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Abstract—Humans are very fast learners. Yet, we rarely learn Ramachandran [3] actually argue that imitation learningy ma
a task completely from scratch. Instead, we usually start with have acted as the driving force behind the evolutionary &fap
a rough approximation of the desired behavior and take the 1, mang Sych strong statements together with the large body

learning from there. In this paper, we use imitation to quickly - . At
generate a rough solution to a robotic task from demonstrations, of work found in biology clearly motivate the use of imitatio

supplied as a collection of state-space trajectories. Appropriate learning for programming robots.
control actions needed to steer the system along the trajecties In this paper we employ a technique termeddel-based

are then automatically learned in the form of a (nonlinear) state- . .. _.. L .
feedback control law. The learning scheme has two components: almlta'uon (MBI), whose original idea stems from the work of

dynamic reference model and an adaptive inverse process model, Schaal [4], [5], [2]. However, while that work used reinferc
both based on a data-driven, non-parametric method called local ment learning to nd a policy that makes the system follow a
linear regression. The reference model infers the desired behavio demonstrated trajectory, in our work MBI yieldsreference
from the demonstration trajectories, while the inverse process mgde| Given that model, the process is then controlled by

model provides the control actions to achieve this behavior and . .
is improved online using learning. Experimental results with a an adaptiveinverse modelearned on-line from data. Local

pendulum swing-up problem and a robotic arm demonstrate Iinear'regression (LLR) [6] is used asafgnction approxiorat
the practical usefulness of this approach. The resulting learned technique for both the reference and inverse models. Alter-
dynamics are not limited to single trajectories, but capture native ways to approximate the reference behavior include
instead the overall dynamics of the motion, making the proposed e . hidden Markov models and Gaussian mixture models
approach a promising step towards versatile learning machines | 1. ; ;
such as future household robots, or robots for autonomous [7]. [8]; the.k.)ehawor can also be represented usm.g sedall
MISSIONS. motor primitives [[9]. To follow the learned behavior, these
works largely rely on classical control with @anpriori model,

I. INTRODUCTION whereas in our work the control uses the adaptive inverse

Most robots deployed to date are preprogrammed with COr|1']1_odel, learned at the same time as the reference model.
trollers designed on the basis of accurate models and eitail The learned dynamics obtained by coupling the reference
task descriptions (e.g., industrial robots). This appnoaorks and inverse models are not limited to single trajectories, b
well in the case that a prede ned set of tasks have to §@pture instead the overall dynamics of the motion. Thisesak
accomplished by the robot in a structured environment. Rob®Ur method fundamentally different from traditional tretjery
designed to operate in unstructured environments or und@cking. For instance, if a robot following a prescribed
varying conditions typically rely on remote control by humsa trajectory collides with an unexpected obstacle, the ¢tajy-
(e.g., space exploration robots). Surprisingly littlegness has tracking control system, which has no notion of the obstacle
been achieved in the practical use of learning techniques. OVill attempt to push the robot through. Our controller, in
of the reasons may be the fact that most |earning Cont&ﬂntrast, will allow the robot to interrupt the motion and
approaches attempt to learn entire control laws from seratéubsequently follow an alternative path from the collisstete.
assuming fairly general settings, such as in reinforcemeHis has been demonstrated in one of our experiments with
learning [1]. Such algorithms typically require carefuhing & robotic arm. Another feature of our method should also be
of several parameters and need a long time to converge. pointed out: once an inverse model has been learned while

In this paper we take a different approach. Our premise performing some demonstrated behavior, this inverse medel
that a large class of robotic tasks can be demonstratecr eitffusable for new behaviors, which are changed by replacing
by a human, e.g., household tasks for future domestic robdist the reference model.
or by other “teacher' robots that are more skilled than theIn order to effectively use LLR in online learning for real
learner — consider a group of robots reinforcing one antthesystems, some nontrivial modi cations to the basic alduwrit
skills in a soccer game. Thus we aim for robots that learn laye developed: a memory management mechanism that re-
imitating a teacher [2]. moves samples unneeded for an accurate representatioa of th

