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    Abstract — In the last decade, Power-Assisted 

Wheelchairs (PAWs) have been widely used for improving 

the mobility of disabled persons. The main advantage of 

PAWs is that users can keep a suitable physical activity. 

Moreover, the metabolic-electrical energy hybridization 

of PAWs provides more flexibility for optimal control 

design. In this context, we propose an optimal control for 

minimizing the electrical energy consumption under 

human fatigue constraints, including a human fatigue 

model. The electrical motor has to cooperate with the user 

over a given distance-to-go. As the human fatigue model 

is unknown in practice, we use model-free Policy Gradient 

methods to directly learn controllers for a given driving 

task. We verify that the model-free solution is near-

optimal by computing the model-based controller, which 

is generated by Approximate Dynamic Programming. 

Simulation results confirm that the model-free Policy 

Gradient method provides near-optimal solutions. 

I. INTRODUCTION 

Improving the mobility of disabled and elderly persons is 

becoming an important challenge in ageing societies [1]. 

Power-assisted wheelchairs (PAW) are a promising solution 

to address these mobility issues. Compared to traditional 

wheelchairs, PAWs such as the motorization kits Duo and 

Nomad designed by AutoNomad Mobility [9] provide a good 

compromise between rest and physical exercise for users [6]. 

Consequently, it prevents disabled people from suffering the 

issues caused by a long-term use of manual wheelchair, such 

as rotator cuff tendonitis, lateral epicondylitis and calcific 

tendonitis [8]. Meanwhile, PAWs can also enable users to 

maintain a desired physical activity level, which cannot be 

provided by a fully electric powered wheelchair. 

The first major novelty in this paper is a control strategy for 

PAWs that optimizes electrical energy while also taking into 

account human fatigue. In particular, we consider a scenario 

where the PAW must drive for a desired distance, allowing a 

desired fatigue variation on the whole trajectory, and 

minimizing electrical energy consumption. Due to the initial-

to-final fatigue constraint, the obtained policy is expected to 

provide a good compromise between transforming metabolic 

energy into force and rest to users. The aim is a suitable 

cooperation of the electrical motor with the users, supplying 

an appropriate assistance. 

Our assistive control design is formulated mathematically 

as optimal control. The state of fatigue (𝑆𝑜𝑓) of the human is 

described by the single-state model [7], and the maximum 

available human force is limited by the fatigue. The human 

applies forces alongside the electrical motor, acting as a 

separate, nonlinear velocity controller that varies with the 

assistance. Specifically, a proportional control law is assumed, 

in which the desired velocity depends on the user’s motivation, 

which is in turn affected by the assistance and state of fatigue. 

The objective function includes an electrical energy cost at 

each step, and terminal costs that penalize deviations from the 

desired distance and state of fatigue. 

The second major contribution of the paper is the 

application of an online, model-free reinforcement learning 

method to solve the optimal control problem. The solution is 

learned by treating the entire system dynamics (wheelchair, 

human fatigue, and human controller) as a black box, and the 

algorithm only needs state measurements and costs. This 

model-free nature is crucial in practice, since the human 

dynamics is unavailable. The optimal control method of 

choice that we evaluate is Policy Gradient (PG), so far mostly 

used in robotics, e.g. [17]-[19]. To verify the quality of the PG 

solution, we compare it to a baseline model-based solution, 

computed with a finite-horizon extension of the interpolation-

based dynamic programming technique in [21]. The PG 

method reaches close to the near-optimal solution found by 

the model-based technique. 

To our best knowledge, no works in the PAW literature 

address energy optimization with human fatigue 

considerations for PAW design. Most existing works only 

deal with energy consumption without considering human 

fatigue, for example using fuzzy rule-based approaches [20]; 

where, of course, no guarantee of optimality can be given. The 

similar works [3]-[5] on hybrid bicycle design investigate 

model-based optimal energy management considering 

physiological human factors. Because of the similar energy 

storage structure between PAWs and hybrid bicycles, our 

results might also be applicable to assisted bicycles. 

The paper is organized as follows. Section 2 introduces the 

modeling of human-wheelchair system and the problem 

statement. Section 3 introduces two existing optimal control 

approaches in the literature. In Section 4, we apply the model-

free presented in Section 3 for PAW design and extend the 

ADP approach to drive a finite-horizon baseline solution. 

Simulation results are presented Section 5 for validating the 

proposed approach. Section 6 gives conclusion and discusses 

future work. 
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II. MODELING OF THE HUMAN-WHEELCHAIR SYSTEM 

AND PROBLEM STATEMENT 

A. Human Fatigue Model 

    Due to the complexity of human metabolism, many 

physical or physiological variables are needed to estimate 

precisely the human fatigue. For the sake of control design, 

single-state models based on heart rate [10], [11] or oxygen 

uptake [13], [14] have been used to quantify the human 

physical task. However, these approaches require sensors 

which are difficult to implement for practical systems.  

