for each stept = 0 ; 1; 2; : : : do
3: measure statest

4: ŝt +1 = LLR(M R ; kR ; st )
5: ût = LLR(M P ; kP ; [sT

t ; ŝT
t +1 ]T )

6: apply ût to system
7: if t � 1, learn from previous transition
8: M P  LLR Learn(M P ; kP ; 
 P ; [sT

t � 1; sT
t ]T ; ût � 1)

9: end for

Note the learning step 8 at timet is performed before
measuring the next statest +1 , so it has to work with the
previous transition. This is because waiting to measurest +1

and then performing learning would introduce too large delays
in the real-time control (i.e. before applying the corresponding
action ût +1 ).

V. EXAMPLES

A. Pendulum Swing-up

As a �rst experiment, we used the inverted pendulum swing-
up problem to study the performance of imitation learning. The
inverted pendulum is realized by placing an off-center weight
on a vertical disk driven by a DC motor, as shown in Figure
3. The goal is to bring the weight from any initial state to the
upper unstable equilibrium and stabilize it there. However, the
control voltage is constrained such that it is insuf�cient to push
the pendulum up in a single rotation from every initial state.
The pendulum needs to be swung back and forth (destabilized)
to gather energy, prior to being pushed up and stabilized.

The statess are the angle� 2 [� �; � ) rad, with � = 0
pointing up, and the angular velocity_� . The control inputu
is a voltage is constrained to[� 3; 3]V. The goal is to stabilize
the pendulum in the unstable equilibriumx = 0 (pointing up).
The controller is implemented in Matlab, using the sampling
periodTs = 0 :03s. Note that a model of this system is:

•� =
1
J

�
mgl sin(� ) � b_� �

K 2

R
_� +

K
R

u
�

with J = 1 :91 � 10� 4 kgm2, m = 0 :055kg, g = 9 :81m/s2,
l = 0 :042m, b = 3 �10� 6 kg/s,K = 0 :0536Nm/A, R = 9 :5 
 ,
but the learning controller does not use this information. The
only prior knowledge about the system entering the control
algorithm is the structure of the state and control variables.

In our experiments, we �rst demonstrated how the controller
should swing the pendulum up and then applied imitation
learning to train the inverse-model controller. Ten swing-ups
(5 clockwise and 5 counterclockwise) were demonstrated by
turning the disk by hand, as illustrated in Figure 3. No control
input was generated, so the only information recorded are the
state variables. The corresponding phase-plane trajectories are
shown in Figure 4.

1 2 3

4 5 6

Fig. 3. Demonstration of pendulum swing up by hand.

By applying LLR to the demonstrated trajectories, we
obtain the reference model which in every state calculates the
desired next state. Each sample in the reference modelR is
de�ned by([� t ; _� t ]T ; [� t +1 ; _� t +1 ]T ). The numberk of nearest
neighbors was 10 and the size of the entire memory was
660 samples. The inverse process modelP̂ � 1 stores samples
([� t ; _� t ; � t +1 ; _� t +1 ]T ; ut ). For this approximator, the number
of neighbors wask = 15, the memory size was 1000 samples,
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Fig. 4. Demonstrated reference modelR for the inverted pendulum.

and the parameter
 = 0 :9 was used in memory management.
The resulting control policy is successful in imitating the
demonstrated behavior and thus swinging up the pendulum,
as illustrated in Figure 5. Figure 6 shows that the process
state follows the desired state and that the actuation is quite
smooth.2

1 2 3

4 5 6

Fig. 5. Imitation of the demonstrated behavior.

B. Robotic Manipulator

In this example we use a more complicated system
– a robotic manipulator Ed-Ro, which is a lightweight,
low-cost robot developed mainly for educational purposes.
It has �ve revolute joints and a two-�ngered gripper, all
actuated by DC motors. The manipulator is controlled from
Matlab via an RS232 or USB serial port interface. In this
experiment we learn the control of three joints: the base
(� ), the shoulder (� ) and the elbow (� ), see Figure 7.
Therefore, the reference modelR has samples of the form
([� t ; _� t ; � t ; _� t ; � t ; _� t ]T ; [� t +1 ; _� t +1 ; � t +1 ; _� t +1 ; � t +1 ; _� t +1 ]T )
and the inverse model̂P � 1 of the form([� t ; _� t ; � t ; _� t ; � t ; _� t ;
� t +1 ; _� t +1 ; � t +1 ; _� t +1 ; � t +1 ; _� t +1 ]T ; [u�;t ; u�;t ; u�;t ]T ).

As an example of the desired behavior we considered a path
to be followed by the end-effector in a 3D space. The behavior

2Videos for these experiments are available at busoniu.net/projects.php, see
project “Using prior knowledge to accelerate reinforcementlearning”.
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Fig. 7. EdRo — educational robotic manipulator. Three jointswere used in
the imitation, the base joint� , the shoulder joint� , and the elbow joint� .

was demonstrated by manually moving the end-effector along
the path (approximately three times during about 10 seconds).
Several snapshots of the demonstration are shown in Figure 8.

The state trajectories were recorded with a sample period of
Ts = 0 :05, yielding about 200 samples, the memory size of the
reference model. During imitation,k = 15 nearest neighbors
are used for the reference model andk = 40 for the inverse
plant model, which has a memory size of 1000 samples. The
value of parameter
 is 0:95. Figure 9 illustrates snapshots of
the behavior controlled by imitation, while Figure 10 shows
sample trajectories for demonstration (a) and imitation after
learning the inverse model (b). The two sets of trajectoriesare
qualitatively equivalent.

busoniu.net/projects.php


1 2 3

4 5 6

Fig. 8. The desired behavior is demonstrated by moving the robotic
manipulator by hand.

1 2 3

4 5 6

Fig. 9. Imitation of the demonstrated behavior.

Since the MBI scheme presented in this paper imitates the
reference dynamics of the demonstration and not the exact
trajectories, we found that when presenting a circular motion
to the end effector, the robot would move in an arbitrary size
circular pattern. However, by preventing the LLR algorithmto
extrapolate from its data set, the motion of the robot always
stays within the domain of the demonstrations, and remains
safe.3

VI. CONCLUSIONS

In this paper we have proposed and demonstrated a simple,
but very effective method for robot learning by imitation.
By taking advantage of nonparametric function approximation
methods such as local linear regression, we showed that
it is possible to both imitate a demonstrated motion and
approximate the plant model simultaneously in real-time.

We are now investigating the idea of employing model-
based imitation in reinforcement learning in order to speed
up the convergence of the learning controller.
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