The importance of learning by imitation has been recodudnction of interest, and a way to deal with noisy data.

nized in biology for quite some time now. Researchers such asafter st introducing LLR in Section 11, the online learnin

o , modi cations to it are presented in Section Ill. Then, Sewti
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Il. LOCAL LINEAR REGRESSION Algorithm 1 LLR

The goal of regression is to approximate an unknowfPUt memoryM , parametek, query pointxq
function from input-output samples. Typically, giveninput- = Nd Kk nearest neighbory (xq) .
output pairs of the forngx;;yi), an approximatiorf* must be 2 constructX, Y, and soTIve linear system’ X =Y
found that minimizes the loss: 3: compute outpugq Xq

10 Output: g

ki f(xi)k3

i=1

wherek k, denotes the Euclidean norm. In this paper wi€ inputs, bringing them into similar ranges. Therefohss t
focus on a specic kind of sample-based representation Bfetric is used throughout our experiments.
f* denotedlocal linear regressioh This method is memory- The main drawback of LLR is the computational load of
based, also called “lazy” in the literature [10], [11] (ineth nding the k-nearest neighbors during the evaluatiorf oThis
sense that all computation is postponed until the funcfion¢an pose a real problem, since the number of samples required
must be evaluated), case-based, instance-based or e»qmrieto accurately represent a function can at worst grow exponen

based. tially with the dimension of the input space. However, weéhav
LLR stores the input-output samples in a memady = found that given today’s available computational poweis th
f(xi;yi)ji = 1:::::ng. When an approximatiori® must Method can be used efciently in relatively high dimensibna

be computed at some query poixg, the k samples in the SPACes, such as the robot manipulator arm example presented
memory closest to this point are found, in terms of some metil Section V-B.

k k on the input space. Then, a hyper-plane is tted through
the samples, and the predicted outf)\(lxq) is the value taken

by this hyperplane akq. Thus, the method approximates Online Igarning is necessary to adapt. the inverse model
nonlinear functions by piecewise af ne functions. in MBI. In its most basic form, learning in LLR would be

Formally, the set of nearest-neighbor indickig(xq) is performed by simply adding new samples to the database.
de ned by requiring it to satisfy the properties: However, storing all observations throughout the system's

_ _ operational life would require an inde nitely large memory
INk(xg)i = k Moreover, the model function being approximated can be-time
kxq xik k Xqg Xjk8i 2Ny(Xq);8j 62 N(Xq) varying, making old observations obsolete. This motivates

(and, of course, to contain no duplicate indices). Relabel fremoving Judiciously chosen samples to keep the database
’ ’ ' relevant and within a reasonable size. Furthermore, in real

convenience the memory samples so that the nearest neﬁgh%?/rstems observations are corrupted by noise, and its effect

must be controlled. In this section we introduce heuristics
deal with both of these issues.

IIl. ONLINE LEARNING IN LLR

extral will account for an af ne term in the approximation.
Then, two matriceX andY are formed by putting together
the inputs and outputs of the nearest neighbors: A. Memory management

X = x; Xk . Y= v Vi In LLR, only the nonlinear parts of the function need to be
) ) ) densely populated with samples, while the method naturally
The local hyperplane is described by a vectothat satis es interpolates the linear parts with only a few samples (on the
"X =Y, which is typically an overdetermined system Ofrder ofk). Thus we propose to adapt the database (memory)
equations because is larger than the dimension of. This i order to span the nonlinear parts with more samples,
system is solved, preferably with a numerically robust raéth providing a variable sample distribution and a variablee siz
such as Gaussian elimination, and with the resulting vafue g the local neighborhood. This approach is similar to the so
we are ready to compute the function approximation ffajled condensed nearest neighbor classi cation [12],civhi
Xq: T(Xq;Nk(Xq)) = Txq. The nearest neighbors have beefties to nd and retain only those samples that lie on the
made explicit as an argument 8 as this will help later in gecision boundaries between classi cation categories. [13
the paper. This results in a piecewise constant approximation of the
LLR is summarized below (Algorithm 1) as a procedur@nction with values between the decision boundaries being

that will be called as a component of the overall algorithm.interpolated as constant. Here we adapt this idea to thexont
A crucial choice in the algorithm is the distance metrigf regression.