    In this study, to overcome the above limitations, we apply 

the human fatigue model from [7] that describes human 

muscle fatigue as a single-state first order dynamic process, 

which involves simultaneously the fatigue and the recovery 

effects. These muscular phenomena have been explained in 

clinical investigation [12]. Only the human torque 

measurement is required to estimate the human fatigue. 

Before introducing the 𝑆𝑜𝑓 , the dynamics of the maximum 

available force 𝐹𝑚(𝑡) provided by human are needed: 

 
𝐹̇𝑚(𝑡) = −(𝑅 +

𝑘

𝑀𝑣𝑐

𝐹ℎ(𝑡))𝐹𝑚(𝑡) + 𝑅 ∙ 𝑀𝑣𝑐 
(1) 

where 𝑀𝑣𝑐  is the Maximum Voluntary Contraction force at 

rest, 𝐹ℎ(𝑡) is the human applied force and 𝑘 and 𝑅 represent 

the fatigue and the recovery coefficients respectively. Of 

course, 0 ≤ 𝐹ℎ(𝑡) ≤ 𝐹𝑚(𝑡) ≤ 𝑀𝑣𝑐 . In the reminder of the 

paper, the maximum available force 𝐹𝑚(𝑡) is assumed not to 

be affected by the muscular contraction velocity. 

    If the user applies constantly the maximum feasible force 

𝐹𝑚(𝑡) as 𝐹ℎ(𝑡), then 𝐹𝑚(𝑡)  decreases at its maximum rate. 

This leads (1) to an equilibrium point where the fatigue rate is 

identical to the recovery rate, and 𝐹̇𝑚(𝑡) = 0, i.e.: 

 
−(𝑅 +

𝑘

𝑀𝑣𝑐

𝐹𝑚(𝑡) ) 𝐹𝑚(𝑡) + 𝑅 ∙ 𝑀𝑣𝑐 = 0 
(2) 

The positive solution is: 

 

𝐹𝑒𝑞 =
𝑅 ∙ 𝑀𝑣𝑐

2𝑘
(−1 + √1 +

4𝑘

𝑅
) 

(3) 

    This equilibrium value 𝐹𝑒𝑞 is also the minimum threshold 

that 𝐹𝑚(𝑡) can achieve. Thus 𝐹𝑒𝑞 ≤ 𝐹𝑚(𝑡) ≤ 𝑀𝑣𝑐. The State 

of Fatigue is then defined as: 

 
𝑆𝑜𝑓(𝑡) =

𝑀𝑣𝑐 − 𝐹𝑚(𝑡)

𝑀𝑣𝑐 − 𝐹𝑒𝑞
 

(4) 

Thus, the 𝑆𝑜𝑓  is the normalized value of 𝐹𝑚(𝑡)  (since 0 ≤

𝑆𝑜𝑓(𝑡) ≤ 1) and is an indicator to quantify the human fatigue. 

B. Wheelchair Model and Human Controller  

    The wheelchair dynamics are described as follows: 

 x(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵(𝑈𝑚(𝑘) + 𝐹ℎ(𝑘) ∙ 𝑟) (5) 

where 𝐴 ∈ ℝ2×2 , 𝐵 ∈ ℝ2×1 , 𝑥(𝑘) = [𝑑(𝑘), 𝑣(𝑘)]𝑇 , 𝑑(𝑘)  is 

the wheelchair position, 𝑣(𝑘) is the wheelchair velocity. We 

assume that the human force 𝐹ℎ(𝑘) depends on the fatigue 

state, the electrical motor assistance and the wheelchair 

velocity (perceived by the user): 

 𝐹ℎ(𝑘) = 𝑦(𝑈𝑚(𝑘), 𝑆𝑜𝑓(𝑘), 𝑣(𝑘)) (6) 

Before formulating this human force, we use the fatigue-

motivation model [2] to describe how the fatigue and the 

assistance affect human motivation. The human fatigue 

decreases the motivation and the perceived help increases the 

motivation. The normalized perceived help is: 

 𝐻(𝑘) = 𝑈𝑚(𝑘)/𝑈𝑚−𝑚𝑎𝑥 ∈ [0,1] (7) 

The equilibrium point between the perceived fatigue and the 

perceived help is: 

 
𝑓(𝑘) =

𝐻(𝑘) − 𝑆𝑜𝑓(𝑘)

𝐻(𝑘) + 𝑆𝑜𝑓(𝑘)
∈ [−1,1] 

(8) 

The motivation is:  

 
𝑀(𝑘) = {

𝑓𝑛(1 + 𝑓(𝑘))                 𝑓(𝑘) < 0

𝑓𝑛 + (1 − 𝑓𝑛)𝑓(𝑘)              𝑓(𝑘) ≥ 0       
 

(9) 

where 𝑀(𝑘) ∈ [0,1] and 𝑓𝑛  is the fraction of the maximum 

velocity 𝑉𝑚𝑎𝑥 . When the fatigue and help perceptions are 

balanced, the motivation 𝑀(𝑘) = 𝑓𝑛. The user motivation in 

(9) affects proportionally the desired wheelchair velocity 

𝑉𝑟−ℎ𝑢𝑚𝑎𝑛  of the user, so that a higher motivation leads to a 

higher desired velocity. The desired velocity is therefore: 

 𝑉𝑟−ℎ𝑢𝑚𝑎𝑛(𝑘) =  𝑉𝑚𝑎𝑥𝑀(𝑘) (10) 

Finally, the human force is modeled as a proportional velocity 

tracking controller: 

 𝐹ℎ(𝑘) = 𝐾𝑝(𝑉𝑚𝑎𝑥𝑀(𝑘) − 𝑣(𝑘)) (11) 

Moreover, the human force should be saturated by 𝐹𝑚(𝑘) and 

only the positive human force is taken into account: 

 𝐹ℎ(𝑘) = 𝑠𝑎𝑡(0, 𝐹𝑚(𝑘), 𝐹ℎ(𝑘)) (12) 

 
Figure 1: 𝑆𝑜𝑓(𝑘) evolution with a constant 𝑈𝑚 = 25𝑁𝑚 (above) and 

𝑆𝑜𝑓(𝑒𝑛𝑑) evolution respect to 𝑈𝑚 (below) 

 

Remark 1: The human controller represented by (12) is an 

implicit 𝑆𝑜𝑓 − tracking  controller for the interconnected 

wheelchair/human dynamics. Simulation results (with 𝑓𝑛 =
0.5) in Fig. 1 show that the 𝑆𝑜𝑓 converges to a specific value 

for a constant 𝑈𝑚; the proposed model manages the human 

fatigue depending on the perceived environment. 

Interestingly, the left part of the second curve, Fig. 1 

illustrates the fact that increasing perceived help motivates the 

user to do more physical exercise. The right part of this curve 

shows that when the assistive torque is increased, the motor 

assists the user to decrease his physical workload. 



C. Problem Statement  

    We consider a distance-to-go driving schedule with a 

predefined time horizon. The main goal is to find the control 

law 𝑈𝑚  so that users have a desired fatigue variation Δ𝑆𝑜𝑓 

and the wheelchair travels the given distance 𝛥𝑑 , or 

equivalently:  

 𝑆𝑜𝑓(𝑁) − 𝑆𝑜𝑓(0) = Δ𝑆𝑜𝑓 (13) 

 𝑑(𝑁) − 𝑑(0) = 𝛥𝑑  

with given 𝑆𝑜𝑓(0) and 𝑑(0), while minimizing the electrical 

energy consumption over the driving task. Here, 𝑆𝑜𝑓(𝑁) is the 

final 𝑆𝑜𝑓 and 𝑑(𝑁) the final distance. 

    In the interest of simplifying our primary analysis, the 

electric energy consumption 𝐽𝑒𝑙𝑒𝑐𝑡  is considered as a 

quadratic function of 𝑈𝑚:  

 

𝐽𝑒𝑙𝑒𝑐𝑡 = ∑
1

2
𝑈𝑚
2 (𝑘)

𝑁−1

𝑘=0

 

(14) 

Considering the terminal constraints (13) and the electric 

energy consumption (14), we state the finite horizon criterion 

to minimize as: 

 

min
𝑈𝑚

𝐽 = [𝑤1 𝑤2] [
(𝑑(𝑁) − 𝑑̅)

2

(𝑆𝑜𝑓(𝑁) − 𝑆𝑜𝑓̅̅ ̅̅ )
2] + ∑

1

2
𝑈𝑚
2 (𝑘)

𝑁−1

𝑘=0

 

(15) 

subject to the human fatigue dynamics (1), the wheelchair 

dynamics (5) and the human controller (6). 

III. OPTIMAL CONTROL METHODS 

    The first approach is the Policy Gradient reinforcement 

learning [16] which is largely applied for the control design 

of physical systems, thanks to its model-free online learning 

nature and considerable success in high-dimensional systems. 

The second one is Approximate Dynamic Programming [21], 

which provides a near-optimal solution used as a baseline.  