for the input space. In our studies a weighted (Man-  gpecically, after a maximum size of the memory is
hattan) norm offered a good gompromise between accura@éched, every new sample replaces an older sample that
and computational coskxk = wqjXqj, whered indexes pest tted the local linear models for past query points.

the dimensions ok and the weightsvg are used to scale To implement this, we attach to every samygbe;y) an
1 ) . . . additional scalar value; representing relevance, de ned as
Note that the nam#cal linear regressioris typically used loosely in the

literature to refer tdocal af ne regressionwhich is the proper name for the the running average of the distance between the OUU_QUIS
method utilized in this paper. and the local modelf\(xi;Nk(xq)). So the memoryM is



now composed of samples having the fofxq;y;; i). Every a) Deterministic: basic LLR
time a sample is used in estimating a model for the input nl ‘ ‘ ‘ ‘
(i.e. wheni 2 N(xq)), its relevance value is incrementally
updated with the new difference from the local model:

: P+ Ykyi (i N (Xq)) K3

where is a parameter i(0; 1]. Note that the running average

i is only updated at those instants when the sample is used
in regression. When; has a low value, it means that the b) Deterministic: memory management
function is (almost) linear in the sample's neighborhoamithse il ‘ ‘ ‘ j ‘ ‘
samples are dense enough in that neighborhood. Conversely, osl
when ; has a large value the neighborhood is nonlinear.
Thus, replacing samples with the lowest relevanceemoves
samples at linear parts and preserves samples in nonlinear™
parts, nally resulting in an approximation of the functiarith T ‘ ‘ ‘ ‘ ‘ ‘ ‘

a variable sample distribution but a uniform approximation ™ - - ! ° ! 2 ox !
error.

The process of replacing samples on the basis of relevance
is referred to asnemory managemeint the sequel. Memory
management allows us to continually insert new information  °*f
and discard redundant information. Y O e

5h

¢) Noisy: memory management

1k
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B. Noisy observations

Noise is intrinsic to any real system, and a strategy to -
deal with it should be devised. A distinction between noisy
observations and informational observations should beemad  d) Noisy: memory management & sample adjustment
however this is a very difcult or even impossible task in | ‘ ‘ ‘ #a ‘ ‘ ]
general [14]. Here, we adopt a pragmatic solution based on s
the observation that the local least squares solution is the |, [ . .o .
best average of the rst order relation present in the neares
neighbors. Thus, by adjusting the outputs of these neighbor
to tthe model one can effectively reduce noise. Formalby, f
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every query poinkq, we set: X
Vi f/\(Xi iNk(Xq));  8i 2 Nk(xq) Fig. 1. lllustration of local linear regression for deteristic and noisy
samples. Dashed lines represent the real fundtiosolid lines represent the
Note the neighbors af, are used and not those ®f. approximated functio by LLR, and circles represent the samples.

C. Learning LLR algorithm and illustration

Algorithm|2 programmatically describes the online leagnin  Figurel 1 illustrates the effect of memory management and,
component of LLR, with memory management and samp$eparately, sample adjustment. Speci cally, Figure 1@ a