A. Policy Gradient 

    Modeling complex processes like human behaviors 

remains a major challenge for control design. Therefore, 

model-free PG approaches avoid the need for a model and 

deliver directly a control policy which tries to collect as much 

reward as possible. However, it is necessary to have access to 

the 𝑆𝑜𝑓 measurement to learn its dynamics. In what follows, 

the 𝑆𝑜𝑓 is assumed to be measured and the cost function (15) 

to minimize is formulated as a reward function r to maximize. 

The sum of the rewards over a finite-horizon: 

 

𝑅(𝜏) = 𝑇(𝑥𝑁) + ∑ 𝑟(𝑥𝑘 , 𝑢𝑘)

𝑁−1

𝑘=0

 

(16) 

is called the return 𝑅, where 𝑇(𝑥𝑁) is the terminal reward, 

𝑟(𝑥𝑘 , 𝑢𝑘) is the stage reward, 𝑢 is the control input, 𝑥 is the 

state of the system and 𝜏 = (𝑥0, 𝑢0, 𝑥1, 𝑢1, … 𝑥𝑁−1, 𝑢𝑁−1, 𝑥𝑁) 
is a trajectory of the system. Since exploration is 

indispensable to learn the unknown dynamics, stochastic 

policies are needed for model-free policy search methods. 

Hence, the trajectory probability distribution 𝑝𝜋(𝜏)  for a 

stochastic control system can be expressed as:  

 

𝑝𝜃(𝜏) = 𝑝(𝑥0)∏[𝑝(𝑥𝑘+1|𝑥𝑘 , 𝑢𝑘)𝜋𝜃(𝑢𝑘|𝑥𝑘 , 𝑘)]

𝑁−1

𝑘=0

 

(17) 

where 𝑝(𝑥0) is the initial state distribution, and 𝜋𝜃(𝑢𝑘|𝑥𝑘 , 𝑘) 
is the policy distribution with the control parameters 𝜃. As the 

considered state transition is deterministic, see (1) and (5), 

𝑝(𝑥𝑘+1|𝑥𝑘 , 𝑢𝑘) = 1 for 𝑥𝑘+1 = 𝑓𝑡(𝑥𝑘 , 𝑢𝑘) with the transition 

function 𝑓𝑡. Hence, (17) is rewritten as: 

 

𝑝𝜃(𝜏) = 𝑝(𝑥0)∏𝜋𝜃(𝑢𝑘|𝑥𝑘 , 𝑘)

𝑁−1

𝑘=0

 

(18) 

For trajectories 𝜏 generated by policy 𝜋𝜃 , expected return is: 

 
𝑅̃𝜃 = ∫𝑝𝜃(𝜏)𝑅(𝜏)𝑑𝜏 

(19) 

    Policy gradient methods update the control parameters 𝜃 in 

the steepest ascent direction so that the expected return (16) 

is maximized. The update law of the control parameters 𝜃 

with the learning rate 𝛼 (𝛼 > 0) is: 

 𝜃𝑖+1 = 𝜃𝑖 + 𝛼 ∙ 𝛻𝜃𝑅̃𝜃 (20) 

where 𝑖 is the iteration index and the policy gradient 𝛻𝜃𝑅̃𝜃 is:  

 
𝛻𝜃𝑅̃𝜃 = ∫𝛻𝜃𝑝𝜃(𝜏)𝑅(𝜏)𝑑𝜏 

(21) 

Since 𝛻𝜃𝑝𝜃(𝜏) = 𝑝𝜃(𝜏)𝛻𝜃 log 𝑝𝜃(𝜏), we have:  

 
𝛻𝜃𝑅̃𝜃 = ∫𝑝𝜃(𝜏)𝛻𝜃 log 𝑝𝜃(𝜏) 𝑅(𝜏)𝑑𝜏 

(22) 

Replacing 𝑝𝜃(𝜏) by (18), we obtain: 

 
𝛻𝜃𝑅̃𝜃 = ∫𝑝𝜃(𝜏)𝛻𝜃 [log 𝑝(𝑥0)∏𝜋𝜃(𝑢𝑘|𝑥𝑘 , 𝑘)

𝑁−1

𝑘=0

] 𝑅(𝜏)𝑑𝜏 
(23) 

Finally, by replacing the integral with the equivalent expected 

value notation, the REINFORCE [15], [16] policy gradient is:  

 

𝛻𝜃𝑅̃𝜃 = 𝐸𝜏 [∑{𝛻𝜃 log 𝜋𝜃(𝑢𝑘|𝑥𝑘 , 𝑘)

𝑁−1

𝑘=0

}𝑅(𝜏)] 
(24) 

From (24), we derive the policy gradient of GPOMDP (more 

details can be found in [15], [16]): 

 

𝛻𝜃𝑅̃𝜃 = 𝐸𝜏 [∑∑[𝛻𝜃 log 𝜋𝜃(𝑢𝑘|𝑥𝑘 , 𝑘)]

𝑘

𝑗=0

𝑁−1

𝑘=0

𝑟𝑗] 

(25) 

where 𝑟𝑗  is the stage reward, in (25) the gradient 𝛻𝜃𝑅̃𝜃 

depends only on the current policy distribution 𝜋𝜃(𝑢𝑘|𝑥𝑘 , 𝑘). 
The gradient calculus is replaced with ∇𝜃log𝜋𝜃(𝑢𝑘|𝑥𝑘 , 𝑘) 
calculus. In (24) and (25), the expected value is approximated 

using Monte Carlo techniques. 

B. Approximate Dynamic Programming 

    To derive a finite-horizon near-optimal policy 𝑈𝑚 , we 

extend the model-based approximate dynamic programming 

(ADP) algorithm in [21], which is originally used to solve 

infinite-horizon problems. In the original algorithm, the idea 

is to find a near-optimal policy that maximizes a predefined 

infinite-horizon return function. This near-optimal policy can 

be described by the approximate Q-function, which lies 

within a bounded distance from the optimal Q-function 𝑄∗: 
 𝑄∗(𝑥, 𝑢) = 𝜌(𝑥, 𝑢) + 𝛾 sup

𝜋
𝑅𝜋(𝜉(𝑥, 𝑢)) (26) 

where 𝜉  is the transition function, 𝛾  is the discount factor, 

𝜌(𝑥, 𝑢) is the reward and R is the discounted return from the 

next state 𝜉(𝑥, 𝑢). The optimal policy 𝜋∗ can be found from 

𝑄∗ (i.e. 𝜋∗ = argmax𝑢 𝑄
∗(𝑥, 𝑢)). In order to approximate 𝑄∗ 

and 𝜋∗, an approximator is used that relies on an interpolation 

over the state space, and on a discretization of the action space. 



The Q-value of the pair (𝑥, 𝑢) is approximated by the Q-value 

of the pair (𝑥, 𝑢𝑑)  interpolated over 𝑥 , where 𝑢𝑑  has the 

closest Euclidean distance to 𝑢  in the discrete subset of 

actions. A parameter vector is defined to represent the Q-

function. Each individual parameter is associated with a 

combination between points on the state-interpolation grids 

and discrete actions. This parameter vector is obtained by 

iterating the Bellman equation until convergence. 

IV. APPLICATION TO POWER-ASSISTED WHEELCHAIR 

    The objective of the control policy is to maintain the human 

fatigue level and minimize the energy consumption over a 

given distance. From an energy point of view and knowing 

the distance-to-go, negative human torque and negative motor 

torque are inefficient in terms of metabolic-electrical energy 

consumption over the task. An energy optimization algorithm 

should naturally eliminate this kind of solutions. Applying 

this prior knowledge to the controller parameterization, 𝑈𝑚 is 

saturated between 0 and the maximum torque 𝑈𝑚𝑎𝑥. But we 

should keep in mind that the model-free controller can be 

configured general enough in practice to adapt to unknown 

situations where no prior knowledge is available. 

    To evaluate the quality of the control policy obtained by the 

PG model-free approach, we compare it to a near-optimal 

solution derived using ADP.  

A. Model-free Solution 

    Here, we aim to compute a control policy 𝑈𝑚 to minimize 

the electrical energy consumption (14) subject to the unknown 

wheelchair/human dynamics (1), (5) and (6) satisfying 0 ≤
𝑈𝑚(𝑘) ≤ 𝑈𝑚𝑎𝑥, and the terminal constraints (13). 

    The block diagram Fig. 2 illustrates the black box including 

the dynamics of the wheelchair/human (i.e. human 

metabolism, wheelchair and human controller). An efficient 

method to deal with this issue is to learn the controller directly 

without knowing the system dynamics. The PG algorithm 

provides a state feedback control law approximately 

maximizing a given return function. 

    Using the proposed PG approach, the optimization problem 

(15) is solved without knowing completely the dynamics (1), 

(5) and (6). We approximate first the deterministic motor 

torque by the following basis functions φ (BF): 

 

𝑈𝑚̃(𝑘) = ∑𝜃ℎ𝜑ℎ(𝑑(𝑘), 𝑣(𝑘), 𝑆𝑜𝑓(𝑘))

𝑀

ℎ=1

 

(27) 

where M is the number of BFs and 𝜙𝑑 is the weight of BF. 