adjustment. (b) shows results with deterministic observations, retpelg
with and without memory management (sample adjustment
Algorithm 2 LLR_Learn is not used). Memory management has a positive effect on
Input: M, K; , Nmax, New samplegXq; Yq) the overall approximat?on of the nonlinear function, as the
1: nd Ni(xq), constructX , Y, and solve TX = Y LLR ts the true function negrly perfectly after observing
2: initialize sample relevance: k yq f\(Xq; Nk (Xq))K3 and deI.etlng 1000 §ample§. Figure ;(c) and (d) shovys results
3: add new sampleM M[  (XqiYq: ) with noisy observations, with and without sample adjustmen
a: for all i 2 Ny (xq) do (memory management is used). Sample adjustment improves
5. update relevance: prediction accuracy, but since one keeps integrating noisy
i P+ (L )ky P N (Xq)) k3 samples in a memory of a limited size, a perfect approximatio
6:  adjust output to local modey;  \(x;; Nk(Xq)) can never be reached.
7: end for IV. I MITATION LEARNING
8: if j]Mj > n max, remove least relevant sample:

Imitation learning controls the system with an adaptive,
nonlinear state feedback obtained as the composition of two
elements: the reference model and the inverse model, as

M Mnf (X;;y;; j)g) =argmin;( )
Output: M




shown in Figure 2 (in this guret denotes the discrete V. EXAMPLES
time step). The reference model infers the desired behavior pengulum Swing-up

from demonstrations, while the inverse model is used as a . . .
. : . As a rst experiment, we used the inverted pendulum swing-
controller to follow the reference trajectories. Denotitige

reference model bR : S| S whereS is the state space, up problem to study the performance of imitation learninge T

it produces for any state a desired next statg” = R(s). inverted pendu'lum iS. realized by placing an off-centgr ““."5“9
For robotic systems, the state typically contains positiand on a vert|cal_ disk d_nven by a DC motor, as s_hown In Figure
velocities. The inverse model, denoted By :S S! U, 3. The goal is to b”.ng f[he weight fr(_)r_n any initial state to the
maps a desired transitigis; & into a control input that will upper unstable equilibrium and stabilize it there. Howgetlez

. . . e 1. control voltage is constrained such that it is insuf cienfaush
(approximately) realize this transition,= P *(s; 8. the pendulum up in a single rotation from every initial state

The pendulum needs to be swung back and forth (destabilized)
to gather energy, prior to being pushed up and stabilized.

The statess are the angle 2 [ ; )rad, with =0
pointing up, and the angular velocity. The control inputu
8is1 U is a voltage is constrained fo 3; 3]V. The goal is to stabilize
R(s) » P 1(s;8) — > P(s;u) the pendulum in the unstable equilibriun= 0 (pointing up).
> The controller is implemented in Matlab, using the sampling

period Ts = 0:03s. Note that a model of this system is:

St 1 . K? K
1 ¢ = - 4+ —
3 mglsin( ) b_ R - Ru
with J = 1:91 10 “kgn?, m = 0:055kg, g = 9:81m/<,
_ o | =0:042m,b=3 10 ®kg/s,K =0:0536Nm/A,R=9:5 ,
Fig. 2. Model-based imitation scheme. but the learning controller does not use this informatiohe T
only prior knowledge about the system entering the control

The reference mod@& is approximated by applying LLR on algorithm is the structure of the state and control varisble
demonstrated state trajectories, collected together atabdse N our experiments, we rst demonstrated how the controller
of input-output samples of the forfx = S;;y = Sis1). should swing the pendulum up and then applied imitation
The inverse process mod® ! is learned with the online learning to train the inverse-model controller. Ten swings
variant of LLR, from observations of the process state arfé clockwise and 5 counterclockwise) were demonstrated by
control action, stored as input-output samples of the forfdrning the disk by hand, as illustrated in Figure 3. No caintr
(x = [s];s,1]7;y = u). The entire procedure is summaJnput was generated, so the only information recorded ae th
rized as Algorithm 3, where subscrips andP are used to State variables. The corresponding phase-plane trajestare
differentiate entities associated with the reference andgss Shown in Figure 4.
model, respectively.