We use radial basis functions (RBFs) in 𝑋(𝑘) =
[𝑑(𝑘), 𝑣(𝑘), 𝑆𝑜𝑓(𝑘)]𝑇 to fit the general formalism (27). The 

resulting parameterization is:  

 

𝑈𝑚̃(𝑘) = ∑𝜃𝑑 exp(−𝛽‖𝑋(𝑘) − 𝑐𝑑‖
2)

𝑀

𝑑=1

 

(28) 

   In (28), 𝑐𝑑 is the center vector for RBF 𝑑. The exploration 

is carried out by the exploration noise 𝜎 which adds directly 

a random value to the executed action and renders the policy 

(28) stochastic. The applied exploration noise 𝜎 has a normal 

distribution (29). In order to prevent the executed action from 

violating the constraint (29), the stochastic human force is 

selected as: 

 
𝑈𝑚(𝑘) = 𝑈𝑚𝑎𝑥 𝑞𝑠𝑎𝑡 [

1

𝑈𝑚𝑎𝑥
𝑁(𝑈𝑚̃(𝑘), 𝜎

2)] 
(29) 

 

Figure 2: Power assistance algorithm with PG model-free approach 

    Thus, the motor torque 𝑈𝑚(𝑘) is saturated smoothly by the 

smooth saturation function 𝑞𝑠𝑎𝑡  between [0, 𝑈𝑚𝑎𝑥] , as 

depicted in Fig. 3. The variance 𝜎 of the exploration noise is 

chosen such that the algorithm explores efficiently the 

unknown system dynamics described by (1), (5) and (6). 

Using these new trajectories generated with the exploration 

noise 𝜎, the PG algorithm (25) updates the parameters 𝜃 with 

(20) to improve the performance of control policy in terms of 

the expected return (19). According to the normal distribution, 

the policy distribution can be written as: 

 𝜋𝜃(𝑈𝑚(𝑘)|𝑋(𝑘)) =
1

√2𝜋𝜎2
* 

exp

(

 −
(𝑈𝑚𝑎𝑥 𝑞𝑠𝑎𝑡

−1(
𝑈𝑚(𝑘)
𝑈𝑚𝑎𝑥 

) − ∑ 𝜃𝑑 exp(−𝛽‖𝑋(𝑘) − 𝑐𝑑‖
2)𝑁

𝑑=1 )
2

2𝜎2

)

  

(30) 

The derivative of each policy parameter 𝜃𝑑  (𝑑 = 1…𝑀) is: 

 𝛻𝜃𝑑 log 𝜋𝜃𝑑(𝑈𝑚(𝑘)|𝑋(𝑘))

=
exp(−𝛽‖𝑋(𝑘) − 𝑐𝑑‖

2)

𝜎2
[𝑈𝑚𝑎𝑥 𝑞𝑠𝑎𝑡

−1(
𝑈𝑚(𝑘)

𝑈𝑚𝑎𝑥  
)

−∑𝜃𝑑 exp(−𝛽‖𝑋(𝑘) − 𝑐𝑑‖
2)

𝑀

𝑑=1

] 

(31) 

    To travel the given distance with a desired variation Δ𝑆𝑜𝑓 

defined in (13), the terminal reward in (16) is defined as: 

 
𝑇 (𝑑(𝑁), 𝑆𝑜𝑓(𝑁)) = −[𝑤1 𝑤2] [

(𝑑(𝑁) − 𝑑̅)
2

(𝑆𝑜𝑓(𝑁) − 𝑆𝑜𝑓̅̅ ̅̅ )
2] 

(32) 

Here, 𝑤1, 𝑤2 are the reward function weights, the distance-to-

go is 𝑑̅, and the desired final 𝑆𝑜𝑓  is 𝑆𝑜𝑓̅̅ ̅̅ . 

    Owing to the exploration in action space for the policy (29), 

if the optimal control value 𝑈𝑚(𝑘) is located at the borders of 

the interval [0, 𝑈𝑚𝑎𝑥], the algorithm permanently increases/ 

decreases the values 𝑈𝑚̃(𝑘) to obtain more expected return. 

Therefore, a saturation penalty is needed so that the control 

parameters 𝜃 converge. Finally, the energy consumption has 

to be taken into account in the reward function. Then, the 

stage reward is: 

 
𝑟(𝑥𝑘 , 𝑢𝑘) = − [

1

2
𝑈𝑚
2 (𝑘) + 𝑤3𝑃𝑠(𝑈𝑚(𝑘))] 

(33) 

where 𝑃𝑠(𝑈𝑚(𝑘))  is the saturation penalty function. The 

energy consumption is described by the quadratic function 



mentioned previously in (14), and 𝑤3 is the constraint penalty 

weight. Overall, the return is defined as follows: 

 𝑅 = −𝑤1(𝑑(𝑁)− 𝑑̅)
2
 

−𝑤2(𝑆𝑜𝑓(𝑁) − 𝑆𝑜𝑓̅̅ ̅̅ )
2
−∑[

1

2
𝑈𝑚
2 (𝑘) + 𝑤3𝑃𝑠(𝑈𝑚(𝑘))]

𝑁−1

𝑘=0

 

(34) 

where 𝑃𝑠, illustrated Fig. 3, is defined as: 

 

𝑃𝑠 =

{
  
 

  
 sin (

𝜋

0.04𝑈𝑚𝑎𝑥
(𝑈𝑚 − 𝑈𝑚𝑎𝑥)) + 1 0.98𝑈𝑚𝑎𝑥 ≤ 𝑈𝑚 ≤ 𝑈𝑚𝑎𝑥

0 0.02𝑈𝑚𝑎𝑥 ≤ 𝑈𝑚 ≤ 0.98𝑈𝑚𝑎𝑥

sin (
𝜋

0.04𝑈𝑚𝑎𝑥
(−𝑈𝑚)) + 1 0 ≤ 𝑈𝑚 ≤ 0.02𝑈𝑚𝑎𝑥

 

(35) 

Now, by tuning the learning rate 𝛼, the parameters (𝛽, 𝑐,𝑀) 
of the basis functions, the variance 𝜎  and the parameters 

(𝑤1, 𝑤2, 𝑤3)  of the reward function, we have all the 

conditions to compute ∇𝜃log𝜋𝜃(𝑈𝑚(𝑘)|𝑋(𝑘))  and so the 

gradient 𝛻𝜃𝑅̃𝜃 . In this paper, we apply the GPOMDP 

algorithm (25). The complete algorithm is shown as follows: 

Initialize the policy parameters 𝜃𝑖  (𝑖 = 1, 2, 3, …𝑀) 
repeat  

  generate trajectories 𝜏 using current policy 

  use (31) to compute 𝛻𝜃𝑑𝑙𝑜𝑔𝜋𝜃𝑑(𝑈𝑚(𝑘)|𝑋(𝑘))  

  compute the gradient for each parameter 𝜃𝑑 with (25) 

  update each control parameter 𝜃𝑑 (𝑑 = 1, 2, …𝑀) by (20) 

until the return R converges 

 
Figure 3: Smooth saturation function 𝑞𝑠𝑎𝑡 (above) and penalty 

function 𝑃𝑠 for 𝑈𝑚𝑎𝑥 = 50𝑁 (below) 
 

B. Model-based Baseline Solution 

    To solve our finite-horizon problem, we use the backward 

iteration of the original algorithm [21] and choose the 

discount factor 𝛾 as 1. For a horizon of 10s with a sampling 

time 0.05s, the number of the backward iteration is 200. To 

represent the finite-horizon return (34), the terminal cost is 

used firstly to compute the Q-function of the last time step, 

and then each stage is gradually added via the backward 

dynamic programming iterations. In total, 200 Q-functions 

are generated to represent a time-varying Q-function for a 

horizon of 10s. Moreover, we derive the policy from the 

obtained time-varying Q-function in the forward direction, by 

choosing the action which maximizes the Q-function of that 

step and apply it to the system. 

V. SIMULATION RESULTS 

    For the following simulations, we choose the recovery 

coefficient 𝑅 = 0.0063𝑠−1 , the fatigue coefficient 𝑘 =
0.153𝑠−1 , the MVC 𝑀𝑣𝑐 = 100𝑁 , the wheel radius 𝑟 =
0.33𝑚 and the control gain 𝐾𝑝 of (11) is 30. The parameter 

𝑓𝑛  of the motivation model is chosen as 0.5. The system 

matrices of (5) are: 

𝐴 = [
1 0.05
0 0.9406

], 𝐵 = [
0

0.0059
] 

The reward weights are: 𝑤1 = 4000, 𝑤2 = 107  𝑤3 = 800. 

Time horizon is 10s, the initial state of fatigue 𝑆𝑜𝑓(0) = 0.5, 

the desired final human fatigue 𝑆𝑜𝑓̅̅ ̅̅  is also 0.5 and the distance 

to go 𝐷̅  is 20 rad. 𝑑 ∈ [0,30] (𝑟𝑎𝑑), 𝑣 ∈ [0,7](𝑟𝑎𝑑/𝑠) and 

𝑆𝑜𝑓 ∈ [0.35,0.7]. The state vector is 𝑋 = [𝑑 𝑣 𝑆𝑜𝑓]𝑇. The 

motor torque is bounded (𝑈𝑚 ∈ [0,50] (𝑁𝑚)). To apply the 

model-based ADP approach, we use an equidistant three 

dimensional 10 × 10 × 41  interpolation grid. 15 discrete 

actions are chosen for 𝑈𝑚. 