Algorithm 3 Imitation learning
Input: M r;Kr;Kkp; p
1: Mp ; (or existing model, if available)
2. for each steg =0;1;2;::: do
3 measure state;
4 St+1 = LLR(M r;Kr;St)
5. 0= LLR(M p;kp;[s{;8L1]")
6: apply 0; to system
7
8
9:

if t 1, learn from previous transition
M p LLR_Lear{M p;kp; p; [stT 1 stT]T ;0 1) Fig. 3. Demonstration of pendulum swing up by hand.
end for

By applying LLR to the demonstrated trajectories, we
obtain the reference model which in every state calculdtes t

Note the learning step 8 at time is performed before desired next state. Each sample in the reference midsl
measuring the next statg.;, so it has to work with the denedby([ ; :]1";[ t+1; s+1]"). The numbek of nearest
previous transition. This is because waiting to measyre neighbors was 10 and the size of the entire memory was
and then performing learning would introduce too large giela660 samples. The inverse process mddel stores samples
in the real-time control (i.e. before applying the corresgiog ([ ¢; _t; t+1,; s+11";Ut). For this approximator, the number
action 0.1 ). of neighbors wag = 15, the memory size was 1000 samples,
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Fig. 4. Demonstrated reference modelfor the inverted pendulum. c) state evolution
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and the parameter = 0:9 was used in memory management. o
The resulting control policy is successful in imitating the 2
demonstrated behavior and thus swinging up the pendulum,°
as illustrated in Figure 5. Figure 6 shows that the process

state follows the desired state and that the actuation i qUii9; & Evolution of the desired stagg resuiting actuatio and the state
smootH? evolutions by model-based imitation.

* time (s)”

shoulder

Fig. 5. Imitation of the demonstrated behavior.

. ioul Fig. 7. EdRo — educational robotic manipulator. Three joimese used in
B. Robotic Manipulator the imitation, the base joint, the shoulder joint , and the elbow joint .

In this example we use a more complicated system
— a robotic manipulator Ed-Ro, which is a lightweight,

low-cost robot developed mainly for educational purposeg,s demonstrated by manually moving the end-effector along
It has ve revolute joints and a two-ngered gripper, ally,q path (approximately three times during about 10 sedonds

actuated by DC motors. The manipulator is controlled fT0lgg, a4 snapshots of the demonstration are shown in Figure 8
Matlab via an RS232 or USB serial port interface. In this

experiment we learn the control of three joints: the base_l_h . : ded with | iod of
(), the shoulder ( and the elbow (), see Figure 7. e state trajectories were recorded with a sample period o

Therefore, the reference modBl has samples of the form Ts = 0:05, yielding abqut 200 se}mples, the memory s_ize of the
reference model. During imitatiork, = 15 nearest neighbors
are used for the reference model and 40 for the inverse
plant model, which has a memory size of 1000 samples. The

mue of parameter is 0:95. Figure] 9 illustrates snapshots of

behavior controlled by imitation, while Figure 10 shows

sample trajectories for demonstration (a) and imitatioleraf

2videos for these experiments are available at busoniunoggtds.php, see learning the inverse model (b). The two sets of trajectcaies
project “Using prior knowledge to accelerate reinforcemeatning”. qualitatively equivalent.

(s 6 6=lT5 o1 o1 o1 w415 te1s =+1]")
and the inverse modé! ! of the form([ «; 5 5+ 5 -
1 415 141 41 1 s+ ] [U U U 7).
As an example of the desired behavior we considered a p
to be followed by the end-effector in a 3D space. The behavi


busoniu.net/projects.php

a) Demonstrated trajectories

angle

Fig. 8. The desired behavior is demonstrated by moving the timbo

) time (s)
manipulator by hand.

angle

Fig. 9. Imitation of the demonstrated behavior.

Since the MBI scheme presented in this paper imitates thg. 10. Sample state trajectories for the EdRo robotic maaipuduring
reference dynamics of the demonstration and not the exdemonstration and imitation.
trajectories, we found that when presenting a circular omoti
to the end effector, the robot would move in an arbitrary size
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