    For the model-free PG approach, an equidistant three 

dimensional 5 × 5 × 8 grid is selected as the centers of the 

RBFs. In total, 200 RBFs (𝑀 = 200 and 𝛽 = 0.5), together 

with a parameter vector 𝜃𝜖ℛ200 are used to approximate the 

controller (27). The learning rate 𝛼 is chosen as 10−5. 

 
Figure 4: Simulation results provided by GPOMDP algorithm and ADP 

algorithm 

A number of 1600 iterations (5 trajectories of 10s for each 

iteration) are performed to learn the control parameters 𝜃. We 

compare the solution of PG with the solution obtained by the 

ADP. As shown in Fig. 4, PG approach (solid line) has a 

similar performance with ADP approach (dotted line). The 

obtained simulation results as follows: The final return is 

−8.2017𝑒4  for PG (the energy consumption: −5.3893𝑒4 

and the terminal penalty: −2.8124𝑒4). The final return is 

−6.9837𝑒4 for ADP (the energy consumption: −6.4726𝑒4 

and the terminal penalty:  −5.1108𝑒3 ). The PG approach 

provides 12.7% less return than ADP. However, the PG 

approach eliminates the need for a model by accepting this 



loss in return. It is important to mention this 12.7% difference 

includes both an electrical energy component and a difference 

in the final Sof reached by the two methods. 

    From a practical point of view, first the user cooperates 

with the motor to push the wheelchair. After reaching a 

suitable velocity between 1𝑠 and 3.5𝑠, the user reduces his 

applied force to reduce his fatigue. During this time, the 

electrical motor provides the main input to maintain this 

velocity. In the reminder of the driving, the motor assistance 

is reduced gradually to minimize the energy consumption. 

Moreover, the user tries to attain the desired final fatigue level 

by reducing his force. The system uses the kinetic energy 

given previously by the user and the motor to end the mission. 

During the driving task, the provided assistive algorithm tries 

to provide an energy-efficient assistance to the user so that his 

final fatigue level reaches the desired one.  

    For the model-free PG approach, we have a terminal error 

of 0.05 between the final 𝑆𝑜𝑓(𝑁) and the desired final value 

𝑆𝑜𝑓̅̅ ̅̅  (0.02 for the ADP approach). This error can be reduced 

by increasing the weighting factor 𝑤2. However, the energy 

consumption should have a significant weight in the return 

function (34) to fulfill the optimization objective. The weight 

parameters 𝑤1, 𝑤2 and 𝑤3 must be tuned to have a tradeoff 

between reaching the terminal conditions and minimizing the 

energy consumption. The learning rate 𝛼 tuning also depends 

on the weighting factors and parameters (𝛽, 𝑐,𝑀). Since no 

prior knowledge about the optimal policy is available, an 

equidistant grid on the given intervals is chosen for the centers 

of the RBFs. If we increase the number of RBFs, the 

approximate controller may tend to the optimal solution after 

receiving enough training. Roughly speaking, around 20-30 

preliminary experiments are required to fix the 4 parameters 

and the RBFs used in this paper. 

    Remark 2: Models (1), (5) and (6) do not fully represent 

the real dynamics of the system. However, The PG approach 

treats the whole wheelchair/human dynamics (including the 

negative torque of the user) as unknown. In real-time 

applications, we expect the good performance of the 

algorithm observed here to generalize also to other dynamics. 

VI. CONCLUSION AND FUTURE WORK 

    In this paper, a novel design of PAW control has been 

proposed based on an energy optimization under human 

fatigue constraint. The idea is to maintain a suitable fatigue 

level for users while reducing the electrical energy 

consumption over a driving task. Using a mathematical model 

to describe the human fatigue dynamics, we consider a 

distance-to-go driving task to carry out the simulations.    

    We applied the model-free approach PG for this distance-

to-go driving task. The wheelchair, human fatigue and human 

controller were treated as unknown dynamics. Simulation 

results illustrated that the assistive algorithm provided by PG 

tries to improve energy efficiency, despite an acceptable error 

between the final 𝑆𝑜𝑓(𝑁)  and the desired final value 𝑆𝑜𝑓̅̅ ̅̅ . 

Moreover, we show that this policy obtained by PG is not far 

from a near-optimal solution derived by ADP. 

    In the considered driving task, 𝑆𝑜𝑓  is assumed to be 

measured, which is not possible in practice. In future research, 

the fatigue has to be estimated via a physical variable (i.e. 

human input torque). The estimated information would feed 

into the PG algorithm.  

    As a considerable amount of data is needed to obtain a high 

performance controller, more PG learning techniques should 

be investigated to reduce the learning time. The ultimate 

objective is to develop an efficient real-time learning control 

of PAWs. 
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